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This paper proposes a kinematics algorithm in screw coordinates for articulated linkages.
As the screw consists of velocity and position variables of a joint, the solutions of the
forward and inverse velocities are the functions of position coordinates and their time
derivatives. The most prominent merit of this kinematic algorithm is that we only need the
first order numerical differential interpolation for computing the acceleration. To calculate
the displacement, we also only need the first order numerical integral of the velocity. This
benefit stems from the screw the coordinates of which are velocity components. Both the
forward and the inverse kinematics have the similar calculation process in this method.
Through examples of planar open-chain linkage, single closed-chain linkage and multiple
closed-chain linkage, the kinematics algorithm is validated. It is particularly fit for
developing numerical programmers for forward and inverse kinematics in the same
procedures, including the velocity, displacement and acceleration which provide the
fundamental information for dynamics of the linkage.
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INTRODUCTION

Kinematics of a linkage aims at studying its motion without regard to forces (Norton, 2004) for the
synthesis of a mechanism (Suh and Radcliffe, 1978) or to accomplish the desired motion (Shigley and
Uicher, 1980) and determine its rigid-body dynamic behavior (Bottema and Roth, 1979; Waldron
and Kinematics, 2004). Kinematic geometry (Hunt, 1978), geometric design (McCarthy and Soh,
2011), theoretical kinematics of robotic mechanisms (McCarthy, 1990; Duffy, 1996; Davidson and
Hunt, 2004; Dai, 2014), and the analysis, synthesis and optimization of spatial kinematic chains
(Angeles, 1982) are elaborated in previous works in the past decades. Kinematic analysis of a linkage
requires the algebraic equations that might be iterated numerically. Computational kinematic
analysis plays a vital role in the study of a mechanical system (Saura et al., 2019). It is the most
straightforward procedure for kinematics and dynamics to select the absolute coordinates of the
reference point as the variables (García de Jalón and Bayo, 1994). This selection has the advantage of
normally leading to a facilitated expression for the constraints and Jacobian matrices of a multi-body
system (García de Jalón and Bayo, 1994). The forward kinematics of a serial linkage is easier than its
inverse kinematics while the forward kinematics of a parallel linkage is more complex than its inverse
kinematics (Suh and Radcliffe, 1978; Bottema and Roth, 1979; Duffy, 1980; Shigley and Uicher, 1980;
Angeles, 1982; García de Jalón and Bayo, 1994; Duffy, 1996).

In the past half century, parallel manipulators witnessed very quick development. Parallel
manipulators have been attracted a great attention ever since the industry application of
Gough’s tire testing machine and Stewart’s platform for its superior performance over its serial
counterparts in terms of loading capacity, rigidity and accuracy (Gough and Whitehall, 1962;
Stewart, 1965). However, the forward kinematics usually contains a group of nonlinear algebraic
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equations that are complexly coupled and there are no general
methods to solve them analytically (Chapelle and Bidaud, 2004;
Wu et al., 2009). It has been recognized as the general purpose of a
software that standardized procedures should be proposed for
reducing the kinematic analysis of mechanism to simplify the
problem (Kong et al., 2016). Different procedures were developed
to establish the restriction equations to solve their time
derivatives of first and second orders (Zhao et al., 2016).
Actually, such procedures can be accomplished through
vector-loop processing for planar linkages (Brát and Lederer,
1973; Kong et al., 2018). The forward kinematics are either
established in the functions of structure parameters and input
variables numerically (Yang et al., 2018) or presented in algebraic
coordinates (Wu et al., 2013; Kong et al., 2019). The inverse
kinematic problem consists of finding the joint variables to
achieve a desired configuration of a mechanism (Chapelle and
Bidaud, 2004; Wu et al., 2013).

