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The system is designed with the basics of fundamental units termed

dimensional analysis (DA). The fundamental units are modeled to figure out

some quantitative measures without the knowledge of the system behavior.

Subsequently, the dimension analysis-based modeling helps to develop the

functional relation of input parameters for the set objectives. The generalized

model is validated with the output of experiments with an agreement to adopt

the model within a certain range of error. Single-point incremental forming

(SPIF) is an innovative sheet metal forming technique in which the metal sheets

are shaped as desired without using dedicated dies. The SPIF investigations and

declared results are desperately waiting for its industrial acceptability, but the

optimization of the process is absent. The current study is to develop the

functional relation of input parameters of SPIF through dimensional analysis.

The investigation included statistical, ANN, and DA results for R in SPIF.

Statistically, the step-down size (Δz; p = 0.005), area of tool end (A; p =

0.048), and wall angle (θ; p = 0.014) are found significant. The modified

R-values are lower than the true and ANN modeled R, and its mean error is

noted as 6.136. The functional relation confirmed that the step-down size and

area of tool end are prominent factors for surface roughness and its influences

on output are 150% and 100%, respectively.
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Introduction

The dimensional unit is a fundamental vector that defines the physical significance of

basic factors quantitatively. Dimensional analysis (DA) is a technique to reduce complex

physical complexities to their simplest forms before any experimental investigation or

quantitative analysis (Bridgman, 1931). Its ubiquitous use is in the engineering and

science discipline. Some application of dimensional analysis includes heat and mass

transfer, engineering mechanics, structural design, astrophysics, aerodynamics,

explosions, chemical reactions (Sedov, 1959; Kurth, 1972; Baker et al., 1973; Taylor,

1974; Lokarnik, 1991; Barenblatt, 1996), nuclear reactors (Sonin and Huber, 1978),
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biology (McMahon and Bonner, 1983), and economics (de Jong,

1967). DA is an important tool to correlate the model with

experimental results for unknown behavior of dependent and

independent variables. Sometimes, the dimensionless variables

are framed to predict the prototype behavior from the

measurements on the model. The dimensional model meets

with parameters and variables. It also helps to discern

between dependent and independent variables such as in

mechanical systems, the positions of different parts as

function of time. A physical model based on the dimensional

analysis in which researchers listed the dependent and

independent parameters that significantly affect the system.

The list of independent parameters is the basis of the

dimensional matrix. In the second step, we derive the null

space basis of the dimensional matrix. Finally, the significance

of the null space basis to each vector corresponds to a non-

dimensional variable that is arranged to an optimal form of the

basis for developing the physical model (Price, 2003; Kumar

et al., 2013).

Previously, the DA model is proposed in various

manufacturing processes. In cold forging, the effect of the

shear friction factor (mfd) at the counter punch interface in

force requirement is deduced dimensionally (Jung and Im, 2013).

Furthermore, the influence of lubricant in cold forging is derived

through DA and Π- Buckingham pi-theorem (Pawelski, 1992).

Grinding force is estimated in the grinding of K1045 steel

through DA and response surface methodology (RSM). The

functional relation declared that the depth of cut (d) and the

velocity of work (Vw) are the significant factors whereas the

spindle speed and the width of cut are reciprocal to them

(Alauddin et al., 2007). The length to diameter (L/D) ratio

along with convective heat transfer of airs coefficients

(05–25 W/m2K) is estimated for the full journal bearing by

using dimensionless parameters with the application of the

Buckingham pi-theorem. The developed model represented

the convective heat transfer coefficient (h) and power

consumption (p) as the significant parameters for L/D of full

journal bearing (Reddy and Reddy, 2014). The results of DA and

ANN for local fault in rolling contact found a very good

agreement with the experimental findings (Jamadar and

Vakharia, 2016).

