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Due to inherent heterogeneity of geomaterials, rock mechanics involved with

extensive lab experiments and empirical correlations that often lack enough

accuracy needed for many engineering problems. Machine learning has several

characters that makes it an attractive choice to reduce number of required

experiments or developmore effective correlations. The timeliness of this effort

is supported by several recent technological advances. Machine learning, data

analytics, and data management have expanded rapidly in many commercial

sectors, providing an array of resources that can be leveraged for subsurface

applications. In the last 15 years, deep learning in the form of deep neural

networks, has been used very effectively in diverse applications, such as

computer vision, seismic inversion, and natural language processing. Despite

the remarkable success in these and related areas, deep learning has not yet

been widely used in the field of scientific computing specially when it comes to

subsurface applications due to the lack of large amount of data to train

algorithms. In this paper, we review such efforts and try to envision future

game-changing advances that may impact this field.
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Introduction

Laboratory experiments have been the main and direct approach for measurements of

different mechanical and petrophysical properties of porous rocks such as Young’s

modulus, permeability, and tortuosity. However, laboratory experiments are costly

and often time-demanding due to the extensive sample preparations and expensive

instrumentations required. In addition, laboratory experiments of large-scale problems

require rigorous understanding of the underlying physics of the system and variables that

can potentially affect the process of interest. Thus, such laboratory experiments may not

provide accurate predictions for multiphysics problems unless a rigorous workflow have

been developed. For instance, predicting the influence of morphology and mineralogy of

porous media and materials on the deformation-dependent properties by performing

laboratory experiments is currently extremely challenging due to the necessity of

calibrating various parameters.
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However nowadays, we are at the beginning of an exciting era

in which we have not only sophisticated experimental

instruments, but also rapidly advancing computer technology.

As a branch of artificial intelligence that aims for program

machines to perform their jobs more skillfully, machine

learning has come a long way as computer science continues

to evolve. Compared to the result that obtained from laboratory

experiments and exhaustive computational simulations, the

advantage of machine learning-based approximation solutions

is that data-driven learning methods exploit large data sets to

identify otherwise unknown relations, thus creating efficient and

invertible maps between input and output parameters (Gu et al.,

2018; Liang et al., 2018; Mozaffar et al., 2019). Due to its inherent

ability to analyze complex data, machine learning methods have

emerged as a new paradigm in scientific research and engineering

applications (Liu et al., 2020a). Although these techniques and

some of these algorithms were available in the past, but recent

advances in processing and storage of data and reduction in their

costs have made these techniques very attractive to study

engineering problems.

Many scholars apply machine learning methods to their

research fields, such as signal processing, biomedicine,

complex dynamic systems (Brunton et al., 2016), multi-

physical phenomena (Rudy et al., 2017), etc. Some commonly

used machine learning methods include Perceptron (Rosenblatt,

1958), Genetic Programming (Goldberg, 1989; Banzhaf et al.,

1998), Kernel and Nearest-Neighbor Nonparametric Regression

(Dudani, 1976; Altman, 1992), Linear Statistical Models (Neter

et al., 1996), Adaptive Boosting Algorithm (Freund and Schapire,

1997; Hastie et al., 2009), Support-Vector Machines (Cortes and

Vapnik, 1995; Tefas et al., 2002; Veropoulos et al., 2016) and

Artificial Neural Network (Ivakhnenko, 1971; Rumelhart et al.,

1986; Widrow, 1987; Ge et al., 2004; Hinton and Salakhutdinov,

2006; Li et al., 2019). Rosenblatt (Rosenblatt, 1958) built the

perceptron model and described the process of learning behavior

in detail which is considered as the precursor to modern artificial

network models (Cortes and Vapnik, 1995). Genetic

Programming draws on the principles of biological evolution

in nature, simulates the operation of genetics in the data set

containing feasible solutions to continuously generate new data

sets, and finally globally searches for the optimal solution that

meets the requirements (Banzhaf et al., 1998). K-nearest

neighbor algorithm follows the principle that the minority

obeys the majority: classify the target samples with the K

samples that are most similar to the target samples in the

feature space. We could use distance function to weight the

evidence to make the results more accurate (Dudani, 1976).

Although the calculation result of this method is easy to

fluctuate with the value of K and the calculation amount is

large, it is suitable for solving Nonparametric regression

problems. On the contrary, Linear Statistical Models cannot

handle such problems (Neter et al., 1996). In addition,

machine learning methods can also be used for classification

problems. After Freund (Freund and Schapire, 1997) introduced

their Adaptive Boosting Algorithm, Boosting has been a very

successful technique for solving classification questions by

reducing multi-class classification problem to two-class

problems. Hastie (Hastie et al., 2009) proposed the SAMME

algorithm based on the AdaBoost algorithm. The proposed new

algorithm combines weak classifiers and puts more weight on the

misclassified data points so that it can achieve higher

classification accuracy. Through non-linearly mapping input

vectors to a high dimension feature space and constructing a

linear decision surface with special properties, Support-Vector

Machines could solve two-group classification problems well.

This method is very advantageous while dealing with non-

separable training data (Cortes and Vapnik, 1995) and has

been successfully applied to a number of applications, ranging

from face recognition (Tefas et al., 2002) to biological data

processing for medical diagnosis (Veropoulos et al., 2016). In

addition to the various methods mentioned above, Artificial

Neural Networks have gradually developed into an important

branch in the field of machine learning (Li et al., 2019). From

“Perceptron” (Rosenblatt, 1958) to “MADLINE” (Widrow, 1987)

to “restricted Boltzmann machine” (Hinton and Salakhutdinov,

2006), with the use of nonlinear functions (Ivakhnenko, 1971)

and back-propagation algorithms (Rumelhart et al., 1986), ANN

could train a multilayer neural network with a central layer to

convert high-dimensional data to low-dimensional codes by

extensive tunable parameters through multi-layer network

structure which will obtain the nonlinear relationship

contained in a large amount of training data and generally

receive good classification and regression accuracy.

