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Deep learning methods have been extensively studied and have been proven to be very
useful in multiple fields of technology. This paper presents a deep learning approach to
optically detect hidden hardware trojans in the manufacturing and assembly phase of
printed circuit boards to secure electronic supply chains. Trojans can serve as backdoors
of accessing on chip data, can potentially alter functioning and in some cases may even
deny intended service of the chip. Apart from consumer electronics, printed circuit boards
are used in mission critical applications like military and space equipment. Security
compromise or data theft can have severe impact and thus demand research
attention. The advantage of the proposed method is that it can be implemented in a
manufacturing environment with limited training data. It can also provide better coverage in
detection of hardware trojans over traditional methods. Image recognition algorithms need
to have deeper penetration inside the training layers for recognizing physical variations of
image patches. However, traditional network architectures often face vanishing gradient
problem when the network layers are added. This hampers the overall accuracy of the
network. To solve this a Residual network with multiple layers is used in this article. The
ResNet34 algorithm can identify manufacturing tolerances and can differentiate between a
manufacturing defect and a hardware trojan. The ResNet operates on the fundamental
principle of learning from the residual of the output of preceding layer. In the degradation
issue, it is observed that, a shallower network performs better than deeper network.
However, this is with the downside of lower accuracy. Thus, a skip connection is made to
provide an alternative path for the gradient to skip forward the training of few layers and add
in multiple repeating blocks to achieve higher accuracy and lower training times.
Implementation of this method can bolster automated optical inspection setup used to
detect manufacturing variances on a printed circuit board. The results show a 98.5%
accuracy in optically detecting trojans by this method and can help cut down redundancy
of physically testing each board. The research results also provide a new consideration of
hardware trojan benchmarking and its effect on optical detection.
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INTRODUCTION

In February of 2021, the United States president Joe Biden signed
an executive order on American supply chain. (Biden 2021). The
briefing asks for the secretary of commerce to identify risks in
semiconductor manufacturing and policy recommendations to
thwart cyber-attacks that can impact small businesses and the
government. However, cyber security concerns are not restricted
to just one country. The Internet of things (IoT) has led to
emergence of several new applications in myriad market
segments. This need for smarter electronics has led to
tremendous growth in the semiconductor segment. The
growth is spread from small businesses to fortune 500
companies. In order to remain cost competitive, industries are
largely relying on sub vendors and entities which are located
globally.

Recently Indian government has announced a billion-dollar
cash incentive for semiconductor manufacturers who are willing
to set up chip fabrication units in the country. (Phartiyal, and
Shah 2021). Lucrative opportunities like these help
semiconductor companies to invest on a global platform whilst
being cost competitive. Apart from the cost benefits, this helps
businesses to develop complex and dynamic supply chains which
can remain resilient to any supply chain disruptions. This
complex supply chain network however comes along with a
downside. The distribution of the supply chain network has
several unintentional security vulnerabilities. Untrusted entities
in these third-party intellectual property (3PIP) vendors, service
stations, wafer manufacturers, System on chip (SOC) developers
can exploit these vulnerabilities to alter the functioning of
the chip.

A hardware trojan is a malicious modification of the original
circuit to exploit the intended functioning. These trojans can
serve as backdoors to the hardware design to leak sensitive
information. The scope of the hardware trojan however is just
not limited to data leaks, instances of attacks like denial of service,
downgrading performance have also been recorded [Bhunia, and
Tehranipoor 2019a, 109–140]. A typical hardware trojan
structure consists of mainly two parts: a trigger and a payload.
The payload remains inactive most of the times unless it is set off
externally under rare conditions. While the trigger remains
optional, the payload is carefully inserted and masked inside
the circuit. Since the trigger is activated rarely, its response to test
vectors will remain unaffected. Thus, standard functional testing
alone cannot provide the necessary coverage to detect these
trojans.