Single-point incremental forming (SPIF) is a tremendous

forming technique in which the metal sheet is shaped without the

use of dedicated dies. Huge SPIF results are reported for its

optimization such as formability, surface roughness, springback

effect, and tool path but no adequate optimized condition is

granted for SPIF due to variation in the material properties as

well as undefined process parameters for the SPIF process for

particular blank (metal sheet). The forming style of SPIF is

mostly suitable for the formation of customized products,

rapid prototyping, and/or small batch size production (Park

and Kim, 2003; Jeswiet et al., 2005a; AmbrogioDuflou et al.,

2007; Oraon and Sharma, 2010). The influences of the sheet

thickness, tool diameter, and the wall angle on the induced axial

force in the incremental sheet metal forming (ISMF) of steel

grades DC04, DC05, and aluminum grades AA1050-O and

AA3003-O. The authors concluded the rate of deformation;

that is, step-down size and feed rate of the tool is the

influential input parameters in SPIF and the tool diameters

are responsible for the magnitude of induced forces (Jeswiet

et al., 2005b; Ambrogio et al., 2007; Petek et al., 2010). An

approximation formula was developed for the computation of

axial and radial forces based on a membrane analysis.

Furthermore, a similar analysis is performed with the use of a

refined material model (Iseki, 2001; Pohlak et al., 2007). Petek

et al. analyzed the effect of tool rotation in forming behavior

without the lubricated condition. They reported cracks which

occurred in the specimen due to excess tool rotation (Petek et al.,

2009). The SPIF parameters on thinning of work (strain

distribution) and the punch load (induced forces) are

estimated statistically and by using genetic algorithm (GA).

The finite element method (FEM) result confirmed that the

forming forces in steady state SPIF is found to have the

greatest error of 6% (Aerens et al., 2010; Bahloul et al., 2014).

In continuing research, a medical implant (femoral condylar

surface of the knee) of titanium alloy is developed successfully

(Oleksik et al., 2010). Hamilton and Jeswiet (2010) studied the

influences of the process parameters on the external surface

roughness termed as ‘Orange peel effect’ in SPIF.

Furthermore, the surface roughness of SPIF parts made of

carbon steel (DC01), stainless steel (304), and aluminum

(A1050) is measured through various measurement techniques

such as grey relational analysis (GRA) and analysis of variance

(ANOVA). The authors reported that the surface roughness and

wall thickness depends on the step-down size and its

contribution on these are 64.19% and 17.23%, respectively

(Radu and Cristea, 2013; Patel et al., 2015; Uttarwar et al.,

2015; Shah and Chaudhary, 2016). Further SPIF research

claimed that the wall angle, step-down size, spindle speed, and

tool diameter contributed 69%, 27%, 3%, and 1%, respectively, to

the surface roughness (Khatal et al., 2016). An artificial neural

network (ANN) is a computer-based numeric solution for

predicting the outputs. Sometimes the functional relationship

is derived through ANN without a definite knowledge of the

parametric behavior of the dependent and independent variables

(Kecman, 2001). In SPIF, the outputs such as vertical force

component (Fz) and average surface roughness (Ra) are

derived through artificial intelligence tools. The authors

reported that the coefficient of regression for training, testing,

and validation for Fz as 0.960, 0.704, and 0.938, respectively,

whereas the overall R2for Ra was noted as 09474 with MAE of

1.068% (Ambrogio et al., 2011; Varthini et al., 2014; Oraon and

Sharma, 2018a; Oraon and Sharma, 2018b).

Although SPIF is being under consideration for its

optimization through experiments, mathematics, statistics, and

simulations, it is trying to develop the functional relation with the
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help of its input parameters. The present model is derived for the

first time with the selective inputs which are significantly

affecting the output of the SPIF.

Experimental investigation and
surface roughness measurements in
single-point incremental forming

The experiments are conducted on the DT-110 (Mikron Tool

Pvt. Ltd., Singapore) in which aluminum grade AA3003-O

(blank) is clamped firmly in the fixture. A customized

hemispherical end SPIF tool is developed by grooving the face

of a 40C5 steel rod (50 mm long and 7 mm diameter) and

inserting stainless steel bearing ball of 06 mm diameter (See

Figure 1).

The input parameters such as the step-down size/step depth

(Δz), forming speeds (rotation speed (R) and tool linear

transverse speed (f), thickness of the metal sheet (T), wall

angle (θ), and the density of lubrication (D) are taken. The

incremental forming started from the outer layer of the square

pyramid of base size 35 mm2. Taguchi design of experiment

(DoE) is selected for experiments in which two levels of input

parameters are set as per L8 orthogonal array as shown in

Table 1. The numeric value of high- and low-level input

parameters are taken after extensive literature review and

pivot experiments.

