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This paper outlines a novel sensor selection and observer design algorithm for linear time-
invariant systems with both process and measurement noise based on H2 optimization to
optimize the tradeoff between the observer error and the number of required sensors. The
optimization problem is relaxed to a sequence of convex optimization problems that
minimize the cost function consisting of theH2 norm of the observer error and the weighted
l1 norm of the observer gain. An LMI formulation allows for efficient solution via semi-
definite programing. The approach is applied here, for the first time, to a turbo-charged
spark-ignited engine using exhaust gas circulation to determine the optimal sensor sets for
real-time intake manifold burnt gas mass fraction estimation. Simulation with the candidate
estimator embedded in a high fidelity engine GT-Power model demonstrates that the
optimal sensor sets selected using this algorithm have the bestH2 estimation performance.
Sensor redundancy is also analyzed based on the algorithm results. This algorithm is
applicable for any type of modern internal combustion engines to reduce system design
time and experimental efforts typically required for selecting optimal sensor sets.

Keywords: engine, sensor selection, observer design, H2 optimization, semi-definite programming, turbo-charged,
exhaust gas recirculation, air management

1 INTRODUCTION

The control of fuel and air in spark-ignited engines has increasingly become a challenge with the
incorporation of turbo-charging, exhaust gas recirculation (EGR), valvetrain flexibility, and more
stringent emission regulations. To enable effective stoichiometric air-to-fuel ratio control, the engine
flow and compositionmust be accurately and robustly measured or estimated. The only viable option
is to use algorithms to estimate the engine mass flow and composition. Five difficulties have to be
taken into consideration for the engine air handling sensor and observer (i.e. estimator) design
problem: 1) nonlinear system dynamics; 2) measurement uncertainties, including sensor delays and
noise; 3) multivariate interactions; 4) engine variability for different operation conditions and 5) the
trade-off between estimation accuracy and sensor costs.

Previous studies in the field of engine air handling system management have focused on the
observer design based on pre-selected sensor sets (Wang, 2008; Simon and Garg, 2010; Chen and
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Wang, 2012; Rengarajan et al., 2018). However, considering the
increasing complexity of today’s engine systems and sensor
characteristics, the choice of optimal air handling sensor set is
not obvious; and it can be time-consuming and error prone if
‘guess and check’ experimental or simulation approaches are
used. With the increasing variety of available sensors, the
possible combinations of sensors will grow quickly. Brute-force
experimentation with different sensors is very expensive and
time-consuming, and may need to be redone even when there
are minor changes to the engine system or control strategies. In
order to effectively solve the problem, an algorithm for optimal
sensor selection and observer design for the engine air handling
system is outlined and demonstrated in this paper.

As described in more detail in the following paragraphs,
several mathematical methods have been developed to solve
the sensor selection problem, including greedy algorithms and
convex optimization. Greedy algorithms aim to find a global
optimum by making the locally optimal choice at each stage.
The solution computed by the greedy algorithm is not always
globally optimal. Convex optimization problems have the
property that any found local optimal will also be global.
While most formulations are nonconvex, sometimes it is
possible to convexify them with minimum or no impact on
the solution to take advantage of the solution properties as well
as of available solvers (Joshi and Boyd, 2008; Tropp, 2006; Luo
et al., 2010).

Sensor selection methods have been applied to various areas.
In Kalandros and Pao (1998), the authors proposed three sensor
selection algorithms for signal target tracking problems based on
different resource and performance metrics. In another paper
Kalandros et al. (1999), the authors explored the use of
randomization and a super-heuristic in multiple targets
tracking problem to improve any given sensor set solution via
random perturbation. That approach is more suitable for systems
with little structure and for which the cost of solution evaluation
is not high. In Hashemi et al. (2018), the authors studied a
randomized greedy algorithm for near-optimal sensor scheduling
in large-scale sensor networks. In Rao et al. (2015), a greedy
algorithm based on two submodular cost functions, the weighted
frame potential and the weighted log-det, was developed for the
sensor selection problem in non-linear measurement models with
additive normally distributed noise. Several sensor selection
algorithms based on convex optimization or relaxation have
also been applied to flexible structures. In Fardad et al. (2011),
Münz et al. (2014), Zare and Jovanović (2018), and Dhingra et al.
(2014), the weighed l1 norm (without considering measurement
noise) or l2 norm of the observer gain was used to represent the
sensor number, and minimized along with the H2 norm of the
estimation error. The optimization problem was solved via SDP
(Fardad et al., 2011; Münz et al., 2014), alternating direction
method of multipliers (ADMM) (Zare and Jovanović, 2018) and
proximal methods (Dhingra et al., 2014). In Chepuri and Leus
(2014), several functions of the Cramer–Rao bound (CRB) were
used as a performance measure and the sensor selection problem
was formulated to minimize the CRB functions and a sparse
selection vector. In Joshi and Boyd (2008), the authors computed
the optimal sensor set among candidate linear measurements

corrupted with normally distributed noises. The
maximum-likelihood estimation errors were used as the
performance evaluations.

In the application of engine sensor selection, methods include
experimentation-based sensor selection and algorithm-based
sensor selection. In Pekař et al. (2012), the best sensor
configuration for a heavy-duty engine was found based on
experimental results by testing each sensor design. In Mushini
and Simon (2005), the authors implemented a sensor selection
algorithm for aircraft gas turbine engine healthy parameter
estimation by minimizing the cost function of the estimation
error and financial cost via a greedy algorithm. In Suard et al.
(2008), the authors determined the best sensor configurations
among three candidate sensor configurations for air-fuel-ratio
control in a spark ignited engine. Different controllers were
designed for candidate sensor configurations. An objective
function incorporating the overall system cost and controller
performance as the optimization target was used, with solution
via a genetic algorithm. In Palmer et al. (2018), the authors
proposed a methodology for fault diagnosis sensor selection
based on Ds optimal FDI test design that maximized the
sensitivity of outputs to anticipated faults and applied it in a
diesel engine air handling system. The problemwas solved using a
heuristic method.