As engineering researchers, we focus on the application of

machine learning method in engineering and mechanics. Further,

we investigate the feasibility of machine learning in processing

mechanical response data of materials and reveal complex

mechanical mechanisms. In fact, a considerable number of

computational mechanics researchers have already done this

work (Ge et al., 2004; Li et al., 2019), and we will show it as

much as possible in the following sections. The results presented

will help researchers in the engineering field to choose appropriate

machine learningmethods to achieve faster convergence speed and

solution accuracy when dealing with some specific problems, and

to save computational costs to a certain extent. In addition, this

paper can provide some help in the selection of input parameters of

the model, in order to make predictions more concisely on the

premise of ensuring accuracy. For a more intuitive display, we

briefly list some common machine learning methods and their

typical references as shown in Table 1.

Rock mechanics

Due to the high degree of variability in natural materials and

the physical environment in which they are located, rock
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mechanical behavior always exhibits a high degree of

nonlinearity. In practice, experience knowledge and numerical

modeling methods have been important tools for understanding

rock mass behavior and predicting its response to its

environment and changes in situ stress conditions

(Morgenroth et al., 2019). But from previous applications, we

can know that it is often difficult to integrate all the data collected

into empirical and numerical models effectively. Furthermore,

frequent use of extrapolation and interpolation techniques are

also likely to distort the data. Since the 1990s, scholars have

noticed the advantages of new computer science research

methods applied to the simulation of rock mechanical

behavior. By integrating machine learning into the rock

mechanics, we could obtain more meaningful conclusions

from data which are collected relatively inexpensively (Zhou

and Wu, 1994). As a result, we use computers to find patterns in

data, not “manipulate” data. In this part, we will review the

application of machine learning in rock mechanics as well as

future opportunities for data-driven approaches.

Rock mass properties

Sklavounos and Sakellariou (Sklavounos and Sakellariou,

1995) reported a neural network to classify rock masses.

Along with this research, five criteria include strength of

intact rock, drill core quality, joint spacing, joint condition,

groundwater conditions were scaled to [0, 1] to become the

“content” of the input neurons, and then some non-linear

transformation is completed to obtain the desirable output

results which is the classification of rock masses. This is a

simple application of an earlier neural network to rock

classification. In addition, some scholars apply machine

learning methods to the estimation of some rock mechanics

parameters that are difficult to obtain directly such as the UCS

and swing quality of rocks. The reason is that standard cores

cannot always be extracted from weak, highly fractured, thinly

bedded, foliated and/or block-in-matrix rocks. Zorlu et al. (Zorlu

et al., 2008) constructed 138 rock databases containing uniaxial

compressive strength and petrographic properties for training

with a sandstone uniaxial compressive strength prediction

model. They used two predictive models including artificial

neural networks and linear regression to learn from different

types of sandstone data and found that packing density,

concavo–convex type grain contact and content quartz had a

greater impact on determining the uniaxial compressive strength

of sandstone. According to the training results of the model, the

equation for predicting the uniaxial compressive strength of

sandstone is given as follows

UCSn � 0.476(PDn) − 0.017(CCn) − 0.049(Qn) + 0.065 (1)

where UCSn is the normalized uniaxial compressive strength;

PDn is the normalized packing density; CCn is the normalized

concavo–convex type grain contact; Qn is the normalized quartz

content. Yagiz et al. (Yagiz et al., 2012) utilized backpropagation

algorithm for ANN modeling and used hyperbolic tangent

sigmoidal activation function for feedforward artificial neural

network architecture

h(x) � (ex − e−x)/(ex + e−x) (2)

They used the model and the existing rock properties to

estimate the UCS and E of the rock and adjusted the input rock

parameters according to the accuracy of the prediction results. By

TABLE 1 List of references for common machine learning methods.

Method used Reference

Artificial neural networks Sklavounos and Sakellariou, (1995), (Zorlu et al., (2008)), (Yagiz et al., (2012)), Tiryaki, (2008), Samani and Bafghi, (2012),
Ceryan et al. (2012) (Generalized Regression Neural Networks), Liu et al. (2015), Song et al. (2015) (Extreme Learning
Machine), Rajesh Kumar et al. (2013), Dantas Neto et al. (2021), Zhang et al. (2021) (Multiple Layer Perceptron), Raissi et al.
(2018); Almajid and Abu-Alsaud (2021); Deng and Pan (2021); Haghighat et al. (2021); Li and Chen (2022) (Physics-
Informed Neural Networks), Wang et al. (2015), (Tan and Wang, (2001); Jin et al. (2006)) (Radial Basis Function Neural
Network), (Rashidian and Hassanlourad, 2014), (Kohestani and Hassanlourad, 2016), (Johari et al., 2011), (Li et al., 2005)
(Back Propagation Neural Network), (Yao et al., 2010), (Yao et al., 2014), (Feng and Wang, 1994; Lu and Rosenbaum, 2003;
Goswami and Chakraborty, 2017), (Feng et al., 1997), (Alipour et al., 2021), (Zia et al., 2018), (Wang et al., 2021a),
(Cherkassky et al., 2006), (Nguyen-Le et al., 2020) (Convolutional Neural Networks), Leu et al. (2014), (Hadi and Nygaard
(2018); Jiang et al. (2020)), (Saad et al. (2018); Araya-Polo et al. (2020)) (Deep Neural Networks)

Linear regression/multiple nonlinear
regression

Zorlu et al. (2008), Tiryaki (2008), Fathipour-Azar (2022), Roohollah and Abbas (2019), Feng et al. (1996), Deng et al. (2013),
Mahmoodzadeh et al. (2022) (Support Vector Regression), Garg et al., (2022) (Gaussian Process Regression)

Regression tree models (Tiryaki, 2008), (Alipour et al., 2021), (Liu et al., 2020b), (Zia et al., 2018)

Support vector machines Garg et al. (2022), Fathipour-Azar (2022), Zheng et al. (2013), Kohestani and Hassanlourad (2016), Li et al. (2006), Yao et al.
(2010), Yao et al. (2014), Erzin and Cetin (2014), DeMille and Spear (2022), Feng et al. (2021a)

Decision tree Mahmoodzadeh et al. (2022)

Long short-term memory Mahmoodzadeh et al. (2022), Cao et al. (2017)

Genetic algorithm Wang et al. (2000), Gu et al. (2015), Johari et al. (2011)
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comparison, it is more accurate to use four-cycle slake durability

index normalized as input variable than the two-cycle one. The

rest of the input variables also include dry unit weight

normalized, Schmidt hardness normalized, effective porosity

normalized, and P-wave velocity normalized. Tiryaki et al.