An interesting observation is reported in SPIF, that is, the

strain distribution (thickness of metal sheet) at the corners of the

square pyramid is quite different from the conical pyramid (Iseki,

2001; Pohlak et al., 2007; Petek et al., 2009). Since the SPIF

process is under investigation, the effect of input parameters is

not well defined. Dimensional accuracy with a good surface finish

is the prime concern of the customer, therefore the average

surface roughness (R) (which reflects the average surface

finish of the formed part) is considered as the output

response for DA modeling. The atomic force microscopy

(AFM) technique is adopted in R measurement. The forming

surface generatrix is considered due to incremental depth rather

than tool feed and its rotational speed. A sample piece of 5 mm2 is

cut from the SPIF part for AF microscopy (See Figure 2). An

optical probe scanned 65,536 grits in a single pass. The

FIGURE 1
Experimental setup of SPIF and hemispherical end customized forming tool.

TABLE 1 Taguchi L8 experiment set for SPIF with two-level numeric values of input parameters.

Trail run Tool end dia (mm) Δz (mm) f (mm/min) R (RPM) T (mm) Ɵ (0) D Kg/m3

1 0.6 0.1 20 500,500 0.2 0.4 15 15

2 0.1 0.1 20 2000 0.2 45 49

3 0.1 100 2000 0.4 15 49

4 x 100 x x 45 15

5 0.7 20 2000 0.2 45 15

6 0.7 20 2000 0.4 15 49

7 0.7 100 500 0.2 45 49

8 0.7 100 500 0.4 15 15
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microscopy results include two- and three-dimensional surface

profiles along with average surface roughness (R), peak-to-peak

(R), ten-point height (R), and root mean square (R) values.

The significant input parameter for R is calculated with 95%

confidence by using the statistical tool MINITAB version

17.0.1. The significance of the input variable on the output

factor (R) is confirmed by the value of P. If p ≤ 0.05, the

ANOVA results for R are tabulated in Table 2. Statistically, the

R-value is influenced by the step-down size (Δz; p = 0.005), area

of tool end (A; = 0.048), and the wall angle (θ; p = 0.014) for

AA3003-O material.

Furthermore, the artificial intelligence (AI) technique is

utilized to predict the R-value. The input parameters taken in

the SPIF experiments and measured surface roughness are

FIGURE 2
AFM utilized in the measurement of Ra and generated 3D view of the SPIF part surface.

TABLE 2 ANOVA results for R for AA3003-O.

Source DF Seq SS Adj MS F P Significance

Δz 1 31.88 31.88 13485.45 0.005 Yes

A 1 0.419 0.419 177.38 0.048 Yes

F 1 0.005 0.05 2.39 0.366 No

R 1 0.078 0.078 33.26 0.109 No

θ 1 4.56 4.56 1930.51 0.014 Yes

T 1 0.180 0.180 76.18 0.073 No

Residual error 1 0.002 0.002

Total 7 37.1406

Bold values shows significant value.

FIGURE 3
ANN network architecture 6-10-1 for R prediction.
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considered as inputs in ANN modeling. The modeling is done

through MATLAB R2010a in which feed-forward back

propagation (FFBP) is adopted for the drawing network 6-10-

1 (see Figure 3).

Sigmoid transfer function and linear activation function

(Purelin) are taken at the hidden and output layer,

respectively. The measured Ra is segregated into 60%, 20%,

and 20% for training (Exp. No. 1, 3, 4, and 7), testing

(Exp. No. 2 and 6), and validation (Exp. No. 5 and 8). Feed-

forward back propagation (FFBP) network is trained in the range

of 1–15 neurons under the Levenberg–Marquardt (LM)

algorithm in which LEARNGDM adaption rate and

TRAINLM training function has functioned and finally

compared the best-suited coefficient of regression (R-value)

for the ANN model.

Modeling of surface roughness
through dimensional analysis

According to Buckingham’s π-theorem, “A set number of

independent parameters (inherent degrees of freedom) may

be reduced by the number k. The value of k and the forms of

the similarity parameters emerge from dimensional analysis”

(Buckingham, 1914). In the present study, the functional

relationships among the set of independent input parameters

that are responsible for the surface roughness in SPIF are

derived by applying Buckingham’s π-theorem. The SPIF

input parameter (independent) strongly influenced the

dependent variable, that is, average surface roughness (R).

