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With their unparalleled mass sensitivity, enabling single-molecule mass spectrometry,
nanomechanical resonators have the potential to considerably improve existing sensor
technology. Vertical pillar resonators are a promising alternative to the existing lateral
resonator designs. However, one major obstacle still stands in the way of their practical
use: The efficient transduction (actuation & detection) of the vibrational motion of such tiny
structures, even more so when large arrays of such nanopillars need to be driven. While
electrostatic forces are typically weak and, on the nanoscale even weaker when compared
to a cantilever-like stiffness, it is worth revisiting the possibility of electrostatic actuation of
nanomechanical pillars and other nanomechanical structures. In this paper, these forces
produced by an external field are studied both analytically and numerically, and their
dependencies on the geometric dimensions are discussed. Furthermore, the expected
deflections for different configurations of pillar geometries are calculated and compared.

Keywords: nanoelectromechanical systems, nanopillars, electrostatics, nanomechanical system, transduction,
nanorods

1 INTRODUCTION

Microelectromechanical systems (MEMS) have become an integral part of modern consumer
products and professional medical devices, and as such have become omnipresent helpers in our
lives. As an example, there are more than one dozenMEMS parts contained in a modern smartphone
alone, including gyroscopes, microphones, filters, switches, oscillators, accelerometers, auto focus
actuators, electronic compass, pressure sensors, proximity sensors, fingerprint sensor, etc. The
sensitivity and energy efficiency of micromechanical sensors typically improve with downscaling,
which has led to the development of nanoelectromechanical systems (NEMS) with feature sizes
below 1 μm in two dimensions. The first NEMS were developed at the end of the last century and
consisted of nano-scale mechanical silicon-based resonators (Cleland and Roukes, 1996). The
mechanical oscillations of such resonators are highly sensitive to perturbations coming from the
environment. This makes them excellent sensors in particular for mass sensing, since the mass
responsivity inversely scales with the effective mass of the resonator (Schmid et al., 2016). Carbon
nanotube resonators with an ultimately low effective mass have reached yoctogram sensitivity
(Chaste et al., 2012). Besides such fundamental research, nanomechanical resonators are promising
for the application in protein (Naik et al., 2009; Hanay et al., 2012; Sage et al., 2015) or aerosol mass
spectrometry (Schmid et al., 2013), offering, for the first time, single-molecule sensitivity. Despite the
unparalleled mass sensitivity of nanomechanical resonators, their application as practical sensors has
remained challenging. The typically used horizontal nanomechanical sensors are sensitive to the
landing position of the mass along their length. This requires a sophisticated dual-mode operation of
the first and second normal mode (Naik et al., 2009; Dohn et al., 2010; Schmid et al., 2010), which
significantly complicates the sensor design. Vertical nanomechanical pillar resonators constitute a
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promising design alternative with all the advantages of having a
low mass. And in contrast to horizontal resonator designs, the
mass loading happens at the tip of the pillars which renders dual-
mode operation unnecessary.

The efficient transduction (actuation & detection of
mechanical motion) of NEMS has generally remained a
challenge, for pillars in particular. Typical techniques used
to transduce nanomechanical resonators, such as
magnetomotive (Cleland and Roukes, 1996), piezoelectric
(Villanueva et al., 2011), resistive (Li et al., 2007), and
dielectric polarization-based (Schmid et al., 2006;
Unterreithmeier et al., 2009; Faust et al., 2012) techniques
are not well suited to transduce the vertical vibration of pillars.
Optical detection of mechanical motion is the most sensitive
technique available. Recently it was shown that the vibration of
vertical nanowires can be readily detected optically (Molina
et al., 2020). When the vertical nanowires are situated at the
slope maximum of the Gaussian light beam, the displacement
of the light-scattering nanowires cause a modulation of the
reflected light. A similar method has been used to detect the
lateral motion of nanoparticles situated inside a Gaussian
beam (Chien et al., 2020). A different approach relevant for
this paper is to produce pillar dimers (Sadeghi et al., 2017),
which allow for a plasmonic optical readout as presented with
nanomechancial string resonators (Thijssen et al., 2015).

