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The mode shapes of piezoelectric metamaterials are tuned by manipulating

spatially the electrical boundary conditions of the piezo-elements, in a desired

and controlled manner, in order to tailor the wave propagation characteristics

through these metamaterials. The boundary conditions of the piezo-elements

are controlled by using inductive shunting networks. With appropriate tuning

and optimization of the spatial distribution of these inductive boundary

conditions, it would be possible to alter the mode shape characteristics of

the metamaterial in order to control the magnitude and direction of wave

propagation. This enables also breaking the reciprocity characteristics of the

metamaterial in a controlledmanner. A finite element model (FEM) is developed

to model the mode shape characteristics and the wave propagation in a one-

dimensional piezo-metamaterial. The effect of various shunting strategies on

the spatial control of the mode shapes, energy flow, and reciprocity

characteristics of the piezo-metamaterial are investigated. The presented

work lays down the foundation for two and three-dimensional metamaterial

with tunable mode shape characteristics.
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1 Introduction

Recently, the focus has been placed on the development of a wide variety of classes of

non-reciprocal metamaterials (NMM) to control the magnitude and direction of wave

propagation through these metamaterials. The basic concepts, the theoretical and

experimental bases, as well as typical performance characteristics of these non-

reciprocal systems are summarized in the concise account of Nassar et al. (2020) and

Wang et al. (2018). The majority of the developed NMM are intended for use in critical

applications such as acoustic diodes and topological insulators.

The approaches adopted to the break the reciprocity vary from simple passive

approaches to the more imaginative active means. Distinct among the passive

approaches are those including constitutive nonlinearity (Liang et al., 2009; Gu et al.,

2016; Merkel et al., 2018; Petrover and Baz, 2020; Raval et al., 2020), momentum bias

(Fleury et al., 2014; Liu et al., 2015; Liu et al., 2019; Wiederhold et al., 2019), and

gyroscopic coupling (Attarzadeh et al., 2019). The performance characteristics of the
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passive NMM are enhanced by providing them with active

control capabilities as proposed, for example, by Popa and

Cummer (2014), Popa et al. (2015),Trainiti and Ruzzene

(2016), Nasser et al. (2017), Baz 2018 and Baz 2019a), Yi

et al. (2019), Karkar et al. (2019), Zhai et al. (2019) and

Goldsberry et al., 2019 and Goldsberry et al., 2020. Other

interesting active control approaches to break the reciprocity

include the use of virtual gyroscopic controllers (Baz, 2018; Raval

et al., 2021; Baz, 2022; Zhou and Baz, 2022) and by introducing a

unique eigen-structure tuning controller (Baz, 2020a, Baz, 2020b

and Baz, 2022; Zhou and Baz, 2021).Zhou and Baz, 2022

In the present paper, the theoretical bases for the breaking of

the reciprocity are established for a special class of piezoelectric

metamaterials. Such control of the reciprocity is achieved by

manipulating spatially the electrical boundary conditions of the

piezo-elements, in a desired and controlled manner by shaping

the mode shape, in order to tailor the wave propagation

characteristics through these metamaterials. The boundary

conditions of the piezo-elements are controlled by using

inductive shunting networks.

This work distinguishes itself from the work of Zheng et al. (2019)

where piezoelectric bistable shunting networks are used to introduce

nonlinearities and asymmetry along the wave propagation path. Such

complexity in the control of the piezo-elements can introduce

undesirable structural instabilities. Furthermore, the shunting

networks are coupled, from one end, with hard-wired linear

circuits and, from the other end, with short-circuits that make the

reversibility of the reversal of the non-reciprocal wave propagation

rather difficult to achieve.

In here, the control of the reciprocity is achieved using

completely linear elements that can be programmable to

ensure stable operation and enable reversable of the reciprocal

behavior. Furthermore, the selection of the shunting elements

has been based on solid finite element modeling coupled with

optimal design procedures.