(Tiryaki, 2008) utilized multiple nonlinear regression, ANN

methods and regression tree models to do the similar research

like (Yagiz et al., 2012). Their results indicated that regression

trees method performed best when compared to multiple

nonlinear regression. This is because the individual

relationship between the output quantities such as UCS and E

and the input quantities tends to be nonlinear, while the property

of the double logarithmic model of the multiple nonlinear

regression model is still linear. In Samani et al. (Samani and

Bafghi, 2012) study, the relationship between stone geotechnical

parameters and the sawing rate of stones via diamond wire

sawing was analyzed using an artificial network model. The

study was prone to adopting the percentage of Silica, the

coefficient of water absorption, the UCS, and abrasive

hardness as the proper parameters for this accurate network.

But their findings cannot be extrapolated to other types of ores.

Other scholars have focused on the improvement of machine

learning methods. Cervan et al. (Ceryan et al., 2012) introduced

generalized regression neural networks to predict UCS of rocks.

This method is based on non-parametric kernel regression, uses

sample data as the posterior probability verification condition

and performs non-parametric estimation, and finally calculates

the correlation density function between the dependent and

independent variables in the network from the training

samples. While this method had strong capability of

generalization, it is possible of getting trapped in local minima

and subjectivity in the determination of model parameters and

structure. Liu et al. (Liu et al., 2015) used extreme learning

machine to estimate the UCS of rocks because of its good

generalization ability, which figured out that The ELM

approach can perform much better than the RBF-NN and the

BP-NN in modeling the rock parameter problems, this is because

the connection weight value between the input layer and the

hidden layer is random and will not be changed after setting,

which reduces the calculation amount of backpropagation. Also,

the ELM performs equivalently to the GRNN (generalized

regression neural network) and the SVM (support vector

machines) in estimation of the UCS of rocks and takes much

less time than the GRNN. Kumar et al. (Rajesh Kumar et al.,

2013) innovatively used various physical parameters of the drill

bit during the drilling process, including the equivalent sound

level as the input of the network. Then, the rock properties

derived from their neural network prediction model can be

linked to drilling parameters. Mahmoodzadeh et al.

(Mahmoodzadeh et al., 2022) finished an excellent work.

Based on 244 datasets intact Sandstone which included three

input parameters of uniaxial compressive strength (UCS),

uniaxial tensile strength (UTS), and minimum principal stress

(σ3). They compared the pros and cons of four machine learning

techniques: Gaussian Process Regression (GPR), Support Vector

Regression (SVR), Decision Tree (DT), and Long Short-Term

Memory (LSTM), in building cohesion (C) and friction angle (φ)

prediction models. Their results show that the LSTM model

produced the most accurate results (as shown in Figure 1). Some

statistical evaluation shown as follows

R2 � 1 − sum squared regression(SSR)
sum of squares total(SST) (3)

MAE � (1
n
)∑n
i�1

∣∣∣∣yi − y′
i

∣∣∣∣ (4)

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣yi − y′
i

∣∣∣∣
yi

∣∣∣∣∣∣∣∣ × 100% (5)

MSE � 1
n
∑n
1

(yi − y′
i)2 (6)

RMSE �
														(1
n
)∑n
i�1
(yi − y′

i)2√
(7)

where yi is the actual value, y′
i is the predicted value, and n is the

number of samples.

Garg et al. (Garg et al., 2022) also conducted a similar

comparative analysis of different machine learning techniques.

The object of prediction is the compressive strength of concrete.

The evaluation criteria included Correlation Coefficient (CC),

Root Mean Square Error (RMSE), Variance Account For (VAF),

Nash -Sutcliffe Efficiency (NSE), and RMSE deviation from

observation’s standard deviation ratio (RSR). Studies have

shown that Support Vector Machine predicts better than

Gaussian Process Regression for this problem.

It is worth noting that the shear behavior of rock is one of the

most important characteristics of rock, which is more practical

than UCS. This property of rock is usually characterized by shear

strength. Under the existing laboratory conditions, the shear

strength of rock is usually determined by direct shear test and

triaxial compression test. Many scholars have used direct shear

tests based on constant normal load or constant normal stiffness

to study the main factors controlling the shear behavior of rocks.

These factors cover roughness of discontinuity roughness,

infilling conditions, rock stiffness, and initial stress

(Papaliangas et al., 1993; Indraratna et al., 1999). Neto et al.

(Dantas Neto et al., 2021) listed existing models that describe the

overall shear stress-shear displacement behavior of rocks and

pointed out that these analytical models are not suitable for test

results under varying boundary conditions associated with

normal stiffness. And proposed to use neural network model

to solve this problem. The selected neural network model is

similar to the above-including input layer, hidden layer and

output layer. The more important thing is the selection of input

layer parameters. After a lot of trial calculations and parameter

value changes, the final input layer parameters include stiffness

and initial normal stress acting on the joint surface), JRC,
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uniaxial compressive strength and basic friction angle of the

intact rock, and the horizontal displacement. The correlation

coefficient between the shear stress and dilation output by the

model and the test sample reached 0.99 which shows that the

model had good capability of predicting the shear behavior of

rock. Matos et al. (Matos et al., 2019) pointed out the same

problem. The author argued that previous analytical models that

predicted the shear behavior of unfilled rock joints could not take

into account the uncertainties inherent in the rock formation

process. As an improvement, they used the First-Order Takagi-

Sugeno fuzzy controller to incorporate the existing uncertain

variables into the prediction model, and trained the prediction

FIGURE 1
Evaluation indices results of the ML models (Mahmoodzadeh et al., 2022).

FIGURE 2
PINN configuration for transient spontaneous imbibition solutions (Deng and Pan, 2021).
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model based on the results of 44 direct shear tests. The input

parameters of the model remain the same as (Dantas Neto et al.,

2021). Their predictions showed that the model can be used to

define the shear behavior of rock sections. Hasanipanah et al.