To understand the kinematic performance of a linkage, many
scholars have been proposing different theories (McCarthy, 1990;
Duffy, 1996; Davidson and Hunt, 2004; Dai, 2014; Zhao et al.,
2016; Amiri and Mazaheri, 2020; Faghidian and Mohammad-
Sedighi, 2020), methods (Angeles, 1982; Kong et al., 2018; Yang
et al., 2018; Kong et al., 2019; Shen et al., 2020), algorithms
(García de Jalón and Bayo, 1994; Kong et al., 2016; Saura et al.,
2019) and software (Brát and Lederer, 1973; García de Jalón and
Bayo, 1994; Wu et al., 2009; Wu et al., 2017). This paper focuses
on an algorithm in the screw coordinates to solve the velocity of
articulated planar linkage and investigates the displacement and
acceleration. A screw is a line vector accompanied by a secondary
vector attached with a pitch. As the geometrical element, a screw
with six components plays a vital role in kinematics and
mechanics of a mechanism (Barus, 1900). The paper develops
an algorithm to analyze the displacement, velocity and
acceleration of articulated planar mechanisms in twist
coordinates of each joint. This is the first try to use screw
coordinates to completely study the displacement, velocity and
acceleration of linkages in a general systematic way. Because the
kinematics analysis starts from the velocity, the solutions of
forward and inverse kinematics of a mechanism have the same
form in expression which facilitates the programming and
calculation. The discussion is not restricted to the kinematics
of revolute jointed planar linkages, and the similar principles also
apply to spatial mechanisms.

INSTANTANEOUS TWIST OF THE END
EFFECTOR OF A SERIES MECHANISM

Definition of Twist
Table 1 is the definition of parameters in this paper.

Figure 1A shows an articulated link AB that is rotating around
a fixed revolute joint A with angular velocity of ωA around the z
-axis. The velocity of any point P attached to the rigid link AB can
be expressed by vP � ωA × rAP. As a result, the velocity of point P
on the extended rigid body of link AB that is overlapped with the
origin of the coordinate frame is vo � ωA × rAo where rAo � −rA
which is illustrated in Figure 1B.

Also, there is vo � ωA × (−rA) � rA × ωA which is illustrated
in Figure 1C. The dual 3-dimensional vectors ωA and vo can fully
determine the rotation of link AB. So, a dual vector can be
defined as

o$A � [ ωA

rA × ωA
] (1)

where o$A is a screw that expresses the twist of link AB that is
rotating around jointAwith a marking point superimposing with
the origin o of the coordinate system. Supposing that
ez � [ 0 0 1 ]T, Equation 1 can be rewritten as

o$A � ωA[ ez
rA × ez

] (2)

where ωA is the angular speed of the rotation about joint A. Let

o$Au � [ ez
rA × ez

] (3)

where o$Au is called unit screw because the norm of ez
is ‖ez‖ � 1 (35].

In Equation 3, the first three components indicate the unit
direction of a rotation and the last three components present
implicitly the position of the axis of rotation with respect to the
origin of the coordinate system (Zhao et al., 2014). Therefore,
Equation 2 can be denoted by

o$A � ωA o$Au (4)

Twist Matrix of a Series Pivoted Kinematic
Chain
When a second link BC is jointed with AB at B(see Figure 2A),
the relative twist of BC with respect to AB can be analyzed by
fixing AB with the ground which is indicated by Figure 2B.

With the similar procedure mentioned above, we get

o$B � ωB o$Bu (5)

where ωB is the relative speed of link BCwith respect to AB
rotating around the revolute joint B, and

o$Bu � [ ez
rB × ez

] (6)

According to the principle of linear superposition, the absolute
angular velocity of link BC is (Zhao et al., 2014)

TABLE 1 | Definition of parameters.

Parameters Definition

ωA The relative angular velocity of joint A
vP The velocity of any point P attached to the rigid link AB
rA The vector direction of joint A
o The screw of joint A
o The unit screw of joint A
o The screw of end effector
S The screw matrix of end effector
ω The vector of relative angular velocity
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ωBC � ωA + ωB (7)

and the absolute velocity of link BCwith the marking point that is
superimposed with the origin at the moment is

ovBc � ωA(rA × ez) + ωB(rB × ez) (8)

where ovBC
indicates the velocity of a point on link BC that is at

this instant superimposed with the origin illustrated in Figure 2C.
As a result, the twist of link BC with respect to the coordinate

system is

o$BC � [ ωBC

ovBC
] � [ ωAez + ωBez

ωArA × ez + ωBrB × ez
] (9)

Equation (9) can be rewritten as

o$BC � ωA o$Au + ωB o$Bu (10)

which can be expressed in matrix multiplication form:

o$BC � SBCωBC (11)

where SBC� [ ez ez
rA × ez rB × ez

] and ωBC � [ωA

ωB
].