Attackers can physically vary distances between circuit
elements, changing width and adding components on the
printed circuit board. Additionally, automated optical
inspection (AOI) is often seen to be ineffective in case of a
dense printed circuit board [Bhunia, and Tehranipoor 2019b,
81–105]. Thus, to effectively monitor trojan insertion even the
smallest varying patch in a printed circuit board must be critically
observed. Detection of these alterations is extremely difficult
because of the physical size, process variation, time involved
and complex nature of the work. Also, the existing detection
methods do not guarantee 100% fault coverage.

By utilizing the advancements in machine vision and artificial
intelligence (AI), a technique of optical monitoring can
potentially help detect malicious chips hidden inside the
printed circuit boards (PCB). Such a technique can not only
help in increased coverage, but also will help in automating the
task altogether. In this article, we are interested in leveraging the
power of sophisticated scanners and image classification
algorithms to locate and highlight any physical variation.
These variations are labelled and classified into potential
hidden chips, manufacturing errors and standard
manufacturing variance.

A human analyst can label these variations based on their
judgement. This labelled database will then serve as the training
data for the classifier network. A transfer learning approach is
proposed to help ease the training of the convolutional neural
network (CNN) algorithm. Transfer learning is a popular
approach in deep learning (Arinez. et al., 2020). In this
method, a pre-trained model is used as a steppingstone. New
data, which is different, yet similar would be trained over the
original model. This helps in reducing computing energy, skill
level and makes it easier for implementing deep learning models
with limited databases. This step is important for execution in
industrial practices as it does not have any requirement on strong
computing background from manufacturing employees.

1) In the first step of the proposed approach, a defect-free image
dataset will be used as the golden template. An image
acquisition set-up at the factory floor would capture raw
image data which would then be compared with the
template data.

2) The second step in our approach is to extract features based on
image processing. The factory floor images acquired in step
one would be subtracted from the template highlighting just
defects, hidden trojans and any misalignment. The resultant
database would then be labelled by an expert human in the
loop. As discussed above, a human analyst will label them into
three categories: potential trojans, defects and normal
manufacturing variances. The accuracy of this method can
be evaluated by examining the classification results obtained
over a validation dataset.

3) It has been a known fact that feature extraction using deep
learning requires the network to penetrate deeper in the
trainable layers. A residual learning network ResNet serves
well for this purpose. Apart from this, ResNet can overcome
the bottlenecking issues as the architecture works by
bypassing the input of the first layer and uses it as the
output of the last layer, the gradients can flow directly
through skip connections from later to initial layers.
ResNet can also solve the vanishing gradient problem
typically faced by the competitive algorithms. (He, Zhang,
Ren and Sun 2015). Considering all these factors, a 34-layered
ResNet was selected for the current application.

4) Next, by determining a good learning rate, transfer learning is
implemented to fine tune the architecture for verification. The
accuracy of the method can be verified by examining the
confusion matrix and performing conclusive testing of the
boards. This can be performed by examining the functional
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gates, side channel analysis, etc. By combining the deep
learning method and conclusive functional testing a better
coverage over hardware trojans detection can be achieved.

Combining the benefits of an image classifier and conclusive
functional testing, manufacturers can secure consumer
electronics from vulnerabilities with higher accuracy while
saving on cost and skills. The key benefit of this method
would be faster roll out of detection algorithms with limited data.

PROPOSED DEEP LEARNING APPROACH

Image Acquisition
A typical diagnostic method for detecting hardware anomalies
consists of two main inspection methods namely: Automated
Optical Inspection (AOI) module and X-Ray inspection. Both
methods require little to no human interaction. An optical
inspection module consists of high definition cameras that
captures videos of the assembly line. The video panes are
frozen and stitched into a large image file and are compared
against a template image. Defects like scratches, blemishes,
missing components, skewed alignment can be detected with
greater accuracy than a human eye. However, it is important to
note the shortcomings of an automated optical inspection. AOI
machines cannot identify defects in densely packed circuit
boards. The machines are also restricted to line of sight and
cannot identify hidden joints. The method also lacks in capturing
the depth of the image since it is heavily dependent on the
resolution of the optical inspection machine. Higher resolution

machines are in effect more costly. A three dimensional optical
testing may overcome this however, this method remains
expensive and time consuming. Thus, to overcome the high
price and increased reliability, an artificial intelligence based
multilayered image recognition architecture can be deemed
beneficial; as these algorithms can penetrate deep in the
trainable layers.