The remaining challenge is how to efficiently drive such
nanomechanical pillar dimers. With typical resonance
frequencies >10 MHz the actuation with an external
piezoelectric shaker becomes ineffective. In this paper, we
propose to drive pillar dimers electrostatically by means of an
external electrostatic field. We study the case of pillar dimers
featuring a conductive tip, e.g., a plasmonic gold tip (Sadeghi
et al., 2017), or pillars that are made of a conductive material, such

as gold (Kabashin et al., 2009) (Figure 1). The generation of local
forces between two electrically isolated floating electrodes via the
application of an external electrostatic field constitutes an
interesting transduction scheme for NEMS. Besides the here
presented specific transduction scheme of conductive
nanopillars, floating electrodes are often a given design
constraint, e.g., in ultrahigh-Q string or drum resonators
where a metalization of the entire resonator would
significantly deteriorate the quality factor (Unterreithmeier
et al., 2009; Yu et al., 2012; Bagci et al., 2014; Schmid et al.,
2014). Hence, the presented analytical model is applicable beyond
the transduction of nanomechancial pillar dimers, specific
schemes for the transduction of string or nanowire resonators,
as well as drum resonators, are promising extensions.

2 ESTIMATION OF THE ELECTROSTATIC
FORCE

In contrast to conventional electrostatic drives where a voltage
is applied between a static and a moving electrode, we intend to
exploit the polarisation of conductors inside an electric field.
The polarisation then leads to surface charges on the
conductor, which experience a force inside the electric field.
A measurable deflection can be achieved by an elastic element
between the oppositely charged surface regions, which can be
used as electric field sensor (Kainz et al., 2018, Kainz et al.,
2019).

While for a single uncharged conductor the total force after
integration over the surface of the whole conductor is zero, a net
force emerges when two or more such conductors are brought
close to one another (Figure 1). For the estimation of this
electrostatic force between two nanomechanical pillars, a pair
of conducting bodies (spheres, discs, or cylinders) is placed inside
a uniform electric field E.

In many applications, rigorous analytical representations
cannot be achieved without significant simplifications that
generally question the reliability of the utilized modelling
approach. Numerical methods have become powerful tools
capable of filling this gap. Furthermore, numerical results tend
to obfuscate fundamental dependencies. Reasonable analytical
modelling should always be preferred. Therefore, a benchmark
case in order to compare the analytical and numerical results is
necessary to find solver settings and mesh quality which allow
accurate results with minimum computational power. In the case
of dimers, it seems best suited to use two conducting spheres
embedded inside a uniform electric field for this purpose, which
we’ll be presented subsequently. Forces between two cylinders
will be introduced afterwards.

2.1 Two Conducting Spheres
The analytical treatment of the problem of two conducting spheres
dates back at least to (Jenss, 1932) and (Morse and Feshbach, 1953).
An extensive treatment of this case was done by (Davis, 1964). This
quite general work is based on bispherical coordinates and treats
conductive spheres of different sizes and charges, and varying
distance in an electric field of arbitrary direction. Here, the

FIGURE 1 | Working principle of the electrostatic pillar actuation. The
applied electric field E0 leads to a force between the conducting parts of the
pillars. Either only the tip is conducting (top) or the whole pillar is conducting
(bottom). Note that the bending here has been exaggerated for a better
illustration.
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resulting force for two uncharged spheres of the same radius r from
this publication is used, considering only an electric field E0 parallel
to the axis between these spheres (here the z-axis). The
corresponding force for a distance d between the spheres acts in
the same direction and is given in electrostatic units as

Fz � 1
2
E2
0r

2F1, (1)

where

F1 � (x + x2

4
)∑∞

n�0

Yn

2n + 1
(Yn − 2cosh(μ0) n + 1

2n + 3
Yn+1), (2)

is an infinite sum with

x � d
r
, and μ0 � ln⎛⎝1 + x

2
+

�����
x + x2

4

√ ⎞⎠. (3)

The terms Yn can be written as

Yn � − �
2

√ (2n + 1) 2n + 1 − w0

2sinh((n + 1
2 )μ0), (4)

with

w0 � S1(μ0) + S1(0)
S0(μ0) + S0(0). (5)

The terms Sm(ξ) are again infinite sums given as

Sm(ξ) � ∑∞
n�0

(2n + 1)me(2n+1)ξ
e2(2n+1)μ0 − 1

. (6)

Note that this force corresponds to the force acting on one of
the spheres.

The associated numerical model was built in COMSOL using
the electrostatics module. The two spheres were embedded inside
a uniform field generated by two parallel plates. Tomodel them as
perfect conductors a floating potential boundary condition was

applied to each. The corresponding forces were obtained by
integration of the radial component of the electrostatic stress
tensor over the surface of one sphere.

For comparison, a sphere radius of r � 50 nm and an electric
field strength of E0 � 100 kV/mwas chosen, while the distance was
varied between 0.5 nm and 500 nm. The resulting forces are shown
in Figure 2. It can be seen that the analytical and numerical forces
are in good agreement. Apart from that, it can be observed that the
force decreases with two different rates for increasing distance. For
small distances the decrease is roughly linear, while for large
distances the force decreases as d−3. The transition between
these slopes happens at r � d.