In the work described here, a simultaneous, coupled sensor
selection and observer design method for the air handling
system of the turbo-charged SI engine with EGR is proposed.
In a manner similar to the approach taken in (Fardad et al.,
2011; Münz et al., 2014), the strategy uses H2 optimization and
accounts for both process and measurement noise. The goal of
this algorithm is to definitively, and accurately, determine the
tradeoff between the necessary sensor number and the
accuracy of intake manifold oxygen fraction estimation. The
implemented cost function consists of the H2 norm of the
observer error and the weighted l1 norm of the observer gain.
The problem, once formulated, can be solved efficiently via
semi-definite programming (SDP). After selecting the optimal
sensor set, the algorithm computes the corresponding Kalman-
filter gain based on the selected sensor set. A method to estimate
the modeling errors based on the comparison of reference data and
modeling data is also proposed in this paper, enabling the
application of the sensor selection framework to physical systems.

The rest of the paper is organized as follows: The statement
of the sensor selection problem and its convex formulation;
The application of the algorithm on a spark-ignited (SI) engine
for intake manifold burnt gas mass fraction estimation for
medium/high-speed operating conditions; Conclusions;
Future work.

2 SENSOR SELECTION ALGORITHM
BASED ON H2 OPTIMIZATION

Considering the following linear continuous state space model:

_x � Ax + Bu + Bdud + Bww
y � Cx + Du + Ddud +Hv

(1)
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with the state variables x ∈ Rm, measured outputs y ∈ Rn, control
inputs u ∈ Rp, disturbance inputs ud ∈ Rs, unknown disturbance
related to model uncertainty w ∈ Rm, and sensor noise v ∈ Rn.
Both w and v are modeled as white noise. Bw ∈ Rm×m and
H ∈ Rn×n are diagonal magnitude matrices.

A Luenberger observer then takes the form:

_̂x � Ax̂ + Bu + Bdud + L(y − ŷ)
ŷ � Cx̂ + Du + Ddud

z � We � W(x − x̂) (2)

where L ∈ Rm×n is the observer gain, z ∈ Rq is the weighted error
and W ∈ Rq×m is the weighting matrix to address some errors
from all state errors.

By introducing the following two matrices:

~B
m×(m+n)
w � [Bm×m

w 0m×n ]
~H
n×(m+n) � [ 0n×m Hn×n ] (3)

the weighted error z can be formulated as:

z � W(sI − A + LC)− 1(~Bw − L~H)[w
v
] � G[w

v
] (4)

where the error system G is the transfer function matrix

between [wv] and z.

2.1 Cost Function
ForMIMO systems, theH2 norm is the impulse-to-energy gain or
steady-state variance of outputs in response to white noise
(Arzelier, 2008). Therefore, by minimizing the H2 norm of the
error system (4), the expected root-mean-square error (RMSE) of
the observer in response to white noise input excitation is
minimized. The H2 norm of the error system G in Eq. 4 is
expressed as:

‖G‖2 �
���������������������
E{ lim

t→∞

1
t
∫t

0
zT(t)z(t)dt}√

(5)

where E is the expectation operator.
Considering the observer gain matrix L, the corresponding jth

sensor measurement does not contribute to the state estimation
results if every element in the jth column of L is zero. In this case,
the absolute sum of the elements in jth column of L is also zero.
The number of sensors can be reduced by minimizing the non-
zero columns in L, which is the l0 norm of the row vector p ∈ R1×n

of absolute column sum of L, i.e.,
����p����0 � ∑n

j�1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ∑mi�1 ∣∣∣∣Lij∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣0.
In order to optimize the tradeoff between the observer

estimation error and the number of required sensors, a cost
function is defined as following:

J � (1 − α)‖G‖22 + α∑n
j�1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∑mi�1 ∣∣∣∣Lij∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0

(6)

where ‖G‖2 denotes the H2 norm of the error system or the
expected root-mean square weighted error, and α is the weighting
factor between 0 and 1, balancing the effect of observer error and
sensor number.

2.2 H2 Norm of the Observer Error
From Peet (2016), for a LTI system with a transfer function
G(s) � C(sI − A)− 1B, the following statements are equivalent:

(1) A is Hurwitz and ‖G‖22 (the power of H2 norm of the
impulse response) < c2.

(2) There exists a positive definite matrix P (i.e., P � PT_0)
such that

ATP + PA + CTC30
trace(BTPB)< c2 (7)

where the symbol 3 in the first inequality of Eq. 7 denotes the
negative definiteness of a matrix.