As mentioned earlier, the images acquired by the AOI
procedure will consist of manufacturing defects, hidden trojans
and manufacturing variability within the control parameters.
Since the downstream process of each of these variations differ
from one another, it is important for the classifier to generate
results to identify the differences in these three variations. Typical
hardware defects in a printed circuit boards are over soldering,
burs, short circuits, etc. A hardware trojan appearance is
recognized by the classifier as a rectangular shape which
somewhat resembles a radio frequency (RF) diplexer. A
manufacturing defect is much varied in shape. A typical bur
or an over solder defect has an appearance of an ink blot. The
manufacturing variability is perceived by the classifier as a small
red line over the template image.

When multiple labelled variations of these defects are fed to
the classifier, the classifier can recognize the similarity between
the validation dataset and training dataset. See Figure 1: Labelled
training data. This is achieved by the classifier by making
decisions based on the external appearance of these variations.
The artificial intelligence based ResNet34 classifier will be trained
to make decisions and classify verification dataset into these three
classes. In the proposed future work, the classifier can be trained
to make classification decisions based on types of defects,

FIGURE 1 | Labelled training data.
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different classes of trojans, counterfeits, with availability of
abundant data.

In this paper, the image dataset from a linear charge coupled
device (CCD) scanner dataset with around 48 pixels per
millimeter has been used. The image dataset was adopted
from arXiv’s research article (Tang et al., 2019). The original
size of the image template and validated image is around 16 k x
16 k pixels. They are cropped into many smaller images with size
of 640 × 640 and aligned. This testing data was then modified and
samples of hardware trojans were added using graphics editing
software application.

The additions made were of various sizes and shapes. A
rectangular shape was selected based on an article (Robertson
and Riley, 2018), which showcased a nanochip conception
resembling a signal conditioning coupler or a RF diplexer.
This nanochip was allegedly added to a server’s motherboard
to siphon off government data. These chips incorporated
memory, networking capability, and had sufficient processing
power for an attack.

Image Pre-processing and Feature
Extraction
Image differencing is a technique of subtracting a pair of images
from one another to highlight changes. A pair of test and template
images is carefully aligned so that corresponding points coincide.
These images are photometrically compatible. The differenced
contour is then stored as an image file. These contours now
represent the misalignments, defects, and the hardware trojans
that were added. The benefit of doing this is to lower the burden
of recognizing patterns on the classifier model. This reduction can
also help in tracing issues in a densely packed printed circuit
board. This converts the problem of complex pattern recognition
into a digit recognition problem. There are multiple commits of
digit recognition algorithms that have been used previously by the
research community. A transfer learning approach can help
retrain these previous commits with limited data more easily.

In this article, after executing the image differentiation step,
1,012 instances of misalignment, manufacturing defects and
trojans were recorded. These extracts were saved in portable
network graphic format. Next, a labelled dataset from these
extracts was created. The extracts were labelled based on
human analyst input. The data was stored in a comma
separated value file. This dataset was divided into three
classification types. The inserted trojan consisted of 11.56% of
the entire dataset. The trojan instances were purposely kept below
12% to train the algorithm with limited benchmarked data. This
is done assuming that in an actual production scenario, the
probability of infected printed circuit boards will be low. This
will help simulate the actual production scenario.