Similarly, the twist of the end effector, denoted by o$E, of a
kinematic chain in series illustrated by Figure 3 can be expressed as.

o$E � Sω (12)

where

S � [ o$1 o$2 / o$n ] (13)

and

ω � [ω1 ω2 / ωn ]T (14)

Eq. 13 is called the unit twist matrix of a serial linkage
while Equation 14 presents a vector including all relative
angular speeds of each joint relative to its previous
neighbor in the kinematic chain. Screw matrix 13) is
made up of the geometry parameters of the mechanism.
It can be programmed in the computer software. This
procedure offers an explicit inference of kinematic
attributes for velocities in the mechanisms that have the
same topology.

KINEMATICS OF A REVOLUTE JOINTED
MECHANISM WITH SERIAL OPEN CHAIN

From Equation 12, we know that the twist of the end effector with
a marking point of the origin of the coordinate frame can be

FIGURE 1 | Twist of a revolute jointed link.

FIGURE 2 | Twist of link BCwith respect to the fixed coordinate frame.
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directly obtained whenωi(i � 1, 2,/n) are all prescribed. Denote
the twist by

o$E � [ ωE

ovE
] (15)

We know that ωE is the absolute angular velocity of the end
effector and vE(o) is the velocity of the point attached with the
end effector that is superimposed with the origin of the
coordinate system at this moment. The velocity of the
geometry center of the end effector is therefore denoted by

CvE � ovE + ωE × rC (16)

where rC is the position vector of the geometry center of the end
effector in the absolute ground coordinate system. As a result, we
get the twist of the end effector at its central coordinate frame
whose axes are parallel with the corresponding absolute ones at
this instant:

C$E � [ ωE

CvE
] � [ ωE

ovE + ωE × rC
] (17)

where ωE is the absolute angular velocity of the end effector and
CvE is the absolute linear velocity of the center of the end effector.
Eq. 17 is the forward kinematics of a serial linkage in screw form
which provides all necessary parameters for developing the
dynamics of the linkage.

After knowing the twist of the end effector with a marking
point of the origin o of the coordinate frame, we can left multiply
ST at both sides of Equation 15:

STSω � STo$E (18)

where ST is the transpose of matrix S.
When |ST(o)S(o)| � 0, the serial linkage is either redundantly

actuated or in its singularity configuration. Otherwise, we get:

ω � [STS]−1STo$E (19)

where [STS]−1ST is called the pseudo inverse of the unit twist
matrix S. Eq. 19 represents the inverse kinematics for the serial
mechanism.

Figure 4 shows a planar linkage in series. In the absolute
coordinate system, we gain the twist of the end effector:

o$E � Sω (20)

where

S � ⎡⎢⎢⎢⎢⎢⎣ 0 0 1 y1 −x1 0
0 0 1 y2 −x2 0
0 0 1 y3 −x3 0

⎤⎥⎥⎥⎥⎥⎦
T

(21)

and

ω � [ω1 ω2 ω3 ]T (22)

Supposing the length of the links are l1, l2 and l3, the
coordinates of each revolute joint can be expressed by x1 � 0,
y1 � 0, x2 � l1 cosφ1, y2 � l1 sinφ1,
x3 � l1 cosφ1 + l2 cos(φ1 + φ2), y3 � l1 sinφ1 + l2 sin(φ1 + φ2),
respectively. So the unit twist matrix 18) is

S �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 1 1
0 l1 sinφ1 l1 sinφ1 + l2 sin(φ1 + φ2)
0 −l1 cosφ1 −l1 cosφ1 − l2 cos(φ1 + φ2)
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

In accordance to Equation 17, we know that the twist of the
end effector with the marking point on its center is