This paper is organized in five sections. In section 1, a brief

introduction of the passive and active control approaches of non-

reciprocity is presented and the concept of the nonreciprocal

piezoelectric metamaterials with shaped eigen-vectors is outlined

in Section 2. The finite element modeling (FEM) of the

piezoelectric metamaterial when coupled with shunted electric

networks is described in Section 3. Numerical examples are

presented in Section 4 to demonstrate the merits and basic

performance characteristics of the piezoelectric metamaterial

with tunable mode shapes. The emphasis, in Section 4, is to

demonstrate the effectiveness of the mode shape tuning on

breaking the reciprocity. Finally, Section 5 summarizes the

conclusions and possible recommendations for future studies.

2 Concept of the nonreciprocal
metamaterial

In this section, the concept of the proposed piezoelectric

nonreciprocal metamaterial (NMM) configuration consisting of

an array of periodic system which consist of cells that are

provided with shunted electric networks as shown in

Figure 1A. The parameters of the shunted networks are tuned

FIGURE 1
A schematic drawing of a 1D periodic dynamical system.
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by appropriate assignment of the mode shapes (i.e., eigenvectors)

of the entire assembly (Baz, 2018-Baz, 2022). Such an approach

enables the spatial control of the energy flow along the

metamaterial to achieve any desirable non-reciprocal

characteristics.

In Figure 1B, the upper bounds of the mode shapes (i.e.,

eigenvectors) of the un-shunted metamaterial assembly are

displayed. The un-shunted system exhibits the conventional

reciprocal behavior. But, shaping the bounds of the mode shapes

(i.e., eigenvectors) of the shunted metamaterial assembly as shown in

Figure 1C, the wave propagation along the forward direction can be

amplified to acquire the desired profiles of the shaped mode shapes.

Upon the reversal of the wave propagation direction as shown in

Figure 1D, then the backward waves propagation will experience

attenuation as imposed by the shaped mode shape profile. This

generates a non-reciprocal wave propagation behavior which is

completely controlled by tuning the parameters of the shunted

network. In this manner, the extent and direction of the

introduced non-reciprocity can be altered on demand.

3 Finite elementmodeling of the non-
reciprocal piezoelectric
metamaterials

The finite element model of the proposed piezoelectric

metamaterial composite rod, shown in Figure 2A is developed

in this section. The model describes the dynamics of a unit cell of

the metamaterial as displayed in Figure 2B. The unit cell consists

of a base structure with properties (ρr, Ar, Er) bonded to it a

piezoelectric layer with properties (ρp, Ap, Ep) which is shunted

by an inductive-capacitive (L-Ce) network. Note that ρi, Ai, and Ei
denote the density, cross sectional area, and Young’s modulus of

the ith layer where i = r and p which refer to base structure and

piezo-layers, respectively.

3.1 Constitutive equations of the
piezoelectric layer

These equations are described by the following matrix form

(IEEE, 1987):

{T1p

E3
} � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ cD11 − h31

−h31 1

εS33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦{ S1
D3

} (1)

where T1p, E3, S1, and D3 denote the stress, electric field, strain,

and electric displacement, respectively with subscripts 1 and

3 define the longitudinal and across the thickness directions,

respectively.

Also, h31 � d31
sE11(1−k231)εT33, εS33 � εT33(1 − k231), cD11 �

1/ sE11(1 − k231) and k231 � d231/s
E
11ε

T
33. Note that sE11, ε

T
33, d31,

and k231 denote the short-circuit compliance, the stress-free

permittivity, the piezo-strain coefficient, and the electro-

mechanical coupling factor, respectively.

Equation 1 can be expanded to lead to:

T1p � cD11 S1 − h31D3andE3 � −h31S1 + 1
εs33

D3 (2)

3.2 Mass and stiffness matrices of the
piezoelectric metamaterial cell

3.2.1 The kinetic energy

KE � 1
2
b(trρr + tpρp)∫Le

0

_u2dx (3)

where ti and b are the thickness and width of the base structure

and piezoelectric layer. Also, Le is the element length and u is the

longitudinal deflection described in the finite element classical

format:

u(x) � [N]{Δ} (4)

with [N] and {Δ} define the interpolation matrix and the nodal

deflection vector, respectively. For this one-dimensional

metamaterial structure, it is assumed that a simple linear

shape function is adequate to extract the interpolating matric

FIGURE 2
A schematic drawing of the piezoelectric composite
metamaterial.
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[N]. The convergence accuracy is achieved by increasing the

number of finite elements.