By applying Eq. 7 to system (4), the optimization problem for
the first target ‖G‖22 in Eq. 6 can be formulated as following:

min
L,P

trace((~Bw − L~H)TP(~Bw − L~H))
s.t(A − LC)TP + P(A − LC) +WTW30

P � PT_0

(8)

The optimization target and the first constraint in (8) are
bilinear matrix inequalities (BMI) and is thus not a convex
optimization problem. Therefore, they need to be converted to
linear matrix inequalities (LMI). A matrix S � PL (thus L � P−1S)
is defined and the first constraint in Eq. 8 can be written as the
following LMI:

ATP + PA − CTST − SC +WTW30 (9)

Via the Schur complement condition for positive semi-
definiteness (Chong and Zak, 2013), the following two
statements are equivalent:

(1) Symmetric matrix [ Δ1 Δ2

ΔT
2 Δ3

]d 0

(2) Δ3 � ΔT
3_0 and Δ1 − Δ2Δ−1

3 ΔT
2d 0

To apply the Schur complement condition to the optimization
target Eq. 8, we introduce a positive semi-definite matrix T,
i.e., T � TT_ 0. By substituting Δ1 � T , Δ2 � (P~Bw − S~H)T and
Δ3 � P, the following statement holds:

⎡⎣ T (P~Bw − S~H)T
P~Bw − S~H P

⎤⎦d 0, P � PT_0 (10)

iff

T − (P~Bw − S~H)TP−1(P~Bw − S~H)d 0, P � PT_0 (11)

The inequality in Eq. 11 can be rewritten as:

T − (P~Bw − S~H)TP−1(P~Bw − S~H)
� T − (P~Bw − S~H)TP−1PP−1(P~Bw − S~H)
� T − (P−1P~Bw − P−1S~H)TP(P−1P~Bw − P−1S~H)
� T − (~Bw − L~H)TP(~Bw − L~H)

(12)

Therefore, the following statement holds if condition (10) meets:
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trace(T)≥ trace((~Bw − L~H)TP(~Bw − L~H)) (13)

Therefore, the optimization problem in (8) can be rewritten as:

min
L,P,T

trace(T)
s.t. ATP + PA − CTST − SC +WTW30⎡⎣ T (P~Bw − S~H)T

P~Bw − S~H P
⎤⎦d 0

P � PT_0
T � TTd 0 (14)

where the root of trace(T) is the upper bound of the expected
weighted root-mean-square error z. In Eq. 8, the optimization
target is the H2 norm of the error system. In Eq. 14, the
optimization target is relaxed to the upper bound of the H2

norm. Here the direct optimization target is trace(T).

2.3 Weighted l1 Norm of the Observer Gain
Matrix
The second optimization target ∑n

j�1
���∑m

i�1
∣∣∣∣Lij����∣∣∣∣0 in Eq. 6 is non-

convex due to the existing of l0 norm. For such l0 norm
optimization problem, it is generally impossible to solve as the
solution usually requires an intractable combinatorial search
(Candes et al., 2008). As proposed in Candes et al. (2008), the
l0 norm term

���∑m
i�1
∣∣∣∣Lij����∣∣∣∣0 can be relaxed to a convex target by

using the weighted l1 norm, μ(k)j ∑m
i�1
∣∣∣∣Lij∣∣∣∣, where μ(k)j is the weight

of column j at iteration count k.

2.4 Optimization Problem
Using the lemma which is used and proved in Polyak et al.
(2013): given a matrix L ∈ Rm×n, the following statements are
equivalent:

(1) The jth column of L is zero.
(2) The jth column of S � PL is zero for any P_0.

Combine the above lemma with (14) and weighted l1 norm,
the optimization problem is formulated as following:

min
S,P,T

J � (1 − α)trace(T) + α∑n
j�1

μ(k)j ∑
i�1

m ∣∣∣∣Sij∣∣∣∣
s.t. ATP + PA − CTST − SC +WTW30⎡⎢⎢⎣ T (P~Bw − S~H)T

P~Bw − S~H P
⎤⎥⎥⎦d 0

P � PT_0
T � TTd 0 (15)

The optimization problem (15) can be solved by the CVX toolbox
(Grant and Boyd, 2015) iteratively. At each iteration, the

algorithm updates the weight factor μ(k)j � 1

ϵ+∑m

i�1|Sij|
. When μ(k)j

converges for all sensor j, i.e.,
∣∣∣∣∣μ(k+1)j − μ(k)j

∣∣∣∣∣< ϵ where ϵ is a

sufficiently small positive number, the iteration can be stopped.
Ideally, the jth sensor signal is not utilized for the state

estimation and should be removed if the jth column of the
observer gain matrix L is zero (Münz et al., 2014). Similarly,
for a properly scaled system, the signal from sensor(s) jwith small∑m

i�1
∣∣∣∣Lij∣∣∣∣ will have very little impact on the estimation results and

thus can be removed. However, it is hard to quantify the threshold
of ‘small’ observer gain and decide the number of sensors that
need to be removed. Instead of directly comparing the observer gain

of the sensors, the value of∑n
j�1μ

(k)
j ∑m

i�1
∣∣∣∣Sij∣∣∣∣, representing the relaxed

non-zero column number in the observer, is checked for every
optimization result and used to decide the number of necessary

sensors.∑n
j�1μ

(k)
j ∑m

i�1
∣∣∣∣Sij∣∣∣∣ is rounded to its nearest integer q, which is

FIGURE 1 | Engine architecture and candidate sensor placements.
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used as the number of selected sensors. For instance, if q is 3 for an
optimization result, then the sensor(s) with the first three largest∑m

i�1
∣∣∣∣Lij∣∣∣∣ are the selected optimal sensors.

After computing the optimal sensor set, set α to 0 and remove
the rows in C corresponding to unneeded sensors. Substitute α �
0 and the modified C into the optimization algorithm (15) again
to calculate the observer gain matrix L � P−1S based only on the
selected optimal sensor combination.

3 ALGORITHM APPLICATION ON A
TURBO-CHARGED SI ENGINE MODEL FOR
AIR HANDLING SYSTEM SENSOR
DESIGNS

In this section, the proposed sensor selection algorithm is
applied to a turbo-charged SI engine utilizing EGR. The goal
of the sensor design is to choose the optimal sensor
combination for accurately estimating the intake manifold
gas composition. More specifically, the desired outcome is to
quickly be able to determine the tradeoff between estimated
intake manifold gas composition estimation error and the
number of sensors.