(Hasanipanah et al., 2021) investigated the feasibility of Kriging

model in predicting the complex nonlinear relationship of rock

joints shear strength. In their article, the Kriging model is

improved by some typical nonlinear functions to enhance its

predictive ability; including second-order, third-order,

exponential, logarithmic and so on. Their results showed that

Kriging models augmented with logistic and hyperbolic tangents

provided more accurate predictions by comparison. Azar

(Fathipour-Azar, 2022) chose the ensemble ML approach of

stacked generalization to estimate the shear strength of rock

discontinuities. It used a meta-model to combine several

heterogeneous basic AI and ML models, where the meta-

model is linear regression, and the basic model is stacking

ensemble framework SVM-M5P-RF. The ensemble ML

approach included three input parameters, respectively normal

stress, compressive strength ratio of joint walls and joint

roughness coefficient, this analytical model is more robust in

predicting shear strength compared to individual SVM, M5P and

RFmethods. Zhang et al. (Zhang et al., 2021) focused his research

on the optimization of the prediction model; deep learning

technology was applied to the multiple layer perceptron

(MLP) neural network model to reduce possible accuracy

problems, and the Harris hawks optimization (HHO)

algorithm was used to develop The DMLP model has been

further optimized. The optimized HHO-DMLP model is used

to predict the friction angle, and the sample data are derived from

datasets in different regions of the world. The training results can

obtain friction angle prediction results with considerable

accuracy. It is worth noting that for larger number of datasets,

conventional training methods (SVM, RF) are less reliable and

may even overfit.

In the machine learning methods mentioned above, the

work performed by scholars is all data-driven, that is,

establishing a data-to-data connection and striving to ensure

the correctness of this connection, which is not only related to

the algorithm, but also related to the training samples.

However, before the emergence of machine learning, many

fields have accumulated a large number of physical models in

the long-term development process. Solving these physical

models can make accurate predictions, but the more

complex physical models are, the more difficult it is to solve

(Li and Chen, 2022). As a result, some scholars (Raissi et al.,

2018) began to combine data-driven machine learning methods

with physical models, such as applying neural networks to the

problem of solving partial differential equations, and named

them “Physics-informed Neural Networks.” This method can

be applied to modeling and calculation in the fields of physics

and engineering, which has great potential for development.

Moreover, these physical equations are often followed in the

training samples of traditional machine learning methods, and

it is also a waste of resources to not reflect them in the algorithm

in a sense. This method is widely used in the field of fluid

mechanics. As a typical porous medium, the fluid exchange

process of rock in the ground is very complicated. Some

scholars try to use this method to solve these problems. We

will show their results in the following pages. Deng et al. (Deng

and Pan, 2021) adopted the concept and workflow of the deep

physics-informed neural networks to solve Spontaneous

imbibition (as shown in Figure 2). This is because the

traditional method is very complicated to solve the

spontaneous imbibition governing equation, whether it is a

self-similar solution controlled by an ordinary differential

equation or a transient solution. They adopted the well-

established PINN framework obtained by the former, used

the one-dimensional unsteady state immiscible,

incompressible horizontal flow equations as the main loss

function and performed a detailed sensitivity analysis based

on them, including sampling resolution, activation functions,

neural network initialization, and loss function selection. The

results demonstrated the effectiveness of the method, and they

also point out that since PINN is always in the form of forward

computation, the method is suitable for situations with

different types of boundary conditions.

Haghighat et al. (Haghighat et al., 2021) applied PINN to

solve the equations of coupled flow and deformation of single-

phase and multi-phase flows in fluid flow problems in porous

media. They chose the dimensionless form of the coupling

relationship of porous media under single-phase or two-phase

flow conditions in the loss function, thus avoiding the unstable

optimization problem that may be caused by multiple

differential relationships. Moreover, the classical strain

splitting algorithm for pore mechanics is abandoned, and

fixed stress splitting is adopted, which improves the

convergence and robustness of PINN. At the end of the

FIGURE 3
The forward and back analysis of geotechnical engineering
(Song et al., 2015).
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article, they also pointed out that the training speed of the PINN

model is slow and its computational speed is not competitive

with conventional FEM methods. But the advantage of PINN

lies in its ability to deal with the inverse problem obtained by

combining the training samples. The following paper

investigates the feasibility of the PINN method to solve the

problem of gas drainage of a water-filled porous medium by

Almajid et al. (Almajid and Abu-Alsaud, 2021). The results of

this study can be used to improve the performance of reservoir

simulators. In their research, the continuity hyperbolic PDE

was used as the loss function, and the availability of observed

data, the trainability of the multiphase flow parameters, etc.

were used as the performance evaluation criteria of the PINN

model. Accuracy issues of PINN models with and without

observational data are compared. Furthermore, differences

between artificial neural networks with and without physical

properties for specific research topics are explored. The results

indicated that the PINN model can greatly improve the

accuracy through observational data; without observational

data, the PINN model can only provide some trend changes

for reference. When the constants were included in the

observations we provided, only the predictions of the PINN

model achieved acceptable accuracy. The above research indeed

proves the superiority of the PINN model, which has a broad

application prospect in solving the problems related to porous

media such as rocks in the field of petroleum engineering.

Back-analysis

In the field of rock engineering, the displacement inverse

analysis method has attracted widespread attention. It uses the

measured displacement at the engineering site or simulation data

as the basic information to reverse the mechanical parameters of

the actual rock mass, and the initial in-situ stress of the

formation, etc. The workload of solving the inverse problem is

huge, but the benefits it brings are also considerable. We could

use the result of back analysis as the basic parameters of

numerical simulation, which is the most commonly used

research methods in rock mechanics. These parameters are

more meaningful than those obtained from conventional rock

mechanics tests because the inverse analysis comprehensively

considers various influencing factors brought about by rock

characteristics, structures and even construction (Vardakos.

et al., 2007).

In order to improve the efficiency and reliability of back

analysis calculation work, some scholars have introduced

machine learning methods into back analysis work. Wang

et al. (Wang et al., 2015) and Wang et al. (Wang et al., 2000)

respectively analyzed the feasibility of neural network and genetic

algorithm in inverse analysis problem with examples. In order to

ensure the uniqueness of the solution, the number of unknowns

for inverse analysis using the neural network should be lower

than the number of inputs. Due to the limited input, the elastic

modulus and the internal friction angle are the twomost sensitive

rock mechanics parameters for inverse analysis (Wang et al.,

2015)

Sk �
∣∣∣∣∣∣∣ΔPP ∣∣∣∣∣∣∣/∣∣∣∣∣∣∣Δxk

xk

∣∣∣∣∣∣∣ � ∣∣∣∣∣∣∣ΔPΔxk

∣∣∣∣∣∣∣∣∣∣∣∣∣xk

P

∣∣∣∣∣∣, (8)

where Sk is the sensitivity of the factor xk, k = 1, 2, 3, . . . n, |ΔPP | | is
the relative rate of change of the system characteristic; |Δxkxk

| | is the
relative rate of change of a factor.