Combining Eqs 3, 4 leads to:

KE � 1
2
{ _Δi}T[[Mr] + [Mp]] { _Δi} � 1

2
{ _Δi}T[M] { _Δi} (5)

Where

[Mr] � (ρrtr)b∫
0

Le

{N}T{N}dx � massmatrix of the base

structure,

[Mp] � (ρptp)b∫
0

Le

{N}T{N}dx � massmatrix of the piezo −
layer.

3.2.2 The potential energy

PE � 1
2
∫
V

S1(T1p + T1r)dv + 1
2
∫
V

D3E3dv (6)

In Eq. 6, the first term of the PE defines the energy associated

with the structural component while the second term defines that

of the electrical component. Substituting Eqs 2, 6 yields:

PE � 1
2
(btr)∫Le

0

S1ErS1dx + 1
2
(btp)∫Le

0

S1[cD11S1 − h31D3
⎤⎥⎥⎥⎥⎥⎦dx

+ 1
2
(btp)∫Le

0

D3[ − h31S1 + 1
εs33

D3]dx (7)

and

PE � 1
2
{Δi}T[Ks]{Δi} − tp

Le
h31Qi{1 − 1}{Δi} + 1

2
Qi

2

Cs
p

(8)

where [Ks] � b(trEr + tpcD11)∫Le
0
{Nx}T{Nx}dx and Cs

p � bLeεs33/tp
with D3 � Qi/(bLe).

In Eq. 8, the first term of the PE defines the energy

associated with the structural component, the second term

defines that due to the coupling between the mechanical and

electrical fields, while the third term relates to the energy of the

electrical components. Also, cD11 and Cs
p denote the open-

circuit piezo-modulus and its free-strain capacitance,

respectively.

3.2.3 The virtual work by the external Loads and
the shunted network (δW)

This work is given by:

δW � −(Li
€Qi + 1

Cei
Qi)δQi + {Fi}δ{Δi} (9)

where L and Ce are the shunting inductance and capacitance,

respectively.

3.2.4 The Lagrange’s equations of motion
The Lagrange’s equations of motion governing the dynamics

of the structural and electrical degrees of freedom are given by:

d

dt

zL
z{ _Δi}

− zL
z{Δi} � {Fi} and d

dt

zL
z{ _Qi}

− zL
z{Qi} � −{Li

€Qi + 1
Cei

Qi} (10)

where L is the “Lagrangian”. Eq. 10 can be cast in the following

matrix form:

[ [M] 0
0 Li

]{ {€Δi} €Qi } +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
[Ks] −tp

Le
h31

⎧⎨⎩ 1

−1
⎫⎬⎭

−tp
Le
h31

⎧⎨⎩ 1

−1
⎫⎬⎭T ⎛⎝ 1

Cei
+ 1
Cs

p

⎞⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦{ {Δi}

Qi
} � { {Fi}

0
}

(11)

Eq. 11 can be rewritten in a compact dimensionless form, as

indicated in the appendix by Eq. (A.5), as follows:

[ �Mi]{€�Xi} + [ �Ki]{ �Xi} � {�Fi} (12)

where { �Xi} � { �Δ i, �Qi}T. [ �Mi], [ �Ki]and {�Fi} are the dimensionless

mass, stiffness, and force matrices as defined in the appendix,

respectively.

3.2.5 Condensation of The Lagrange’s equations
of motion

The “Static Condensation” method is employed to condense

the Lagrange’s Eq. 11 in order to retain only the structural

degrees of freedom (DOF) as the primary DOF (Cammarata,

et al., 2019). This condensation is achieved by expanding the

second row of Eq. 12 using only the static components to yield:

�Qi � k2

(1 − k2)(�C + 1){ 1
−1}T

{ �Δ i} → �Qi � R{ �Δ i}

whereR � k231(1 − k231)(�C + 1){ 1
−1}T

(13)

This leads to:

TABLE 1 Values of the optimal shunting inductances.