The engine architecture is shown in Figure 1. For illustrative
purposes, four available sensors are considered as candidates as
shown in Table 1. A mass air flow sensor for inlet air (MAFa) can
be placed upstream of the air and low pressure (LP) EGR
confluence point, to measure the inlet air. A mass air flow
sensor for high pressure flow (MAFh) can be placed
downstream of the charge air cooler (CAC) to measure the
cooled compressor mass flow rate. An EGR delta pressure
sensor (EGR DP) can be located in the LP EGR valve to
measure the LP EGR mass flow rate. Another option is a mass
air flow sensor (MAF) put downstream of the air and LP EGR
confluence point, but before the compressor, to measure total
compressor inlet mass flow rate.

3.1 Control-Oriented State-Space Engine
Model
The model is a mean-value engine model based on Eriksson and
Nielsen (2014), Kocher et al. (2012), Van Alstine et al. (2013),
Stricker et al. (2014).

The model has 8 inputs, 1 disturbance input and 20 states as
shown in Table 2–4, respectively. The nonlinear dynamic model
equations can be written as follows and the detailed governing
equations are listed in the Supplemental Material

_x � f (x, u, ud) (16)

Taking the actuator and sensor response times into
consideration, states x14 to x20 are added. First-order actuator
responses are considered for the throttle valve, LP EGR valve and
waste-gate. The following first-order approximation is used for
the actuator and sensor dynamics:

_x � x0 − x
τ

(17)

where x0 is the command actuator input or physical expressions
of sensed variables without delay, and τ is the time constant.

In this enginemodel, the valvemass flow rate outputs are modeled
by the following orifice equation (Eriksson and Nielsen, 2014):

TABLE 1 | Available sensors.

Sensor Physical quantity Accuracy (%) Response time

MAFa Inlet air flow (EGR. Up) 4 30 ms
MAFh Comp. Flow (CAC. Dn) 2 50 ms

30 ms (1,000 rpm)
EGR DP EGR flow 7 20 ms (2,000 rpm)

10 ms (4,000 rpm)
MAF Comp. Flow (comp. Up) 4 30 ms

TABLE 2 | State variables for the engine model.

State Variable Description Units

x1 Pbm Boost manifold pressure Pa
x2 Pim Intake manifold pressure Pa
x3 Pem Exh. Manifold pressure Pa
x4 Tbm Boost manifold temperature K
x5 Tim Intake manifold temperature K
x6 Tem Exh. Manifold temperature K
x7 ωtc Turbo-charger speed rpm
x8 Fub,bm Boost manifold unburnt gas fraction /
x9 Fb,bm Boost manifold Burnt gas fraction /
x10 Fub,im Intake manifold unburnt gas fraction /
x11 Fb,im Intake manifold Burnt gas fraction /
x12 Fub,em Exh. Manifold unburnt gas fraction /
x13 Fb,em Exh. Manifold Burnt gas fraction /
x14 Athr Effective throttle valve area m2

x15 Aegrl Effective LP EGR valve area m2

x16 Dwg Waste-gate diameter m
x17 ~Winlet Inlet air flow measurement kg/s
x18 ~Wcomp CAC downstream flow measurement kg/s
x19 ~Wegrl LP EGR valve flow measurement kg/s
x20 ~Wcomp,up Comp. Upstream flow measurement kg/s

TABLE 3 | Input variables for the engine model.

Input Variable Description Units

u1 Acmd,thr Cmd. Effective throttle area m2

u2 Wfuel Fueling rate kg/s
u3 Dcmd,wg Cmd. Waste-gate diameter m
u4 Acmd,egrl Cmd. Effective LP EGR valve area m2

u5 IVO Intake valve open CAD
u6 IVC Intake valve close CAD
u7 EVO Exh.Valve open CAD
u8 EVC Exh.Valve close CAD

TABLE 4 | Disturbance input variables for the engine model.

Disturbance input Variable Description Units

ud1 Ω Engine speed rpm

Frontiers in Mechanical Engineering | www.frontiersin.org April 2021 | Volume 7 | Article 6119925

Zhang et al. Sensor Selection and Observer Co-Design

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


W � Aeff
Pin

�
c

√����
RTin

√ f(Pout

Pin
)

f(Pout

Pin
) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

����������������������
2

c − 1
⎡⎢⎢⎢⎣(Pout

Pin
)2

c

− (Pout

Pin
)c+1

c ⎤⎥⎥⎥⎦√√

if (Pout

Pin
)≥( 2

c + 1
) c

c−1

���������
( 2
c + 1

)c+1
c−1

√√

if (Pout

Pin
)≤( 2

c + 1
) c

c−1

(18)

where γ is the gas specific heat ratio,Aeff is the effective valve area,
Pout is the downstream pressure, Pin and Tin are the upstream
pressure and temperature. A virtual flow sensor, which is
developed based on speed-density equation, can be used for
estimating the cylinder charge flow rate. Figure 2 shows the
comparison of the linear model estimated charge mass flow rate
and the GT-Power reference. The maximum error for the virtual
flow sensor is within ±5.1%.

The nonlinear model is linearized at the steady-state
(xe, ue, ude, ye) of 3200 rpm engine speed, 60° throttle valve
angle, 11.6 mm waste-gate diameter and 10° LP EGR valve
angle. All of the valves are butterfly valves. The equilibrium
points of system states x1 to x20 are directly obtained from
GT-Power simulation results.