The genetic algorithm can process multiple individuals in

the training sample at the same time, that is, evaluate multiple

solutions in the search space, reducing the risk of falling into the

local optimal solution, which makes it more robust. Because of

this advantage, the genetic algorithm can use the data with

noisy to search for the Poisson’s ratio of the rock mass (Wang

et al., 2000). Jin et al. (Jin et al., 2006) used Fast Lagrangian

Analysis of Continuum to obtain the mapping relationship of

stress-stress field-rock mechanics parameters at special points

as a learning sample and adopted radial basis function networks

to carry out inverse analysis on three rock mechanical

parameters, namely bulk modulus, shear modulus and

density, which had significant influence on the initial in-situ

stress field. Their research showed high computational

accuracy. Song et al. (Song et al., 2015) introduced a new

Difference Evolution and Extreme Learning Machine method

to back analyze the parameters of rocks. The sample parameter

relationship between forward analysis and back analysis is

shown in Figure 3. They utilized three-dimensional

numerical simulation and monitoring data to create training

and testing samples, which were trained by ELM. Considering

the global optimization property of DE and simple structure of

ELM, this method achieved a high calculation speed and

reasonable result. Gu et al. (Gu et al., 2015) pointed out the

deficiencies of conventional back-analysis methods, especially

for special geographical locations such as dams. The integrated

deformation modulus inversed by the conventional inversion

method didn’t meet the actual situation. Thus, they proposed a

partition inverse analysis method based on chaotic genetic

algorithm to solve this problem. First is to divide the region

to identify different displacement measurement data and finite

element calculation results (input), and then obtain a more

realistic inversion result. Finally, the project case verified the

feasibility and validity of the proposed method. Zheng et al.

(Zheng et al., 2013) also considered Back-analysis problems

associated with dams. But the focus of their analysis is on the

static and creep properties of rock-fill material in the reverse

analysis, and on the choice of type of SVM model.

Existing inverse analysis methods are usually only

applicable to limited engineering fields or at the same

geological conditions. Therefore, the future development

direction should be changed to a more applicable and wider

range of back-analysis methods.
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Determining constitutive behaviors

Theoretically, identifying the constitutive equations of

geological materials is also very important, even more than

mechanical parameters and the reason is as follows. The

constitutive model cannot reflect the actual behavior of

geological materials, and even the precise mechanical

parameters cannot describe the actual engineering behavior.

However, the identification of constitutive models is a

complicated problem that cannot be solved well using a

traditional method because of such factors as the formulation

complexity, idealization of material behavior, and excessive

empirical parameters (Adeli, 2013). Previous studies

(Papaliangas et al., 1993; Sklavounos and Sakellariou, 1995;

Indraratna et al., 1999; Wang et al., 2000; Jin et al., 2006;

Vardakos. et al., 2007; Tiryaki, 2008; Zorlu et al., 2008;

Ceryan et al., 2012; Samani and Bafghi, 2012; Yagiz et al.,

2012; Rajesh Kumar et al., 2013; Zheng et al., 2013; Gu et al.,

2015; Liu et al., 2015; Song et al., 2015; Wang et al., 2015; Raissi

et al., 2018; Matos et al., 2019; Almajid and Abu-Alsaud, 2021;

Dantas Neto et al., 2021; Deng and Pan, 2021; Haghighat et al.,

2021; Hasanipanah et al., 2021; Zhang et al., 2021; Fathipour-

Azar, 2022; Garg et al., 2022; Li and Chen, 2022; Mahmoodzadeh

et al., 2022) have shown that machine learning methods can

provide new ideas for rock mechanics problems, and this issue is

no exception (Ghaboussi and Sidarta, 1998; Jaksa. and Maier.,

2009). In these cases, as an important branch of machine learning

methods, the use of artificial neural networks is the most

common because of its high generalization. Tan et al. (Tan

and Wang, 2001) employed radial basis function neural

network (RBFNN) to obtain rock constitutive equation based

on stress-strain relationship of rock under different confining

pressures in previous literature. Part of this data is used to train

the network and the other part is used as validation, and their

research shows that predicting constitutive equations using

neural networks is feasible and reliable. Peng et al. (Peng

et al., 2008) and Li et al. (Li et al., 2008) did a similar job.

They separately predicted the elastoplastic constitutive model of

moderate sandy clay and sand based on their own experimental

data. Thus, if one ANN model can approach the experimental

curve of one geomaterial very well, this ANN model can well

describe the constitutive relationship of the geomaterial.

However, it is worth noting that the input layers of the above

studies are in all knowledge of stress-strain curves, which cannot

well reflect the influence of the loading history on the stress-

strain relationship of rock materials (Wei, 2018). Therefore, in

order to better describe the influence of various relative factors on

the mechanical behavior of geotechnical materials, scholars have

added more inputs when using neural networks. He et al.

(Shouling et al., 2009) attempted to model the nonlinear

elastic behavior of fiber-lime reinforced soil under multi-axial

shear loading using a neural network firstly. In their study, five

inputs comprise the confining pressure, the principal strain,

curing period of soil, contents of fiber, and lime; the output is

designated as the principal stress. The training samples of the

network come from 30 groups of 34 triaxial shear tests, and the

remaining four groups verify the reliability of the artificial neural

network model. Yazdani et al. (Yazdani et al., 2013) used Taguchi

method for sensitivity analysis of constitutive models and

adopted genetic algorithm to fit the computed numerical

results and observed data of the soil model. Their results

reveal that the stress-strain relationship of this material

depends mainly on the parameters of soil cohesion and

internal friction angle. Rashidian et al. (Rashidian and

Hassanlourad, 2014) constructed an ANN (as shown in

Figure 4) to examine mechanical behavior of carbonate soils

with a structure of 5-10-2. They used relative density, axial strain,

maximum void ratio, calcium carbonate content, and confining

pressure as input neurons. The stress-strain curve predicted by

the model is highly consistent with the experimental result.