C$E � [ ωE

CvE
] � [ ω1 + ω2 + ω3

ovE + (ω1 + ω2 + ω3) × rC
] (24)

where rC �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l1 cosφ1 + l2 cos(φ1 + φ2) +

1
2
l3 cos(φ1 + φ2 + φ3)

l1 sinφ1 + l2 sin(φ1 + φ2) +
1
2
l3 sin(φ1 + φ2 + φ3)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

By programming with the numerical algorithms, we obtain the
forward kinematics of the linkage. With the initial conditions of
φ1(0), φ2(0) and φ3(0), and ω1, ω2 and ω3, we get the first set of
parameters, ω(1) from equation (22). And then we gain the first
twist of the end effector from equation (20) and S(1) from
equation (23) and c$E(1) from equation (24)

Then we get the successive parameters of S(i) from Equation
23 and c$E(i) from Equation 24 by updating the data:

⎧⎪⎨⎪⎩
φ1(i) � φ1(0) + iΔtω1

φ2(i) � φ2(0) + iΔtω2

φ3(i) � φ3(0) + iΔtω3

(25)

where i � 1, 2,/ and Δt is a finite small time increment. The
absolute angular displacement of the end effector is

φE(i) � φ1(i) + φ2(i) + φ3(i) (26)

The angular accelerations of each joint can be numerically
calculated by

αj(i) � ωj(i + 1) − ωj(i − 1)
2Δt (27)

FIGURE 3 | A series kinematic chain.
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where j � 1, 2,/, n represents the jth joint.
In forward kinematic, we let the angular velocity of screw joint

O1 be 3 sin πt, the angular velocity of screw joint O2 be 2 sin 3πt
2 ,

the angular velocity of screw jointO3 be sin 2 πt.with the structure
parameters and initial conditions in Table 2, we programmed the
above process in MATLAB and drew the forward displacement,
velocity and acceleration for each joint (see Figure 5) by
numerical methods based on Equations 25–27.

KINEMATICS OF PIVOTED LINKAGES OF
CLOSED CHAIN

Kinematics of the 4-bar Linkage
Figure 6 1) shows a planar 4-bar linkage in series and 2) a 4-bar
mechanism with closed loop. The twist of the end effector of the
4-bar linkage in series can be gained from Equation 12:

o$E � Sω

where S � [ $1 $2 $3 $4 ], ω � [ω1 ω2 ω3 ω4 ]T and
$1 � [0 0 1 y1 −x1 0]T, $2 � [0 0 1 y2 −x2 0]T,
$3 � [0 0 1 y3 −x3 0]T, $4 � [0 0 1 y4 −x4 0]T .

Eq. 12 indicates that the kinematic chain forms a closed loop
when the end effector is fixed with the frame (see Figure 6B). And
therefore, there must be

o$E � 0 (28)

Eq. 28 is called the loop equation of the mechanism which can
be used to solve all angular velocities by taking other known
conditions into account. In the coordinate frame shown in
Figure 6, x1 � 0, y1 � 0, x2 � l1 cosφ1, y2 � l1 sinφ1,
x3 � l1 cosφ1 + l2 cos(φ1 + φ2), y3 � l1 sinφ1 + l2 sin(φ1 + φ2),
x4 � l1 cosφ1 + l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3) and
y4 � l1 sinφ1 + l2 sin(φ1 + φ2) + l3 sin(φ1 + φ2 + φ3), we get that

o$E �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

o$E(3, 1)
o$E(4, 1)
o$E(5, 1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

where o$E(3, 1) � ω1 + ω2 + ω3 + ω4, o$E(4, 1) � ω2l1 sinφ1 +
ω3[l1 sin φ1 + l2 sin(φ1 + φ2)] + ω4[l1 sinφ11 + l2 sin(φ1 + φ2)+
l3 sin(φ1 + φ2 + φ3)], o$E(5,1)�−ω2l1 cosφ1−ω3[l1 cosφ1+ l2 cos
(φ1+φ2)]−ω4[l1 cosφ1+ l2 cos(φ1+φ2)+ l3 cos(φ1+φ2+φ3)] .