The nominal model is linearized into the following format:

_x � Aδx + Bδu + Bdδud
δy � Cδx + Dδu + Ddδud

(19)

where δx � x − xe, δu � u − ue, δud � ud − ude, δy � y − ye.
An observer is designed from the linear state-space model as

follows. The state-space representation is a well-known practice
to capture the system dynamics for its effective computation and
real-time implementation. The observer is a linear dynamic
system to correct the model estimation errors from
measurements of the inputs and outputs of the real system.

_̂x � Aδx̂ + Bδu + Bdδud + L(δy − δŷ)
δŷ � Cδx̂ + Dδu + Ddδud

(20)

In simulation results that follow, the commanded engine
throttle angle and number of firing cylinders are fixed as their
linearization points. As studied in Rivas Perea (2016), a 11.5%
brake→specific fuel consumption (BSFC) reduction and 4.5%
absolute indicated efficiency improvement can be achieved by
introducing 10% cooled EGR in a 2L, 4-cylinder, turbo-charged,
direct injected SI engine at 3000 RPM part load conditions.
Considering the fact that EGR tolerance decreases with the
increasing engine speed (Francqueville and Michel, 2014), for
an engine operation speed range of 2,400–4000 RPM, the waste-
gate and LP EGR valve are operated as shown in Figure 3, to vary
the EGR ratio within 1.5–11%, which is a helpful level for the SI
engine to improve fuel efficiency and keep combustion stability.
Figure 4 shows the indicated mean effective pressure (IMEP) of
the engine for the drive cycle (per Figure 3), which demonstrates
the implementation of the proposed sensor selection algorithm
for medium/high-speed operating conditions.

3.2 Unknown Disturbance
The process noise Bww andmeasurement noiseHv (per Eq. 1) are
two necessary parameters to describe model and sensor errors.
Incorrect description of the noise could result in significant
worsening of estimation performances (Duník et al., 2017) and
even the failure of the proposed sensor selection framework.
Typically, the noise error covariance can be estimated by
experimental tuning or computational methods (Duník et al.,
2017; Kost et al., 2018; Solonen et al., 2014; Miran et al., 2019).
The purpose of this section is to provide a simple and quick noise
estimation method for the engine system based on experimental
data to avoid repeated tuning work or complex computations.
The sensor selection framework works well for the engine system
with the diagonal noise covariance matrix estimated by the
proposed method.

To implement the proposed sensor selection algorithm, the
actual system is expressed as a linear state-space model with
uncertainty represented by additive errors:

_x � δ _x � Aδx + Bδu + Bdδud + Bww (21)

where w is zero-mean unitary white noise and BT
wBw is the process

noise covariance matrix. The unknown disturbance Bww comes
from the un-captured dynamics and model linearization errors.
In this application, Bw is assumed to be an diagonal matrix.

The modeling error Bww is estimated by fitting the
difference between the actual _x and the linear model
estimated _x as follows:

FIGURE 2 | Engine cylinder charge flow rate estimation.
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FIGURE 3 | Engine operation conditions (A): engine speed and waste-gate (B): engine speed and LP EGR valve.

FIGURE 4 | Engine operation conditions: engine IMEP.

FIGURE 5 | Unknown disturbance estimation for boost manifold
pressure: Δ _xmodel,1.

FIGURE 6 | Unknown disturbance estimation for exhaust manifold
pressure: Δ _xmodel,3.

FIGURE 7 | Unknown disturbance estimation for turbocharger speed:
Δ _xmodel,7.
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Bww � _xGT − (AδxGT + BδuGT + Bdδud,GT) � Δ _xmodel (22)

where the values of the variables (δxGT , δuGT , δud,GT) are from the
GT-Power simulation result which is used as the truth-reference,
and _xGT is the derivative of xGT .

Figures 5–7 show the unknown disturbance plots for boost
manifold pressure x1, exhaust manifold pressure x3 and
turbocharger speed x7, respectively. The errors Δ _xmodel,1,
Δ _xmodel,3, and Δ _xmodel,7 are calculated based on Eq. 22 where
the data of states xGT , inputs uGT and disturbance inputs ud,GT
directly comes from the GT-Power simulation result for the drive
cycle in Figure 3.

An initial estimation of the process noise is the standard
deviation of Δ _xmodel in Eq. 22. Considering the fact that non-
normal noise (e.g. heavy-tailed or asymmetric) may not be well-
represented by the first two moments (the mean and the standard
deviation) Kost et al. (2018), the initial estimated process noise is
then tuned based on its higher moments, i.e., skewness and
kurtosis, to better represent the modeling errors.

3.2.1 Skewness Correction for Unknown Disturbance
Estimation
The skewness c1 of the error Δ _xmodel is first calculated as follows
to evaluate the asymmetry of the distribution and determine
which Bw(i, i) estimation equation is used for each state:

c1,i �
1
N∑N

k�1(Δ _xmodel,i(k) − μi)
σ3i

(23)

where μi and σ i are the mean value and the standard derivation of
Δ _xmodel,i, respectively. μi and σ i are defined as follows:

μi �
1
N
∑N
k�1

Δ _xmodel,i(k)

σ i �

��������������������
1
N
∑N
k�1
(Δ _xmodel,i(k) − μi)2

√√ (24)

where N is the number of sampled points.
The positive skewness values mean that the data is skewed to

the right (right-tail), and negative values suggest skewing to the
left (left-tail) (Blanca et al., 2013). The larger the absolute
skewness value is, the more significant the asymmetry is. For
the states where the error Δ _xmodel,7 has small skewness (per
Figure 6), the asymmetry is neglected and the unknown
disturbance term Bw(i, i) is estimated by the following equation:

Bw(i, i) � σ(i) (25)

For the states where the error Δ _xmodel,i distributions have
large skewness, the asymmetry should not be neglected when
estimating the unknown disturbance. If the skewness c1,i and
the mean value μi have the same sign, the unknown
disturbance of the state xi is estimated by the subtraction
of the standard deviation σ i and the absolute mean value μi
(per Figure 5), otherwise the unknown disturbance is
estimated by the sum (per Figure 7). The condition in Eq.
26 is to account for both of the asymmetry and non-zero mean

error distributions. For instance, if the mean is positive and
the skewness is negative (per Figure 7), the error has a positive
bias and the majority of the error are even more positive than
the bias. In this situation, the standard deviation may under-
estimate the error effect and thus we re-evaluate by adding the
positive bias.

Bw(i, i) � σ i −
∣∣∣∣μi∣∣∣∣ if c1,iμi > 0 (26a)

Bw(i, i) � σ i +
∣∣∣∣μi∣∣∣∣ if c1,iμi < 0 (26b)

3.2.2 Kurtosis Correction for Unknown Disturbance
Estimation
The excess kurtosis c2 of the error Δ _xmodel distribution defined as
follows is then calculated to evaluate the outliers of the
distribution and determine the correction made to the Bw(i, i)
term:

c2,i �
1
N∑N

k�1(Δ _xmodel,i(k) − μ(i))4
σ4i

− 3 (27)

For the states which have negative excess kurtosis, the unknown
disturbances have more data distributed outside the region of the
peak than a normal distribution. The more negative the excess
kurtosis is, the more outliers the distributions will have. When the
excess kurtosis is large, Eqs 25, 26 without considering the extreme
error distributions may not be a proper way to estimate the
unknown disturbance. Therefore, a correction is made to the
unknown disturbance estimations of the states which have excess
kurtosis lower than −1 (per Figure 5) by the following equation:

Bw(i, i) � Bw0(i, i)
∣∣∣∣c2,i∣∣∣∣ (28)

where Bw0 is the modeling error estimated by Section 3.2.1.
For the states x14 to x20 which represent the delayed actuator

and sensor responses, the unknown disturbance terms Bw(i, i) are
set as 0. The details of Bw(i, i) estimation for each state is listed in
Supplemental Material.

3.3 Measurement Noise
The diagonal measurement noise covariance matrix H is
defined as:

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 4%δWinlet,max 0 0 0

0 2%δWcomp,max 0 0
0 0 7%δWegrl,max 0
0 0 0 4%δWcomp,up,max

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

where sensor accuracy data comes from Table 1 and δWmax is the
maximum flow rate deviation with respect to its
linearization point.

3.4 Sensor Selection Results
The sensor selection algorithm is applied to the scaled linear
system. This is to eliminate the effect of magnitude differences of
measurements.

Table 5 shows the optimal sensor set computed by the sensor
selection algorithm (per Section 2) for different sensor number
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constraints. The iterative parameter ε is set as 1e−3 for single and
two-sensor combinations or 1.2e−2 for three-sensor
combinations. The trace(T), representing the upper power
bound of the expected estimation RMSE, is calculated by Eq.
15 when setting α � 0 for the normalized system. The upper
bound of the expected RMSE E{RMSE}ub and the expected RMSE
E{RMSE} for the actual system can be expressed, and related as
follows:

E{RMSE}ub ≥ E{RMSE}
E{RMSE}ub � δx11,max

�������
trace(T)√

E{RMSE} � δx11,max

��������������������������
trace((~Bw − L~H)TP(~Bw − L~H))√ (30)

where δx11,max � max(x11 − xe,11) is the scaling parameter of the
intake manifold burnt gas fraction x11. It can be noticed that
E{RMSE}ub is a very tight upper bound of E{RMSE} for this
application as shown in Table 5.

The algorithm identifies the EGR DP sensor as the best sensor
if only one single can be used. When two sensors are used, the
optimal sensor set becomes EGR DP and MAFa, which measures
the inlet air mass flow rate before the EGR joint (per Figure 1).
The optimal three-sensor set combines EGR DP, MAFa
and MAFh.

Different sensor sets with their corresponding observers are
tested on the reference engine model in GT-Power. The four
candidate sensors (per Table 1 and Figure 1) are placed in the
GT-Power model. Per Table 1 data, these four GT-Power outputs
are filtered with first-order functions described in Eq. 17 and
corrupted by measurement noise before being sent to the

observers to account for sensor noise. The GT-Power and
observer simulation structure is shown in Figure 8. The
observer gain for each sensor set is computed by the
optimization (15) with α � 0. The real-time inputs of the
engine actuators (per Table 3 and the engine speed are known
to the observer. The GT-Power cycle-averaged intake manifold
burnt gas fraction is used as the truth-reference to validate the
estimation results. RMSE of the intake manifold burnt gas mass
fraction estimation for each sensor set is calculated from 3.3s to
the end of the simulation to eliminate the effects of initial
conditions.