In SPIF, the Ra-value is measured in terms of mean

differences of the top height to extreme craters. Therefore,

the dimensional unit is ”L” and can be written as R (μm) =

[L]. The input parameters taken for developing the model are

Δz, A, f, ρ, and σ which symbolized the step-down size depth,

area of tool end, feed rate of the tool, ultimate tensile strength

(UTS) of the metal sheet, and the density of the metal sheet,

respectively. The fundamental units involved in the physical

model comprise mass (M), length (L), and time (T). On the

other hand, selected input parameters are prominently

responsible for the R -value and are taken as an

independent variable to correlate the functional

relationships among them. The independent parameters

along with their dimensional units are listed as follows:

Step down size (Δz;mm) � [L],
Area of forming tool end(A;mm2) � [L2],

Feed rate of the tool (f ; (mm/min) � [LT−1],
Ultimate tensile strength of work (Metal sheet)(σ;(kg/m2)
� [ML−1T−2],
Density of work (Metal sheet)(ρ;(kg/m3) � [ML−1].

To develop the functional relation of input parameters for

deriving the surface roughness of the SPIF formed part, the

independent input parameters are taken as a function of the R

-value. Therefore, the functional relationship of dependent and

independent parameters can be written as

Z(Ra) � f(Δz, A, f , ρ, σ). (1)

Step 1. The listing of dependent variables forms the dimensional

matrix.

Step 2. find the null space, transforming the matrix to reduced

row echelon form.

Step 3. interpret the reduced row echelon form.

The leading entry on the (ith, jth) position indicated that the

unknown jth is estimated by using the ith equation. Those

columns in the coefficient part of the matrix that does not

contain leading entries 193 correspond to unknowns that will

be arbitrary. The derivatives of the dimensional model are shown

194 in the following equations:

x1 � Arbitrary, (2)
x2 � Arbitrary, (3)
x3 − 3/2(x5) � 0, (4)

x4 � 0, (5)
x5 � 0. (6)

The aforementioned solutions transformed into vector form,

so therefore the null space for the given process 202 parameters

D = Ra Δz A f ρ σ
M 0 0 0 0 1 1

L 1 1 2 1 −3 −1

T 0 0 0 −1 0 −2

0 0 0 0 1 1

1 1 2 1 −3 −1

0 0 0 −1 0 −2

0 0 2 0 −3 0

0 0 0 1 0 0

0 0 0 0 0 1
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has a basis. The vector form of null space basis is shown in Eqs

7–9 formed by the 203 set

π1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C1 (7)

π2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C3 (8)

π3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
3/2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C5 (9)

The non-dimensional variable has only one element that is

easily constructed from the solution vector. Therefore, Eqs. 7–9

are simplified and can be written in the form of a non-208

dimensional functional relationship as shown in the following

equations:

π1 � Ra*C1, (10)
π2 � Δz*C3, (11)
π3 � 3

2
A*C5, (12)

where C is the constant for variables surface roughness, C is the

constant for step depth, and C is the constant for the area of tool

end. Since all these constant depends upon the input variables

which 214 affected the surface roughness of the finished part.

Therefore,

C � C1*C3*C5, (13)
where C is a constant and its value is determined later.

Applying the Buckingham Pie theorem for dimensional

relation modeling,

π1 � (π3*π5). (14)

Therefore, the functional relationship among these can be

written as

Ra � f(Δz *3
2
A). (15)

Determining dimensional constant C

Upon the set of independent input parameters for the Ra-

value in the SPIF process, the step-down size (Δz) 222 and the

area of tool end (A) are found significant with the magnitude of

100% and 150% 223, respectively. The small Δz-value may

increase the production run time whereas the area of contact

224 interface is responsible for the Ra-value. Regression analysis

is the process to get an equation that 225 enables to match the

expected outcomes to the experiment result. The R -values

measured (true value) in the SPIF of aluminum grade

AA3003-O are taken as the primary data set for calculating

the dimensionless constant C (Aerens et al., 2010). The two

consecutive lowest R -values of low Δz are considered for

228 finding the dimensionless constant C. The regression

analysis provides the best-fitted function Y = 0.924x +

56.30 which corresponds to the value of dimensionless

constant C as 0.924. It is also observed that the exponential

regression analysis is the best-suited technique to calculate the

value of 231 C. The general trend line is calculated by plotting the

R -value against the respective set of experiments as shown in

Figure 1.