Rearranging equation (29) presents

ω2 + ω3 + ω4 � −ω1

ω2l1 sinφ1 + ω3[l1 sinφ1 + l2 sin(φ1 + φ2)] + ω4[l1 sinφ1

+ l2 sin(φ1 + φ2) + l3 sin(φ1 + φ2 + φ3)] � 0

− ω2l1 cosφ1 − ω3[l1 cosφ1 + l2 cos(φ1 + φ2)] − ω4[l1 cosφ1

+ l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3)] � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Therefore, we gain the forward kinematics of the closed-chain

4-bar linkage (Figure 6B):

ωF � A−1v1 (30)

where

A �
1 1 1

l1 sinφ1 l1 sinφ1 + l2 sin(φ1 + φ2) l1 sinφ1 + l2 sin(φ1 + φ2) + l3 sin(φ1 + φ2 + φ3)
−l1 cosφ1 −l1 cosφ1 − l2 cos(φ1 + φ2) −l1 cosφ1 − l2 cos(φ1 + φ2) − l3 cos(φ1 + φ2 + φ3)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

ωF � ⎡⎢⎢⎢⎢⎢⎣ω2

ω3

ω4

⎤⎥⎥⎥⎥⎥⎦ and v1 � ⎡⎢⎢⎢⎢⎢⎣−ω1

0
0

⎤⎥⎥⎥⎥⎥⎦.
When the output of ω4 is known, we can also get that

ω1 + ω2 + ω3 � −ω4

ω2l1 sinφ1 + ω3[l1 sinφ1 + l2 sin(φ1 + φ2)]
� −ω4[l1 sinφ1 + l2 sin(φ1 + φ2) + l3 sin(φ1 + φ2 + φ3)]
− ω2l1 cosφ1 − ω3[l1 cosφ1 + l2 cos(φ1 + φ2)]
� ω4[l1 cosφ1 + l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3)]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Consequently, the inverse kinematics of the 4 bar mechanism

is now rewritten as

ωI � B−1v4 (31)

where B � ⎡⎢⎢⎢⎢⎢⎣ 1 1 1
0 l1 sinφ1 l1 sinφ1 + l2 sin(φ1 + φ2)
0 −l1 cosφ1 −l1 cosφ1 − l2 cos(φ1 + φ2)

⎤⎥⎥⎥⎥⎥⎦,
ωI � ⎡⎢⎢⎢⎢⎢⎣ω1

ω2

ω3

⎤⎥⎥⎥⎥⎥⎦ and v4�⎡⎢⎢⎢⎢⎢⎣ −ω4

−ω4[l1sinφ1+l2sin(φ1+φ2)+l3sin(φ1+φ2+φ3)]
ω4[l1cosφ1+l2cos(φ1+φ2)+l3cos(φ1+φ2+φ3)]

⎤⎥⎥⎥⎥⎥⎦ .

FIGURE 4 | A planar open chain linkage of 3 degrees of freedom.

TABLE 2 | Structure parameters and initial conditions.

φ2(0)(rad) φ3(0)(rad) ωA1 (rad/s) ωA2 (rad/s) ωA3 (rad/s) l1(mm) l2(mm) l3(mm)
π
3

11π
6

4π
3

3 sin πt 2 sin 3πt
2

sin 2 πt 200 210 300
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FIGURE 5 | Forward kinematics of a planar 4-bar mechanism. (A) Angular displacement, velocity and acceleration of joint A1; (B) Angular displacement, velocity
and acceleration of joint A2; (C) Angular displacement, velocity and acceleration of joint A3; (D) Angular displacement, velocity and acceleration of end effector; (E) Linear
velocity and acceleration of the center of end effector.
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In this regard, the forward velocity and inverse velocity have
the same form in mathematical expressions which is one of the
advantages of this algorithm. Then, we get the successive
parameters of ωF from Equation 30 or ωI from Equation 31
by updating the data of A, B and v4 with the interactions below:

⎧⎪⎨⎪⎩
φ1(i + 1) � φ1(i) + Δtω1(i)
φ2(i + 1) � φ2(i) + Δtω2(i)
φ3(i + 1) � φ3(i) + Δtω3(i)

(32)

where i � 1, 2,/ represents the ith iteration and Δt is a finite
small time increment.