3.4.1 Single Sensor Sets
Figure 9 shows the estimation results of intake manifold burnt
gas mass fraction when using different single sensor sets. As
shown in Figure 9A, the EGR DP sensor has the most accurate
estimation results at every step. Considering the overall
estimation performance, the EGR DP sensor is the most
accurate single-sensor option since it has the smallest root-
mean-square error (RMSE), 0.498%, over the entire
simulation. Without using any sensor, the maximum absolute
estimation error is 1.744%. With the computed optimal sensor
EGR DP, the maximum error is reduced to 1.014%, which is a
42% improvement compared to the model-only estimated result.
The maximum errors for single MAFa sensor, MAFh sensor and
MAF sensor are 1.684, 1.724 and 1.724%, respectively. Figure 9B
shows the transient tracking performance of intake manifold
burnt gas mass fraction when using different single sensor sets.
Per Figure 9B, EGR DP sensor has the best tracking performance

TABLE 5 | Sensor selection results.

Sensor Number Optimal sensor set 1000α ∑n
j=�1μ

(k)
j ∑n

i=�1
∣∣∣∣Sij
∣∣∣∣ trace(T) when α � 0 E{RMSE}ub E{RMSE} RMSE (simulation)

0 / / / 0.02020 0.894% 0.894% 0.947%
1 EGR DP 1.5 0.9917 0.01552 0.785% 0.785% 0.498%
2 EGR DP, MAFa 0.65 1.9816 0.01290 0.715% 0.715% 0.369%
3 EGR DP, MAFa, MAFh 0.022 2.5922 0.01283 0.713% 0.713% 0.367%
4 EGR DP, MAFa, MAFh,MAF 0 3.9361 0.01283 0.713% 0.713% 0.367%

FIGURE 8 | Diagram of GT-Power and observer simulation structure.
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during the transient change. MAFa sensor is slightly better than
MAFh sensor and MAF sensor. Even though the upstream
compressor flow sensor MAF has a shorter response time than
the downstream compressor flow sensor MAFh (per Table 1),
there is few difference between the tracking transient
performance of these two sensors (per Figure 9B).

As shown in Table 6, the RMSE for a single MAFa sensor, a
single MAFh sensor and a single MAF sensor are 0.909, 0.935 and
0.935%, respectively. This indicates that if the EGR DP sensor
fails, the next sensor the engine should select is the MAFa sensor
based on their trace (T) and E{RMSE}ub calculations. Though the
MAFh sensor has slightly lower trace (T) and E{RMSE}ub than the
MAF sensor, their estimation performances are the same.

Figure 10 shows the histograms of different single sensor sets’
estimation errors. Compared to the optimal sensor EGR DP, the
error distributions of the other three sensors are more spread out.

3.4.2 Two-Sensor Sets
The optimal two-sensor set computed by the sensor selection
algorithm (per Section 2) is the combination of the EGR DP
and MAFa sensors. This is verified in the coupled GT-Power/
Observer simulation (per Figure 8). As shown in Figure 11, the
computed optimal sensor set has the smallest estimation error for
almost every step. Comparing the overall estimation performance of
the optimal sensor set with the other five combinations, the optimal
one has the lowest RMSE.With the computed optimal sensor set, the
maximum error is reduced to 0.754%, which is 57% improvement
compared to the model estimated result. The maximum estimation
error is 0.794% for the combination of EGRDP sensor and upstream
compressor flow sensor MAFh, and is 0.804% for the combination
of EGR DP sensor and downstream compressor flow sensor MAF.
For the combinations of MAFa sensor + MAFh sensor, MAFa
sensor + MAF sensor, the maximum estimation errors are both

1.564 and 1.594%.When only two compressor flow sensors are used,
the maximum error is up to 1.724%.

In Table 7 and Figure 12, the simulated RMSE for different
two-sensor set combinations monotonically increases with
increasing E{RMSE}, as expected. The sensor sets with the first
three lowest E{RMSE} all include the EGR DP sensor. Though the
algorithm computes the combination of EGRDP sensor andMAFa
sensor as the optimal two-sensor set, the combination of EGR DP
sensor + MAFh sensor and EGR DP sensor + MAF sensor have
similar estimation performances as the optimal one, as shown in
Figure 11. These two combinations have very close E{RMSE} as
well as the RMSE as shown in Table 7. When EGR DP is not
considered in the two-sensor combination, such as the combination
of MAFa sensor and MAFh sensor, there is a large increase in
E{RMSE} as well the simulated RMSE. Additionally the two-sensor
sets without the EGR DP sensor even have larger estimation errors
than single EGRDP sensor. This indicates that under this operation
condition, if only two sensors are allowed, the combination should
include EGR DP sensor, and an EGR DP-only strategy would be
preferred over a two-sensor strategy which did not include the EGR
DP sensor. The optimal selection of the sensor in addition to the
EGR DP sensor is MAFa sensor. The MAFh sensor may be
considered as a backup selection to the MAFa sensor.

FIGURE 9 | Intake manifold burnt gas mass fraction estimation when only using one sensor (A): the entire drive cycle (B): transient performance (500 ms zoomed).

TABLE 6 | Single sensor set.

Sensor
Set

trace(T)
when α = 0

E{RMSE}ub E{RMSE} RMSE
(simulation)

EGR DP 0.01552 0.785% 0.785% 0.498%
MAFa 0.01870 0.861% 0.861% 0.909%
MAFh 0.01907 0.870% 0.870% 0.935%
MAF 0.01911 0.871% 0.871% 0.935%
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Figure 13 shows the histograms of different two-sensor
combinations estimation errors. As shown, the best three two-
sensor combinations have the estimation errors distributions
closer to 0.