Result and discussion

The functional relation of input parameters for surface

roughness (R) of the SPIF process is conducted for the first

time. During modeling, various process parameters like

formability rate, temperate, hardness, 237 toughness, and

thermal conductivity of the tool/blank material are not

considered in the current study. At 238 lower step depth size,

that is, 0.1 mm, the Ra-values are in the range of 50–70 nmwhich

is increased by 239 approximately 50% (90–110 nm) at 0.7 mm

step depth. It is also evident that the inputs utilized 240 in ANN

target reasonably well. The coefficient of regression, that is, R2 for

Ra of AA3003-O is recorded 241 as 0.962.

Upon the set of independent input parameters for the Ra-

value in the SPIF process, the step-down size (Δz) 243 and the

area of tool end (A) are found significant with the magnitude of

100% and 150% 244, respectively. The small Δz-value may

increase the production run time whereas the area of contact

245 interface is responsible for the Ra-value. The optimized

arrangements of the non-dimensional 246 variables are made

by presuming that the R -value is zero when significant input

parameters are zero, that is,.Δz = A = zero. Thus, the step-down

size (Δz) and the area of tool end (A) will never come in the

denominator. Hence, Eq. 15 can be simplified and written as

Ra � 3
2
A*Δz. (16)

Now, using the value of dimensionless constant C in the

proposed model, the modified predicted 252 value of R and error

in the model are tabulated in Table 3. This is noticed that the

value of the best 253 function calculated Ra is lower than both the

R, that is, experimental and ANN R for each experiment.
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The general trend line is calculated by plotting Ra

against the respective set of experiments as shown in

Figure 4. The mean error is calculated by subtracting the

best-fitted value from the experimental R in each

experiment. The acceptable limit of mean error (6.136) is

noted in the present model.

Figure 4 indicates that the best-fitted value of Ra is quite

acceptable in comparison to both experimental Ra as well as Ann

Ra. An exponential trend line is plotted against the best-fitted Ra

which also shows that the developed model for Ra in SPIF has a

functional relation between Δz and A as shown in Eq. 16, that is,

Ra is majorly dependent on the step-depth size and the area of

forming tool imposed during SPIF.

Conclusion

A mathematical model of surface roughness Ra is formulated by

considering major input parameters 273 that directly influence the

surface roughness of the SPIF product. Some independent parameters

are 274 not considered in the present analysis. The functional

relationship between the step-down size (Δz) and the area of tool

end (A) is noticed in the dimensional analysis for surface roughness in

SPIF.However, the influences of others 277 (independent parameters)

are not observed but they may be significant for different dependents

such as induced forces, tool wear, and tool path. The model is

validated and found in a very good agreement with the low-step

depth and the area of tool ends at the contact interface between the

TABLE 3 Experimental, ANN, and modified R with mean error.

Experiment ANN Modified Best function error Mean error

57.232 64.803 52.882 4.349 6.136

64.562 59.383 59.655 4.906

58.156 60.287 53.736 4.419

69.744 57.326 64.443 5.300

107.621 105.336 99.441 8.179

85.058 89.871 78.593 6.464

109.831 108.579 101.483 8.347

93.755 107.899 86.629 7.125

FIGURE 4
Comparison of experimental, ANN, and modified R.
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tool and the metal sheet 280 during SPIF. The error of prediction of

the surface roughness using this model is 6.136. The model 281 can,

thus, be used to predict the surface roughness in SPIF.
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Nomenclature

SPIF Single-point incremental forming

Δz Step-down size

ISMF Incremental sheet metal forming

A Ultimate tensile strength of work (metal sheet)

GA Genetic algorithm

f Feed rate of tool

GRA Grey relational analysis

ρ Density of lubricant

ANOVA Analysis of variance

R Surface roughness of the formed part

FEM Finite element method

C Dimensionless constant

ANN Artificial neural network
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