Compared with theDenavit-Hartenberg notation for a closed loop
(Craig, 1986), the kinematics algorithm in screw form here only
requires to implement one numerical integration 32) for displacement
and one numerical differential 27) for acceleration in the absolute
coordinate frame. This provides a more convergent algorithm to
develop computational kinematics of a linkage. We let the angular
velocity of joint O1 is 2 rad/s and with the structure parameters and
initial conditions in Table 3, we programmed the method in
MATLAB and obtained the forward displacement, velocity and
acceleration for each joint (see Figure 7) by numerical methods
based on Equations 32, 27 for validating the method.

Kinematics of an Articulated Linkage of 1
degree of Freedom With Multiple Closed
Chains
Figure 8 illustrates a planar multi-closed-chain 6-bar linkage
1) in which there are two independent closed chains (b). For
the first closed chain of a 4-bar linkage (Figure 8 (c)), the loop
equation can be found from Equation 27:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 1 1 1
yA1 yA2 yA3 yA4

−xA1 −xA2 −xA3 −xA4

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ωA1

ωA2

ωA3

ωA4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

where ωA1 is the input. Rearranging this loop equation yields:

⎡⎢⎢⎢⎢⎢⎣ 1 1 1
yA2 yA3 yA4

−xA2 −xA3 −xA4

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ωA2

ωA3

ωA4

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−ωA1

−ωA1 yA1

ωA1 xA1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (33)

Similarly, we get the loop equation of the second coupled 5-
bar closed chain linkage (Figure 8 (d)) from Equation 28:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
yA1 yA2 yB1 yB2 yB3

−xA1 −xA2 −xB1 −xB2 −xB3

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωA1

ωA2

ωB1

ωB2

ωB3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

Rearranging this loop equation presents:

⎡⎢⎢⎢⎢⎢⎣ 1 1 1 1
yA2 yB1 yB2 yB3

−xA2 −xB1 −xB2 −xB3

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ωA2

ωB1

ωB2

ωB3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ωA1

−ωA1 yA1

ωA1 xA1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (34)

So the forward kinematics of the multiple closed chain
linkage can be obtained by associating these double-loop
Equations 33, 34:

ω � M−1v (35)

where M �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
yA2 yA3 yA4 0 0 0
−xA2 −xA3 −xA4 0 0 0
1 0 0 1 1 1
yA2 0 0 yB1 yB2 yB3

−xA2 0 0 −xB1 −xB2 −xB3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ω �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωA2

ωA3

ωA4

ωB1

ωB2

ωB3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and v �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ωA1

−ωA1 yA1

ωA1 xA1

−ωA1

−ωA1 yA1

ωA1 xA1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

FIGURE 6 | Planar 4-bar linkages. (A) A 4-bar linkage in series; (B) A 4-bar linkage with closed loop.

TABLE 3 | Structure parameters and initial conditions.

φ1(0)(rad) ωA1 (rad/s) l1(mm) l2(mm) l3(mm) l4(mm) yA4
(mm)

π
6 2 100 150 200 210 0
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We let the angular velocity of joint O1 is 2 rad/s and with
the structure parameters and initial conditions in Table 4,
we programmed the method in MATLAB and gained
the forward displacement, velocity and acceleration for
each joint (see Figure 9) by numerical methods with
Equation 35.

Kinematics of a Planar Mechanism of More
Degrees of Freedom With Single Closed
Chain
Figure 10 illustrates 1) a planar 5-bar linkage in series and
2) a 5-bar linkage of closed loop. The twist of the end

FIGURE 7 | Forward kinematics of a planar 4-bar linkage. (A) Angular displacement, velocity and acceleration of joint A1; (B) Angular displacement, velocity
and acceleration of joint A2; (C) Angular displacement, velocity and acceleration of joint A3; (D) Angular displacement, velocity and acceleration of
joint A4.
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effector of the 5-bar linkage in series can be gained by
Equation 12:

o$E � Sω

where S� [$1 $2 $3 $4 $5 ], ω� [ω1 ω2 ω3 ω4 ω5 ]T and
$1 � [0 0 1 y1 −x1 0]T, $2 � [0 0 1 y2 −x2 0]T,
$3 � [0 0 1 y3 −x3 0]T, $4 � [0 0 1 y4 −x4 0]T, $5 �
[0 0 1 y5 −x5 0]T .