Kohestani et al. (Kohestani and Hassanlourad, 2016)

continued research work in this area. They exploited ANN

and SVM to model the mechanical behavior of different

carbonate soils. Compared with (Rashidian and Hassanlourad,

2014), they added the minimum void ratio as an input parameter.

In their test, the errors of predictions were accumulated as the

entire stress paths were predicted incrementally, but it still

yielded good compatibility with the experimental data results

used for testing.

In order to accurately describe the constitutive theory of

unsaturated soils, Johari et al. (Johari et al., 2011) used genetic

algorithm to optimize the weight of neural network, and obtains

an ensemble algorithm for modeling unsaturated soils. The

optimized neural network structure is 8-5-3. The eight input

neurons include eight initial parameters such as initial

gravimetric water content, initial dry density, and the three

output neurons are deviatoric stress, suction and volumetric

strain respectively. The results of 15 groups of comprehensive

triaxial tests are used as training samples, and the prediction

results revealed good compatibility with the other three groups of

experimental results.

To sum up, in the problem of predicting the constitutive

relationship of materials, the machine learning method

represented by artificial neural network can always produce

more comprehensive results, but it needs the support of new

data with more complex conditions.

Rock mass stability research

Due to the fractal self-similarity of rock mechanics

information, engineers always hope to predict the overall

information of rock mass from local information to avoid

potential problems in engineering, like the instability of tunnel

caused by tunnel surrounding rock distortion. Many scholars

have made efforts in this regard. Li et al. (Li et al., 2005) deployed
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the grey GM (1,1) model to predict surrounding rock

displacement based on the convergence-time sequence of

rocks, and they used n small interval trapezoidal area to

replace the area of [k, k+1] interval and GM (1,1) function

curve envelope which will improve the precision and adaptability

of the model. Li et al. (Li et al., 2006) discussed the internal

relationship between monitor data and the artificial neural

network in displacement prediction. Their results show that

the prediction values by BP neural network agree well with

the measured ones, but Long-term forecasts with less

measured data can significantly reduce the accuracy of

forecasts. Yao et al. (Yao et al., 2010) pointed out that SVM

could provide accurate displacement prediction of tunnel

surrounding rock, and they used shuffled complex evolution

algorithm to select the appropriate parameters for SVM which

offered robust and flexible effect during analysis (as shown in

Figure 5).

Based on SVM Yao et al. (Yao et al., 2014) introduced a

forgetting factor to adjust the weights between new and old data,

which could treat the time-varying features of rock displacement

well. Also, they compared the performance of the SVMFF

(Support-Vector Machine forgetting factor) with that of

FIGURE 4
Architecture of used ANN (Rashidian and Hassanlourad, 2014).

FIGURE 5
The prediction process of MS based on SVM (Yao et al., 2010).

FIGURE 6
Comparison between the prediction errors of SVMFF and
ANNFF (Yao et al., 2014).
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ANNFF (Artificial neural networks forgetting factor) using

RMSE (Eq. 7). As a result, SVMFF can provide a better

performance in most situations than ANNFF (as shown in

Figure 6).

Wu et al. (Wu et al., 2014) came to a similar conclusion

without considering the forgetting factor (as shown in Figure 7).

On the basis of the above rock displacement, we can continue

to investigate the stability of the rock mass, mainly for slope

stability and rockbrust. The stability of the slopes generally exists

due to the combined effects of geology, hydrology, and soil

parameters (Diganta and Arunav, 2017; Das et al., 2020). We

naturally associate it with the powerful ability of machine

learning methods, especially artificial neural networks, to

predict multi-factor problems. Rockburst is the rapid release

of accumulated elastic energy of hard and brittle surrounding

rock in a high stress state under the action of excavation or other

load disturbances, resulting in dynamic instability disasters such

as rock spalling, fragmentation and ejection (Roohollah and

Abbas, 2019). Depending on its characteristics of suddenness

and great damage, scholars expect to make effective predictions

to prevent threats to construction workers. Because of the

complexity of rockburst mechanism and its influencing

factors, rockburst prediction methods based on machine

learning methods have been rapidly developed similarly. Feng

et al. obtained the time series of the mechanical behavior of the

rock through measurement and used the obtained historical

information to find out the relationship between the values at

different times to make predictions at the next time, and his

research results are applied to earthquake magnitude series (Feng

et al., 1996), real-time roof pressure prediction in coal mines

(Feng et al., 1997) and rockburst possibility prediction (Feng and

Wang, 1994). But it’s worth noting that this section appears to

have more to do with external factors. For example, no matter

how hard the rock is, it is difficult to resist the erosion of rain. We

are further trying to find a corresponding relationship of failure

in engineering design. So in this part, we just briefly introduce the

parameter selection for model training. When predicting slope

stability, Chakraborty et al. (Goswami and Chakraborty, 2017)

and Lu et al. (Lu and Rosenbaum, 2003) all used the height of the

slope (H), cohesion (C), angle of internal friction (φ), slope

inclination (β), unit weight of soil (γ), and coefficient of pore

water pressure (ru) as input parameters. Compared with (Lu and

Rosenbaum, 2003; Goswami and Chakraborty, 2017), Erzin et al.

(Erzin and Cetin, 2014) established a network model that omits

the pore water pressure input. Faradonbeh et al. (Roohollah and

Abbas, 2019) used the maximum tangential stress, uniaxial

tensile strength, uniaxial compressive strength, and elastic

energy index as input variables when predicting rockburst.

Meanwhile, they adopted RMSE (Eq. 7) to evaluate the

selected emotional neural network (ENN), gene expression

programming (GEP), and decision tree-based C4.5 algorithm.

The above network models for slope stability and rockburst

prediction have shown high accuracy after being trained by

training samples.

Fracture mechanics

As we mentioned in the previous section, machine learning

methods in rock mechanics are often used to capture nonlinear

complex relationships between data. Correspondingly, there are

also complicated engineering problems in fracture mechanics

that often involve nonlinear complex relationships between high-

dimensional data. The more common ones include fracture

toughness measurements, problems of crack propagation,

crack identification, etc. Commonly used machine learning

methods include support vector machine (Deng et al., 2013),

neural network (Aldakheel et al., 2021), Bayesian optimization

and reinforcement learning (Alipour et al., 2021; Fuchs et al.,

2021), etc.