LOCATION 1 2 3 4 5 6 7 8 9 10

�Li (x10−6) 0.05 0.1 0.2 0.3 0 0.9 0.9 1.75 1.75 2

Note that the desirable and the achievable are very similar as the ratio between ϕs max/ϕs min is nearly equal to ϕa max/ϕa min. This statement is supported by the fact that the mode shapes are

relative metrics and not absolute metrics.
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{ �Xi} � { { �Δ i}
�Qi

} � {R
I
}{ �Δ i} � T{ �Δ i} (14)

Combining Eqs 12, 14 yields the following reduced-order

model of the metamaterial cell:

[ �MRi]{ €�Δ i} + [ �KRi]{ �Δ i} � {�FRi} (15)

where [ �MRi] � TT[ �Mi]Tand[ �KRi] � TT[ �Ki]T denoting the

reduced mass and stiffness matrix of the unit cell.

The matrices of the unit cells are assembled yielding the

overall equations of motion of the entire piezoelectric

metamaterial assembly as follows:

[ �MR]o{ €�Δ }o + [ �KR]o{ �Δ }o � {�F}o (16)

The associated eigenvalue problem of the assembled Eq. 16 is

given by:

[ �KR]o{ϕan
} � ω2

n[ �MR]o{ϕan
} (17)

where ωnand{ϕan} denote the nth natural frequency and the

associated “achievable” eigenvector.

3.2.6 Tuning of the parameters of the shunted
network and the mode shapes

Figure 3 displays the flow chart of the tuning of the

parameters of the shunted network and the mode shapes.

In the flow chart, the “shaped” or “desirable”mode shapes ϕs
are obtained by scaling the “un-shunted” eigenvector ϕu by a

scaling matrix S such that:

ϕs � Sϕu (18)

where the entries of the scaling matrix S are selected to

appropriately modify the un-shunted eigenvector ϕu such that

S takes the following general form:

S �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1 0 .... 0
0 s2 .... 0
0 0 .... 0
.... .... .... sn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

where the entries si’s (i =1,. . ., n ) are scaling factors of the

different degrees of freedom of the structure that are selected to

spatially reshape the ith eigenvector as desired.

Note that the “achievable” mode shapes ϕa are determined

from the solution of the eigenvalue problem described by Eq. 17.

4 Numerical examples and
performance characteristics of the
non-reciprocal piezoelectric
metamaterials

4.1 The unit cell

The geometrical and physical properties of the unit cell are

selected, for illustrative purposes of the developed concepts, such

FIGURE 3
Flow chart of the tuning of the parameters of the shunted
network and the mode shapes.

FIGURE 4
Optimal values of the dimensionless shunted inductances.
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that: k231 � 0.1, �C � 1 and(�t �E + 1) � 8 where k231, �C,�t, and �E are

as defined in the appendix.

The metamaterial is divided into 10 elements and the

optimal values of the shunted inductances �Li (i=1,. . ..,10) are

determined using the optimization design strategy shown in

Figure 3. In this strategy, the optimization problem is

formulated as follows:

〈 Find the inductances �Li(i � 1, ..., n)
Tominimize: ∑

modes

&&&&ϕa − ϕs

&&&&/&&&&ϕs

&&&&
Such that �Li ≥ 0

and [ �KR]o{ϕan
} � ω2

n[ �MR]o{ϕan
}〉

(20)
Such that and [ �KR]o{ϕan} � ω2

n[ �MR]o{ϕan}
Solution of the constrained optimization problem described

in Eq. 20 is carried out using MATLAB Optimization toolbox.

The obtained optimal values of �Li are shown in Figure 4A.

These optimized values are achieved after 130 iterations as shown

in Figure 4B. Note that the large optimal values of �L(� LCs
pτ

2)
that large values of the inductances are needed to achieve the

desired mode shape tuning and hence electronically synthesized

inductances are needed (Baz, 2019b). These synthesized

inductances enable their programmability easily (Alzaher and

Tasadduq, (2007).