3.4.3 Optimal Sensor Sets
Figure 14 show the estimation results of intake manifold burnt
gas mass fraction Fb,im when using optimal sensor sets with
different sensor numbers. As shown in Figure 14, the optimal
two-sensor set has better estimation performance than the
optimal single sensor. When more than two sensors can be
used, all the optimal sensor set options have very similar
estimation performances. Based on the data shown in Table 5,
the optimal single sensor EGR DP reduces the RMSE by 47.4%
compared with model-only estimated results. The optimal
two-sensor option further reduces the RMSE by 25.9% based
on the optimal single sensor estimation performance. Comparing
the RMSE of the optimal three-sensor set, 0.367%, with the RMSE
of the optimal two-sensor set, 0.369%, there is only 0.5% accuracy
improvement. When the fourth sensor is added to the optimal
three-sensor set, there is no improvement for the RMSE. In
Figure 15, the computed E{RMSE} and trace(T) have similar
trends. Using the optimal single sensor reduces the tarce(T) by
23.2% and E{RMSE} by 12.2% compared with model-only

FIGURE 10 | Histograms of Intake manifold burnt gas mass fraction estimation error when only using one sensor.

FIGURE 11 | Intake manifold burnt gas mass fraction estimation when
using two sensors.

TABLE 7 | Two-sensor combinations.

Sensor Set trace(T)
when α = 0

E{RMSE}ub E{RMSE} RMSE
(simulation)

EGR DP + MAFa 0.01290 0.715% 0.715% 0.369%
EGR DP + MAFh 0.01322 0.724% 0.724% 0.388%
EGR DP + MAF 0.01331 0.727% 0.727% 0.391%
MAFa + MAFh 0.01806 0.847% 0.847% 0.825%
MAFa + MAF 0.01824 0.851% 0.851% 0.849%
MAFh + MAF 0.01905 0.870% 0.870% 0.935%
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estimation results. From the optimal single sensor to the optimal
two-sensor set, the trace(T) and E{RMSE} have 16.9 and 8.9%
reductions, respectively. From the optimal two-sensor set to the
optimal three-sensor set, the trace(T) is only lowered by 0.5%
and E{RMSE} is lowered by 0.3%. From the optimal three-sensor

set to the all-sensor set, both trace(T) and E{RMSE} remain the
same. Compare the trends of E{RMSE} (or trace(T)) and
simulated RMSE, both E{RMSE} (or trace(T)) and simulated
RMSE have relative large reductions from model-only case to
single sensor case to two-sensor case and small decreases when
adding the third or fourth sensor. In this way, E{RMSE} or
trace(T) can be a useful indicator of showing the necessity or
redundancy when adding additional sensors.

The sensor selection results indicates that though increasing
sensor number reduces RMSE, the added sensor(s) brings in very
small improvements of the estimation performance when number of
sensors is higher than two. Based on the estimation error
requirement, it may be worth using a single EGR DP sensor or

FIGURE 12 | RMSE vs. trace(T) for two-sensor combinations.

FIGURE 13 | Histograms of intake manifold burnt gas mass fraction
estimation error when using two sensors.

FIGURE 14 | Intake manifold burnt gas mass fraction estimation when
using optimal sensor sets.

FIGURE 15 | RMSE and trace(T) vs. sensor number for optimal
sensor sets.
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adding a second sensorMAFa in addition to a single EGRDP sensor,
but it may not be worth spending more money on adding the third
or fourth sensor for the intake manifold gas composition estimation.

Figure 16 shows the histograms of different optimal sensor
combinations estimation errors. It can be seen that with the
increasing of sensor number, the RMSE distribution is narrowed
down and has smaller peaks at large errors.

3.4.4 Additional Discussion
The difference between the expected RMSE E{RMSE} and the
simulated RMSE is shown in Tables 5–7, as well as Figures 12,
15. This could be explained by: (i) The computation of the
expected RMSE, E{RMSE} (via Eq. 24), is based on the
assumption that the process noise is zero-mean white noise.
However, the actual unknown disturbance term _xGT is not
normally distributed for the example testing cycle. Since this
paper focusing on selecting the optimal sensor set among
candidate sensors for the engine system rather than studying
the differences between the engine model and actual system, a
quick and simple approximation method of the process noise
described in Section 3.2 was used. The valuable information
provided by the sensor selection algorithm is the sequence and
relative increase/decrease among different sensor sets. Further
studies could focus on a more appropriate unknown disturbance
estimation method, but this would not be expected to change the
sensor selection results and thus was not the study purpose; (ii)
The measurement noise is approximated by the product of the
maximum deviation of the sensor measurement with respect to
its linearization point and the accuracy (per Section 3.3). This
simple approximation would result in some differences between
the expected RMSE E{RMSE} and the simulated RMSE due to the

reason that the actual sensor measurement deviations are not
symmetric about the linearization points, but would not be
expected to change the sensor selection results. Further studies
could focus on a more appropriate measurement noise estimation
method based on analytical approaches.

4 CONCLUSION

This paper outlines a sensor selection and observer deign
algorithm based on H2 optimization while considering process
and measurement noise. The approach is (1) implemented to an
advanced turbo-charged spark-ignited engine architecture using
exhaust gas circulation; and (2) validated on a high fidelity engine
simulation in GT-Power. The objective of the sensor selection +
observer design algorithm is to minimize the estimation error and
the required sensor numbers. The optimization problem is
convexified and solved via SDP. A method to estimate the
unknown model uncertainties was also developed. The high
fidelity simulation results verified that the optimal sensor sets
computed by the algorithm had the best estimation
performances. Sensor redundancy was also analyzed based on
the computation results. This algorithm reduces the computation
time and experimental efforts of selecting optimal sensor sets.

5 FUTURE WORK

The future work of this algorithm study can involve the
estimation of other engine key parameters and observer
designs; other engine operation conditions analysis.

FIGURE 16 | Histograms of intake manifold burnt gas mass fraction estimation error when using optimal sensor sets.
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