From Equation 12, we know that the kinematic chain forms a
closed loopwhen the end effector is fixedwith the frame (Figure 10B).
Therefore, there must be o$E � 0. In the coordinate frame shown
in Figure 10, x1 � 0, y1 � 0, x2 � l1 cosφ1, y2 � l1 sinφ1,
x3 � l1 cosφ1 + l2 cos(φ1 + φ2), y3 � l1 sinφ1 + l2 sin(φ1 + φ2),
x4 � l1 cos φ1 + l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3), y4 �
l1 sinφ1 + l2 sin(φ1 +φ2)+ l3 sin(φ1 +φ2 +φ3), and x5 � l1 cosφ1+
l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3) + l4 cos(φ1 + φ2 + φ3 + φ4),
and y5 � l1 sin φ1 + l2 sin(φ1 + φ2) + l3 sin(φ1 + φ2 + φ3)+
l4 sin(φ1 + φ2 + φ3 + φ4), we get that

o$E �

0

0

ω1 + ω2 + ω3 + ω4 + ω5

ω2l1 sinφ1 + ω3[l1 sinφ1 + l2 sin(φ1 + φ2)]
+ω4[l1 sinφ1 + l2 sin(φ1 + φ2) + l3 sin(φ1 + φ2 + φ3)]
+ω5[l1 cosφ1 + l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3)
+l4 cos(φ1 + φ2 + φ3 + φ4)]
−ω2l1 cosφ1 − ω3[l1 cosφ1 + l2 cos(φ1 + φ2)]
−ω4[l1 cosφ1 + l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3)]
−ω5[l1 cosφ1 + l2 cos(φ1 + φ2) + l3 cos(φ1 + φ2 + φ3)

+l4 cos(φ1 + φ2 + φ3 + φ4)]
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

Then there is

ω2 + ω3 + ω4 � −ω1 − ω5

ω2l1 sinφ1 + ω3[l1 sinφ1 + l2 sin(φ1 + φ2)]
+ ω4[ l1 sinφ1 + l2 sin(φ1 + φ2)

+l3 sin(φ1 + φ2 + φ3) ]

� −ω5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l1 sinφ1 + l2 sin(φ1 + φ2)
+l3 sin(φ1 + φ2 + φ3)
+l4 sin(φ1 + φ2 + φ3 + φ4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ω2l1 cosφ1 − ω3[l1 cosφ1 + l2 cos(φ1 + φ2)]
− ω4[ l1 cosφ1 + l2 cos(φ1 + φ2)

+l3 cos(φ1 + φ2 + φ3) ]

� ω5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l1 cosφ1 + l2 cos(φ1 + φ2)
+l3 cos(φ1 + φ2 + φ3)
+l4 cos(φ1 + φ2 + φ3 + φ4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Therefore, we get the forward kinematics of the closed-chain

5-bar linkage (Figure 10B):

ωF � A−1ω1 (37)

where

A�
1 1 1

l1 sinφ1 l1 sinφ1 + l2 sin(φ1 +φ2) l1 sinφ1 + l2 sin(φ1 +φ2)+ l3 sin(φ1 +φ2 +φ3)−l1 cosφ1 −l1 cosφ1 − l2 cos(φ1 +φ2) −l1 cosφ1 − l2 cos(φ1 +φ2) − l3 cos(φ1 +φ2 +φ3)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ωF � ⎡⎢⎢⎢⎢⎢⎣ω2

ω3

ω4

⎤⎥⎥⎥⎥⎥⎦

and ω1 � ⎡⎢⎢⎢⎢⎢⎣−ω1 −ω5 −ω5
⎡⎢⎢⎢⎢⎢⎣ l1 sinφ1 + l2 sin(φ1 +φ2)+l3 sin(φ1 +φ2 +φ3)
+l4 sin(φ1 +φ2 +φ3 +φ4)

⎤⎥⎥⎥⎥⎥⎦ ω5
⎡⎢⎢⎢⎢⎢⎣ l1 cosφ1 + l2 cos(φ1 +φ2)+l3 cos(φ1 +φ2 +φ3)
+l4 cos(φ1 +φ2 +φ3 +φ4)

⎤⎥⎥⎥⎥⎥⎦⎤⎥⎥⎥⎥⎥⎦
T

.