The optimization process aimed at shaping the original

“unshunted” mode shapes ϕu (i.e., eigenvectors) as shown in

Figure 5A. These mode shapes are bounded within boundaries

that are uniform along the entire length of the meta-cell. These

boundaries are then scaled and reshaped as shown in Figure 5B to

achieve desirable profiles ϕs similar to those displayed in Figures

1A,B. These scaled boundaries are obtained by selecting the

scaling factors si such that:

s1 through s5 � 0.1 and s6 through s10 � 1

FIGURE 5
Comparison between the original, desirable, and achievable mode shapes (i.e., eigenvectors).
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With such scaling factors, the targeted “scaled” or “desirable”

profiles of the eigenvectors are displayed in Figure 5B. This

scaling is intended to magnify the waves propagating along the

forward direction while it is expected to attenuate the

propagation along the backward direction.

The optimization process attempts to place the shunting

inductances along the metamaterial in order to generate

achievable mode shapes ϕa (i.e., eigenvectors) as close as

possible to the desired mode shapes ϕs by minimizing the gap

between ϕs and ϕa. The result of this optimization process yields

the eigenmode profiles shown in Figure 5C.

The displayed mode shape profiles are obtained with the

optimal inductances listed in Table 1.

Figure 6 displays the transmitted waves in decibels

(20 log10(uoutput/uinput)) for forward and backward

propagation along the optimally shunted piezoelectric

metamaterial. The displayed results demonstrate and

emphasize the effectiveness of shaping the mode shapes in

achieving amplification during forward transmission and

attenuation during back transmission. In other words, the

concept of shaping the mode shapes has been successful in

breaking the reciprocity principle in piezoelectric metamaterials.

The effect of shaping the mode shapes has been illustrated

further by considering the spatial distribution of the wave

energy along the optimally shunted piezoelectric

metamaterial when it is subjected to excitations at different

frequencies.

Figures 7A–C display these characteristics when the

excitations are carried out at the first, second, and third

modes of vibration of the metamaterial. The figures reinforce

the results displayed in Figure 6 indicating that the proposed

modal tuning approach has produced significant amplification

during forward propagation and equally considerable

attenuation during the backward propagation for all the

considered modes and over the entire structure of the

metamaterial.

In other words, the displayed results emphasize the potential

of shaping the mode shape in achieving non-reciprocal behavior

both spatially and over a wide frequency bandwidth.

5 Conclusion

This paper has presented a finite element modelling approach

to demonstrate the effectiveness of shaping the mode shapes of

piezoelectric metamaterials, in a controlled manner, as an effective

means for controlling the magnitude and direction of wave

propagation along this class of metamaterial. With such

capabilities, it has been shown that this approach enables

FIGURE 6
The transmitted waves during forward and backward
propagations.

FIGURE 7
Amplification during forward propagation and attenuation
during backward propagation at different excitation frequencies.
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breaking the reciprocity characteristics of the metamaterial, in an

attempt, to generate a class of acoustic diodes.

A finite element model (FEM) is developed to model the mode

shape characteristics and thewave propagation in a one-dimensional

piezo-metamaterial. The effect of various shunting strategies on the

spatial control of the mode shapes, energy flow, and reciprocity

characteristics of the piezo-metamaterial are investigated.