First, the literature reports related to metal materials are

carried out. Due to the variety of sample sizes, it is impractical to

perform all finite element simulations for different sample sizes

to accurately analyze their fracture toughness. Liu et al. [854]

introduced regression tree and artificial neural network to solve

this problem. They performed data-heavy finite element analysis

to provide training data for the predictive model. The inputs to

the model are four constants related to the sample size, and the

output is a quantity related to the crack tip plane-strain stress

intensity factor and indentation load. Their results indicate that

artificial network models can achieve relatively high prediction

accuracy with a relatively simple structure. Daghigh et al.

(Daghigh et al., 2020) applied the decision tree regressor and

adaptive boosting regressor machine learning methods to

effectively predict fracture toughness properties of multiscale

bio-nano-composites based on the limited number of training

FIGURE 7
Comparison between the predicting errors of SVM and ANN
(Wu et al., 2014).
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data obtained from these impact tests and finite element analysis.

Their results indicates that ML predictions could provide a way

to assist in the prediction and optimization of fracture toughness

by varying compositions.

Rock fracture toughness is one of the important mechanical

parameters in geomechanics to describe the characteristics of

resisting the crack initiation and propagation in rock masses

(Liu et al., 2017) (Wang et al., 2016). Fracture toughness also

becomes an important factor in designing hydraulic fractures

due to its dominant role in height growth and fracture

propagation (Zia et al., 2018). Wang et al. (Wang et al.,

2021a) was the first to introduce machine learning methods

into the prediction of rock fracture toughness. The training

datasets are all based on the cracked chevron notched Brazilian

FIGURE 8
Numerical displacement fields of the ISRM-suggested CCNBD testing specimen at the different failure stages by 3D particle-based discrete
element method (Wang et al., 2021a).

FIGURE 9
3-D numerical particle-based discrete element method progressive fracture process of the ISRM-suggested CCNBD testing specimens at
different failure stages (Wang et al., 2021a).
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disc specimen. Most of them come from numerical simulations

(as shown in Figures 8, 9), and a small part comes from

literature research. They constructed decision regression tree,

random regression forest, extra regression tree and fully-

connected neural network to predict rock fracture toughness.

Their prediction results indicate that the regression-tree-based

ensemble method has higher ability; also, higher number of

neurons in different layers, which will improve the accuracy of

ANN predictions.

In the context of the complex and nonlinear nature of PNCs

fracture toughness, Hamdia et al. (Hamdia et al., 2015) employed

artificial neural network (ANN) and adaptive neuro-fuzzy

inference system (ANFIS) to predict the fracture energy of

polymer nanocomposites. Considering the uncertainty of

single neural network modeling that may cause instability of

parameter sensitivity analysis (Cherkassky et al., 2006), Cao et al.

(Cao et al., 2017) developed a neural network ensemble-based

parameter sensitivity analysis paradigm which could make

decisions about parameter sensitivity by synthesizing

sensitivity analysis results of individual neural networks. They

figured out that tensile strength and modulus of elasticity are the

critical parameters in the fracture failure of the notched concrete

beam. Mahmoodzadeh et al. (Mahmoodzadeh et al., 2022) has

confirmed the superiority of the LSTM model. On this basis,

Duyen et al. (Nguyen-Le et al., 2020) used predicted different

changes that are computed by hidden Markov model to improve

the out consequences which trained by LSTMmodel. This model

is trained using experimental data from a 4-point shear beam.

When the amount of training sample data is large (335), the error

between the prediction result of the model and the test sample is

only 1.199%, better than the prediction results only using the

LSTM model (1.370%). ML are also used in the determination of

representative volume elements for microstructurally small

cracks. Due to the high computational cost of the finite

element method in multi-scale analysis problems, Karen et al.

(DeMille and Spear, 2022) used the existing finite element

simulation results as training data for CNNs (Convolutional

neural networks), and the RVEMSC is predicted with

comprise? microstructural and geometrical information local

to the given crack-front point as input. Although CNNs are

not found to be accurate enough to replace all FE simulations, but

it’s a rapid screening tool for improving the efficiency of the FE-

based RVEMSC determination framework. Support Vector

Regression is widely used in the analysis related to non-

deterministic damage prediction. Feng et al. (Feng et al.,

2021a) reported that as part of machine learning aided-

computer aided engineering, extended support vector

regression can identify relationships between input variables

such as conditions of initial crack, external loading conditions,

and structural damage evolutions. The resulting dataset can be

used to predict the probability of structural failure. Feng et al.

(Feng et al., 2021b) improved algorithm based on previous work,

and they eliminated the influences of random outliers so that the

training robustness and computational adaptability of the

proposed regression model can be reinforced. The

effectiveness of this improvement was verified by experiments

and numerical simulations.

Pore-scale analysis

Digital rock modeling provides a controllable

environment and a straightforward variables variation to

produce accurate results quickly and economically.

Modeling digital rocks at the pore scale requires image

acquisition which is achieved by imaging the pore space of

the rocks of interest, analyzing them digitally through a series

of image processing steps, and modeling the physics using the

various available numerical tools, which allows deciphering

the relationship between pore characteristics and fluid flow

properties as well as the mechanical properties (Goral et al.

(Goral et al., 2020)). Pore scale models used for fluid flow

simulation require three-dimensional representation of the

rock sample of interest while computing mechanical

properties requires a detailed geometry and a high-

resolution mesh with millions of mesh elements, leading to

computationally expensive simulations. Despite the recent

advances in digital rock modeling techniques and the

hardware capabilities as well as the computational power,

there are still limiting factors to the ability of such

techniques to tackle large-scale problems.