Feature Classification
Feature recognition requires a deeper penetration in the training
layers of an algorithm. Our labelled dataset was trained on a 34
layered residual network to extract the features. However
increasing network depth does not work by stacking layers.
Deep networks are harder to train because of the vanishing

gradient problem. (He et al., 2015). This saturates the network
performance and starts quickly degrading when the network
penetrates in deeper training layers. ResNet has been
implemented on the low resolution (32 × 32) image dataset
CIFAR 10 (Canadian Institute for Advanced Research) and
ImageNet 2012 (224 × 224) and has a top 5 error rate of 3.3%
(He et al., 2015; He et al., 2016; Ruiz 2018) The image size and
resolution here is important as this will directly correspond to the
feature map. The size of our trojan is small too. Hence a ResNet
model and stochastic gradient descent iterative algorithm (SGD)
becomes crucial to train our model. The ResNet34 structure is
summarized in Table 1 ResNet 34 Architecture.

When the deeper network begins to converge, a degradation
problem is revealed: as network depth increases, accuracy
becomes saturated and then rapidly degrades. Such
degradation is not caused by overfitting and adding more
layers to a deep network increase training error does not
improve the overall accuracy. The decline in training accuracy
demonstrates that not all systems are simple to converge. To
overcome this, a deep residual network instead of hoping that a
few stacked layers suit a desired underlying mapping directly,
they specifically let these layers fit a residual mapping.

The structure of the ResNet 34 consists of 33 convolutional
layers (Conv), batch normalization and rectified linear unit
(ReLU). A softmax function is applied to the final layer of the
ResNet. The output of the Residual block can be mathematically
represented as y � F(x)+x. Where x and y are the inputs and
outputs of the function and F is the residual function itself.
Feedforward neural networks with shortcut connections can
realize the formulation of F(x)+x. Shortcut connections are
those that skip one or more of the layers. Identity mapping is
performed by the shortcut connections, and their outputs are
added to the outputs of the stacked layers. When compared to its
plain counterpart, the ResNet network converges faster. Figure 2:
Overview of ResNet implementation.

ResNet34 is made up of one convolution and pooling phase
followed by four layers of similar actions. Each of the layers follow
the same pattern. ResNet performs such 3 × 3 convolution with a
fixed feature map dimension [64, 128, 256, 512] and bypass the
input after every two convolutions. It is important to note that the
width and height remain constant during the entire layer. The
dotted line represents the change in the dimension of the input
volume.

TABLE 1 | ResNet 34 architecture.

Layer name Output size 34 layer

Conv_1 Conv_2 112 × 112 7 × 7, 64, stride 2
56 × 56 3 × 3 max pool, stride 2

[ 3 × 3, 64
3 × 3, 64

] × 3

Conv_3 28 × 28 [ 3 × 3, 128
3 × 3, 128 ] × 4

Conv_4 14 × 14 [ 3 × 3, 256
3 × 3, 256 ] × 6

Conv_5 7 × 7 [ 3 × 3, 512
3 × 3, 512

] × 3

1 × 1 1 × 1 Average pool, 1000-days fc, softmax
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The implementation of these on the ImageNet 2012 model
begins with the resizing of the training data. The subtracted
image dataset is resized to 244 × 244 patch. The first phase on
the ResNet before entering general layer behavior is a block
Conv1 that consists of a convolution layer, batch
normalization and max pooling operation. The kernel size
used is 7 and the size of the feature map is 64. The output size
of the operation is 122 × 122. A batch normalization, which is
an elemental operation is then performed. The output volume
remains unaffected since it is an element wise operation.
Lastly, a max pooling operation of 3 × 3 size is used to get the
desired output size.

Padding is used on input layers to tweak the output layers to
match the output size. The operation of ResNet consists of several
repeating blocks. The 3 × 3 convolutions with batch
normalization and max pooling operation comprises of this
repeating block. The skip connection for varying input volume
is adjusted by increasing stride and performing a convolution and
pooling operation to match the input size of the following block.
This same procedure is repeated over the entire 34 layers
(Conv_2, Conv_3, Conv_4, Conv_5). The down sampling of
output volume is achieved by increasing stride over the layers
just like in plain architectures.