Eq. 37 represents the forward velocity of the planar 5-bar
mechanism of 2 degrees of freedom. In accordance to the
numerical Eq. 32, 27, we obtain the forward displacement and

FIGURE 8 | A planar 6-bar linkage. (A) Structure of a planar 6-bar linkage; (B) Two independent closed-chain 6-bar linkages; (C) A 4-bar linkage of closed chain;
(D) Closed chain of a coupled 5-bar linkage.
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FIGURE 9 | Forward kinematics of a multiple closed chain linkage. (A) Angular displacement, velocity, and acceleration of joint A1; (B) Angular displacement,
velocity, and acceleration of joint A2; (C) Angular displacement, velocity, and acceleration of joint A3; (D) Angular displacement, velocity, and acceleration of joint A4; (E)
Angular displacement, velocity, and acceleration of joint B1; (F) Angular displacement, velocity, and acceleration of joint B2; (G) Angular displacement, velocity, and
acceleration of joint B3.

TABLE 4 | Structure parameters and initial conditions.

φ1(0)(rad) ωA1 (rad/s) l1(mm) l2(mm) l3(mm) l4(mm) l5(mm) xB3(mm) yB3
(mm) xA4(mm) yA4

(mm)
π
4 2 100 150 200 210 300 400 0 150 −100
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FIGURE 10 | Planar 5-bar linkages. (A) A 5-bar linkage in series; (B) A 5-bar linkage of closed chain.

FIGURE 9 | (Continued).

TABLE 5 | Initial conditions and structure parameters.

φ1(0)(rad) φ5(0)(rad) ωA1 (rad/s) ωA5 (rad/s) l1(mm) l2(mm) l3(mm) l4(mm) l5(mm) xA5(mm) yA5
(mm)

π
4

5π
3

3 4 100 300 300 100 200 400 0
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FIGURE 11 | Forward kinematics of a 5-bar linkage. (A) Angular displacement, velocity, and acceleration of joint A1; (B) Angular displacement, velocity, and
acceleration of joint A2; (C) Angular displacement, velocity, and acceleration of joint A3; (D) Angular displacement, velocity, and acceleration of joint A4; (E) Angular
displacement, velocity, and acceleration of joint A5.
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acceleration of the mechanism with a single closed chain. We
let the angular velocity of joint O1 is 3 rad/s, the angular
velocity of joint O2 is 4 rad/s, and with the structure
parameters in Table 5, the displacement, velocity and
acceleration curves for each joint are illustrated in
Figure 11 by numerical formulas of Eq. 32, 27 in
accordance to Equation 37.

CONCLUSION

This paper proposed a method to investigate the
displacement, velocity and acceleration of a mechanism in
screw coordinates in a general systematic way. As the twist of
an articulated rigid body includes the angular velocity and
linear velocity, the corresponding displacements of all joints
are obtained through one-order integration of the velocity
solutions and the accelerations are represented by the first
order numerical differential interpolation. Compared to the
traditional methods in which the displacement parameters
are the only variables that will surely lead to the second order
differential interpolations for the accelerations, the
advantages of this method is that both the forward and
inverse kinematics of a mechanism can be expressed in a
same way and only one-order differential interpolation is
needed to get the acceleration and one-order integral is
required to calculate the displacement. This method is
validated by planar mechanisms in series, single closed
loop and multiple closed loops. This method is particularly
suitable for programming the computational software for
forward and inverse kinematics of a mechanism, covering
the velocity, displacement and acceleration. Although this
paper discusses the kinematics of revolute jointed planar

mechanisms, the same principles may apply to any spatial
linkages.
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