Work is now in progress to validate the proposed modal

tuning approach experimentally. The presented work lays down

the foundation for two and three-dimensional metamaterial with

tunable mode shape characteristics.
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Appendix A: Dimensionless form of
the Equations of Motion

The equations of motion as defined by Eq. 11 can be cast in a

dimensionless form by assuming the following dimensionless

variables:

{ �Δ i} � 1
Le

{Δi}and �Qi � d31

tpCs
p

Qi (A.1)

Also, the stiffness and mass matrices are rewritten as:

[Ks] � b(trEr + tpc
D
11)∫Le

0

{Nx}T{Nx}dx

� b(trEr + tpc
D
11)

Le

⎡⎣ 1 −1
−1 1

⎤⎦ � btpc
D
11

Le
(�t �E + 1)⎡⎣ 1 −1

−1 1
⎤⎦

where�t � tr
tp
, �E � Er

cD11
(A.2)

and

[M] � b[ρrtr + ρptp]∫Le
0

{N}T{N}dx

� bLe[ρrtr + ρptp]
6

⎡⎣ 2 1

1 2
⎤⎦ � ρpbLetp[�ρ�t + 1]

6
⎡⎣ 2 1

1 2
⎤⎦where �ρ � ρr

ρp

(A.3)

Let τ be a characteristic time given by:

τ �
)))))))))))
ρpL

2
e(�ρ�t + 1)

6cD11(�t �E + 1)
√

(A.4)

Substituting Eqs. (A.1–A.4) into Eq. 10, it reduces to:

As[ [ �M] 0

0 �Li

]{ {€�Δ i}€�Qi}

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
[ �Ks] −(1 − k231)(�t �E + 1) ⎧⎪⎨⎪⎩ 1

−1
⎫⎪⎬⎪⎭

− k231(1 − k231)⎧⎪⎨⎪⎩ 1

−1
⎫⎪⎬⎪⎭

T (�C + 1)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦{ { �Δ i} �Qi} � { {�Fi}

0
} (A.5)

Where
�C � Cs

p

Cei
, �L � LCs

pτ
2, {�Fi} � {Fi}/[btpcD11(�t �E + 1)],

[ �M] � [ 2 1
1 2

], and[ �K] � [ 1 −1
−1 1

].
Note that { €�Δ i} and €�Qi are derivatives relative to the

dimensionless time t/τ.
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Nomenclature

A cross sectional area

b width of piezoelectric element

cD11 measurement matrix (r×n)

Cei shunting capacitance of the ith element

Cs
p piezoelectric capacitance under strain-free conditions

�C dimensionless shunting capacitance (� Cs
p/Ce)

d31 piezo-strain constant

D3 Electrical displacement along direction 3

E3 Electrical field due to voltage along direction 3

Ep,r Young’s modulus of the piezo and structural layers,

respectively

�E dimensionless Young’s modulus (Er/Ep)

Fi external force acting on the ith cell

h31 piezoelectric constant

k231 electromechanical coupling factor

[Ks] structural stiffness matrix

[ �Ki] dimensionless stiffness matrix of the ith element

[ �KR]o reduced dimensionless overall stiffness matrix of the entire

metamaterial

KE Kinetic energy

Le length of each cell

Li the shunting inductance of the ith element

�Li dimensionless shunting inductance of the ith element

[Mp,r] mass matrices of the piezo and structural layers

[M] the total mass matrix

[ �Mi] dimensionless mass matrix of the ith element

[ �MR]o reduced dimensionless overall stiffness matrix of the

entire metamaterial

{N} interpolation matrix

n number of finite elements

PE potential energy

Qi electric charge of the ith shunted networks

R transformation matrix between the structural deflections and

electric charge

sE11 the compliance of the piezo-element layer along the

1 direction

S1 strain along direction 1

tp,r thickness of the piezo and structural layers, respectively

�t dimensionless thickness ratio (tr/tp)

T transformation matrix between the structural deflections and

the state vector

T1 stress in direction 1

u axial deflection

v volume

x the x coordinate

{X} the vector of state-variables

{ �Xi} the dimensionless vector of state-variables

Greek symbols

{Δi} vector of nodal deflections of the ith element.

{ �Δ }o overall vector of nodal deflection of the entire metamaterial

εS33, ε
T
33 strain and stress-free permittivity, respectively

ρp,r density of the piezo and structural layers, respectively

Φ the eigenvectors matrix of the system matrix A (n × n)

{ϕi} the ith eigenvector (n × 1)

{ϕai} the achievable ith eigenvector (n × 1)

{ϕsi} the desired ith eigenvector (n × 1)

ωn natural frequency
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