Fluid flow simulations using digital rock samples can be

performed using various techniques that try to balance between

accuracy and speed at the cost of the level of details required. Pore

Network Models (PNM), for instance, have been widely used to

estimate the permeability of porous rocks (Blunt, 2001; Joekar-

Niasar et al., 2008). PNM decompose the complex pore space

significantly and replace it with a ball-and-stick network to

reduce the computational cost while providing velocity and

pressure field averaged over a simplified geometry. Blunt

(Blunt, 2017) argued that conventional PNM have some

challenges in simulating imbibition and residual trapping of

CO2 which plays an important role in the assessment of long-

term storage capacity and safety of geological sequestration. On

the contrary, direct flow simulations such as finite method

solutions and Lattice Boltzmann Methods (LBM) solve Navier

Stokes equation (NVE) explicitly using the original complex

geometry which provides the highest level of accuracy and

details (Wang et al., 2021b). Given the level of details

involved in such simulations, the associated computational

cost is rather significant due to the methods being either

time-dependent, nonlinear, or iterative. Lattice Boltzmann

Methods is a time-dependent method while Navier Stokes

equation is both time-dependent and nonlinear.

The size of the sample is perhaps the foremost limiting

factor in most numerical simulation techniques. X-ray micro-

Frontiers in Mechanical Engineering frontiersin.org12

Yu et al. 10.3389/fmech.2022.1003170

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.1003170


Computed Tomography (μ-CT) images of a typical rock

sample of 1 cm in diameter has dimensions of 2500 ×

2500 × 5000 voxels, with a resolution of few micrometers

(Soulaine et al., 2016; Wang et al., 2019b). Fluid flow

simulation using finite methods solutions and Lattice

Boltzmann Methods, however, are usually restricted to a

maximum model size of 3003 voxels, above which the

simulation is no longer efficient (Raeini et al., 2014). Such

numerical simulation tools require scalability and

parallelization of the algorithm on high-performance

computers (HPC) clusters to yield relatively fast and

efficient estimation of the properties of interest.

Incorporating mechanical behavior of porous rocks along

with fluid flow simulation rises the computational cost

markedly which is caused by the increase in the complexity

of the meshing and reservoir heterogeneity (Li et al., 2022).

Machine leaning shows potential in overcoming the limitation

of the choosing between higher resolution or larger field of

view by enhancing the quality of the 2D slices to achieve better

segmentation and phase labeling (Figure 10). User-biases also

imposes a significant challenge in image processing. During

image segmentation to distinguish pores from grains, user-

FIGURE 10
Using machine learning algorithms, a larger field of view and a higher resolution can be achieved simultaneously by enhancing the available
micro-CT images and thus achieve a bigger sample (Da Wang et al., 2021).

FIGURE 11
Comparison between different segmentation methods including traditional (B) and machine learning assisted methods (C) shows user-bias in
labeling original data (A) when using traditional segmentation methods. Each color represents different particle (Jiang et al., 2020).
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biases are shown to affect the physical accuracy of the

petrophysical results (Garfi et al., 2020). Leu et al. (Leu

et al., 2014) performed sensitivity analysis of the method of

segmentation on the permeability on a digital rock sample.

The results showed discrepancy in permeability values

obtained from different segmentation methods due to the

dissimilar labeling of pores and grains. User-biased

segmentation method that require manual determination of

the threshold value fail to produce reliable phase labeling

results (Figure 11) which yield inaccurate property estimation

(Iassonov et al., 2009).

Machine Learning could potentially provide a breakthrough

by surpassing the limitations imposed by traditional pore scale

imaging and modeling techniques. The use of machine learning

algorithms eliminates the need to decide between higher accuracy

or larger field of view as automated thresholding and image

optimization can be easily achieved using the various algorithms

of machine learning.

Considering the different available structures of machine

learning algorithm, estimation of mechanical and petrophysical

properties of complex geometries such as porous rocks are easily

attainable (Figure 12). Machine learning algorithm differ based on

the structure and application and include Artificial neural networks

(ANNs), Deep neural networks (DNNs), and Convolutional neural

networks (CNNs). ANNs are composed of dense neural network

blocks that take a number of inputs and use weights, biases, and an

activation energy to output the outcome through a series of hidden

layers. ANNs are used to correlate geometrical properties, for

example, such as porosity and surface area to permeability of

porous rocks (Iassonov et al., 2009). DNNs involve more than

one hidden layer. Unlike ANNs which use the weighted sum of the

inputs CNNs use convolution operations. CNN are useful for

automated segmentation and flow field and petrophysical

properties prediction.

Machine learning has been widely used for various

applications. Hadi and Nygaard (Hadi and Nygaard, 2018)

presented a machine learning algorithm based on Artificial

Neural Networks (ANNs) to derive an empirical correlation to

estimate shear velocity from conventional logs. Saad et al.

(Saad et al., 2018) developed a physics-based machine

learning algorithm that uses rock density, porosity, and

mineralogy to predict its Young’s modulus. Araya-Polo

et al. (Araya-Polo et al., 2020) utilized deep neural

networks (DNNs) to provide a quick estimation of rock

permeability from thin-section images of various samples

with different grains’ size ranging from samples with very

fine to very coarse grains. Their results show acceptable

agreement with laboratory-measured permeability with an

average error of 11.69%. Bekele (Bekele, 2020) employed

DNNs to predict two-dimensional deformation in an

idealized poroelastic model. The algorithm was tested

against the analytical solution of Barry and Mercer’s source

problem with time-dependent fluid injection and extraction.

The results show a good agreement with the vertical and

horizontal deformation, but higher error was noticed for

the predicted pore pressure. With the vast amount of data

available in the form of X-ray images of real and synthetic

rocks, as well as the ability to generate synthetic digital rock

samples (Al Balushi and Dahi Taleghani, 2020), machine

learning continues to become increasingly prevalent as

there is a potential to advance and improve all aspects of

the data-driven workflow which would lead to faster

simulations and obtaining higher image quality.

Conclusion

We have presented an overview of advances in using

various machine learning techniques in different aspects of

rock mechanics. Some of these efforts were specifically

engaged in predicting rock failure characteristics while

other were focused on mechanical and petrophysical

behavior of rock during its service life. Although most of

the initial works were focused on the behavior of rock masses

FIGURE 12
A trained machine learning model takes 2D slices of the geometry as an input and estimate the property of interest without the lengthy and
biased image processing (Araya-Polo et al., 2020).
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but these techniques found better applications in microscale

or digital rock analysis due to the lack of data. One of the main

barriers in further development of machine learning

techniques in rock mechanics is limited datasets which is

mainly driven by lengthy and expensive nature of rock

mechanics tests. Hence using micro CT scan images is one

of the solutions to fill this gap to populate large number of data

required for training neural networks.
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