The identity shortcut or skip connection is done by bypassing
output volume to the addition operator. In case of the output
dimension not matching input, this shortcut operation performs
either a padding operation or convolution operation to ensure the
output size is not altered.

This reduction between layers is accomplished by increasing
the stride to 2 at the first convolution of each layer, rather than by
a pooling operation, as we are accustomed to seeing in down
samplers.

To ease the implementation of the algorithm in a
manufacturing setting, the deep learning model is trained over
fastai library. This library is an open source API based on
PyTorch. (Howard and Gugger, 2020; McClure, 2020). The
deep learning library in fastai can be useful to train algorithms
in an industrial setting since it uses a user friendly coding
environment. Since we are going to be using a transfer
learning approach to ease training the algorithm with limited
data, we have used a pre-trained PyTorch model to cut down on
training time. These pretrained models have been trained on
large, benchmarked dataset which are similar to our model.

Transfer Learning
Transfer learning is a machine learning approach where a pre-
trained model is used to train a new similar model. The benefit of
this method is that classifier models do not need to be rebuilt to
suit an isolated purpose. The key motivation of using a transfer
learning approach is the unavailability of a vast amount of
labelled data. Since there is little information on the physical
appearance of a hardware trojan, identification and labelling of
hardware trojans even by expert analysts is challenging. As more
and more hardware trojans are being benchmarked, this issue can
be resolved. (Shakya et al., 2017). Another advantage of using the
transfer learning approach is that the computing demand drops

FIGURE 2 | Overview of ResNet implementation.
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significantly. In a manufacturing environment, investing on
costly servers may not be considered prudent. In transfer
learning, the model carries the weights and features from the
previous training. This set up is known as the frozen model.

Next, to prevent unnecessary long training times the hyper
parameters, specifically learning rate was set with the one cycle
policy. (Smith 2018). By setting high learning rates, the model to
get more accuracy in less epochs can be developed. The learning
rate range test proposed by (Smith 2018), training begins with a
small learning rate which is increased gradually and linearly
throughout a pre-training run. This single run provides
valuable information like the maximum learning rate and the
network response over the range of learning rates. This
information can be used to find a range of learning rates
which can be used to train specific layers based on their
position in the unfrozen model. After training the last few
layers of the frozen model for ten epochs with the default
hyperparameters, the model is unfrozen to update the weights
with this differential learning rate. Next, based on the learning
rate range plot against the loss function is observed to find out the
right learning rate. This ensures that the architecture is fine tuned.

RESULTS

The image classifier was trained on the dataset as described above.
An augmented dataset consisting of 20% of the training dataset
was used for validating the model. The performance of the
classifier was evaluated by examining the confusion matrix.

The trained network classified the validation dataset in 3 main
types namely, hardware trojan, manufacturing defect and none of
these. The confusion matrix was plotted using the SciKit learn’s
metrics report (Sklearn.Metrics.Classification_Report — Scikit-
Learn 0.24.2 Documentation, 2021).

The diagonal elements of the confusion matrix represent the
number of points for which the predicted label is equal to the true
label. The non-diagonal elements represent any misclassification
by the network. Thus, for ideal performance, the classifier must
provide all the values in the diagonal elements and negligible in
the non-diagonal elements. Thus, the classifier has flagged 21
trojan instances, defect labels with 79 instances and all 98
instances of manufacturing variability of the validation dataset.
The resultant confusion matrix is presented in Figure 3
Confusion Matrix.

A true positive (TP) is the value that is predicted accurately in
the confusion matrix. These are the diagonal elements of the
confusion matrix. The true negatives (TN) are the values that are
negative and are correctly labelled as negative. False positives (FP)
are records that are predicted as positives but are in fact negative.
Similarly, false negatives (FN) are values which are predicted as
negative but are positives. The performance of the network and
resultant confusion matrix can be assessed based on the overall
sensitivity also known as true positive rate (TPR), specificity also
known as true negative rate (TNR). The positive predictive value
(PPV) is the indicator of the overall precision of the method. The
negative predictive value (NPV) is the measure of gauging
classifier performance for accurately flagging true negative
cases. The formulae to calculate each of these parameters is
represented in Table 2 Interpretation of Confusion Matrix.

The results for true positive rate (TPR), the true negative rate
(TNR), Positive predictive value (PPV), negative predictive value
(NPV), false positive rate (FPR) and overall accuracy (ACC) for
the Trojan class is showcased in Table 2 Interpretation of
Confusion Matrix. False positive rate (FPR) and false negative
rate (FNR) is used to understand classifier misrepresentation
percentage. These rates should be close to null.

DISCUSSION

Improvement in Accuracy
Based on the interpretation of the confusion matrix the proposed
methodology has accurately identified malicious modification
with 98.51% accuracy. The key focus of the method is to
effectively launch an image classifier with limited data. In the

FIGURE 3 | Confusion Matrix For the Trojan class, the TP value is 21. FN
value is 3, FP is 0, and TN is 177. The overall accuracy of the network is
98.51% with the True positive rate of the trojan class being at 87.5%.

TABLE 2 | Interpretation of confusion matrix.

Metric Formulae Value

Sensitivity/True positive rate (TPR) TP/(TP + FN) 0.875
Specificity/True negative rate (TNR) TN/(TN + FP) 1.00
Precision/Positive predictable value (PPV) TP/(TP + FP) 1.00
Negative predictive value (NPV) TN/(TN + FN) 0.983
False positive rate (FPR) FP/(FP + TN) 0
False negative rate (FNR) FN/(TP + FN) 0.125
Overall accuracy (TP + TN)/(TP+FP+FN+TN) 0.9851
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conducted study, the model was able to learn from a dataset with
only 117 instances of trojans out of 1,012 images. With more
labelled data, the accuracy of the method can be enhanced.
Another way of improving accuracy is by augmenting
available data (Shorten and Khoshgoftaar 2019). As mentioned
earlier, feature extraction requires training networks to have
deeper penetration. Use of alternative networks like ResNet 50
or ResNet100 can help enhance the feature representation.
However, this comes with the downside of increased training
time and need for abundant labelled data.

Improvement in Recognition of Hardware
Trojans
Optical detection of PCB defects using a deep learning
approach have been extensively studied (Deng et al., 2018)
(Dai et al., 2020) (Zhang et al., 2018). In the future, a
multiclass image classifier could potentially detect defect
types, multiple hardware trojan class, counterfeits with
greater precision using a single deep learning algorithm.
The study further highlights the need of benchmarking
hardware trojans and documenting the physical attributes
of the trojans can help train the classifier to detect and classify
hardware trojan with type and class. (Shakya et al., 2017)
(Salmani, Tehranipoor and Karri 2013). Further, conclusive
testing by performing a side channel analysis on the true
positive trojan boards can improve the coverage of detecting
hardware trojans. (Amelian and Borujeni 2018). This will

help reduce the redundancy of testing all the boards for
hardware trojans. Thereby, saving usable man hours and
making it a practical solution in creating a resilient
electronic supply chain.

Alternative Uses of Methodology
The use of deep learning is not limited just to recognizing
malicious chips in printed circuit boards. While the scope of
the paper limits the application to trojan detection, the
methodology can have multiple other applications like
automated quality monitoring (Shevchik et al., 2019), early
detection of terminal illness like Coronavirus (El Asnaoui and
Chawki 2020), detection of defects in steel rolls [Feng, Gao and
Luo 2021] to name a few areas.
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