2.2 Two Conducting Cylinders
Unfortunately, the problem of two nanopillars cannot be
described analytically in the same quality as the two spheres,
since certain assumptions and simplifications have to be made. By
assuming infinitely long parallel cylinders oriented in z-direction,
the three-dimensional problem can be reduced to a two-
dimensional one. The top and bottom faces of the actually
finite-sized cylinders (height L) are neglected.

The distance between the cylinders be denoted s, the radii by R1,
R2. The distances between the center of a cylinder to the origin are
given by D1 and D2, respectively (Figure 3). Therefore, the centre-
to-centre distance between the cylinders is d � s + R1 + R2 � D1 +
D2. The electric field is assumed to be oriented in x-direction, E0 �
E0x̂. The corresponding potential is therefore φ0(x, y) � −E0x.

As for the bispherical problem, the bicylindrical problem can
be treated analytically using a suitable coordinate system. Here,
bipolar (BP) coordinates are a good choice for the 2D problem
(Moon and Spencer, 1961). A solution for the electrostatic
potential of two conducting cylinders in a uniform electric
field has also been outlined in (Jenss, 1932; Morse and
Feshbach, 1953). The most general treatment of the
electrostatic two-cylinder problem has been presented in

FIGURE 2 | Comparison between analytically and numerically obtained
forces between two uncharged conducting spheres of radius r � 50 nm in a
uniform electric field with a field strength E0 � 100 kV/m.

FIGURE 3 | Cross-section of the two cylinders and important
dimensions.
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(Emets and Onofrichuk, 1996), however without using BP
coordinates and without calculating the potential.

It pays off to perform the calculation of the potential by solving
Laplace’s equation with the actual application in mind, which is
outlined in the following. Cartesian (x, y) and BP (η, u)
coordinates are related by

x � a sinh η
cosh η − cos u

and y � a sin u
cosh η − cos u

. (7)

For now, a can be regarded as an arbitrary positive number. It
corresponds to the half distance between the focal points inside the
cylinders. The lines of constant η are circles in x, y-space
encompassing one of the focal points (one for η< 05x < 0 and
one for η> 05x > 0). The boundaries of the cylinders can therefore
be expressed by η � η2 < 0 for the cylinder on the left (x < 0) and
η � η1 > 0 for the right one (x > 0).

The η-coordinate ranges from
∣∣∣∣η∣∣∣∣ � 0 (which corresponds

to a circle with infinite radius touching the y-axis and
therefore to Cartesian infinity) to

∣∣∣∣η∣∣∣∣ � ∞ (which
corresponds to the focal points). The u-coordinate ranges
from u � 0 to u � 2π (which correspond to the parts of the
x-axis with x > a or x < − a, and u � π to the part between the
focal points |x|< a).

The dimensions and distances of the cylinders are related to a
and η1,2 by a2 � D2

1 − R2
1 � D2

2 − R2
2 and

η1,2 � ln(D1,2 + a
R1,2

). (8)

An expression for a in terms of s,R1,R2 can be obtained as

a � s + R1 + R2

2

����������������������������������(1 − (R1 + R2)2
(s + R1 + R2)2)(1 − (R1 − R2)2

(s + R1 + R2)2)
√

.

(9)

2.2.1 Electrostatic Potential
The Laplace operator Δ � z2x + z2y transforms to
Δ � (1/h2)(z2η + z2u), with h � hη � hu � a/(coshη − cosu)
being the scale factor of the BP coordinates (Moon and
Spencer, 1961). Therefore, the Laplace equation looks the
same in BP form, i.e., (z2η + z2u)φ(η, u) � 0. The total potential
in this problem follows by superposition of the cylinder potential
φc and the known potential of the uniform field, i.e., φ � φc + φ0.

The general solution for the potential due to the cylinders φc
can therefore be written as

φc(η, u) � A0 + B0η +∑∞
n�1

[(Ane
nη + Bne

− nη)cos(nu) + (Cne
nη

+ Dne
−nη)sin(nu)],

(10)

with Ai,Bi,Ci,Di as coefficients to be determined by the following
boundary conditions.

The potential at the cylinder boundaries (and inside) is constant
φ(η1, u) � const. �: V1 and ϕ(η2, u) � const. �: V2. Here, η1 < 0
and η2 > 0. In addition, the potential of the cylinders has to vanish
far away from the cylinders φ(0, 0) � φ0.

In order to obtain the coefficients, an expression for φ0 in terms of
the eigenfunctions of the problem is needed. This can be achieved as
indicated in (Morse and Feshbach, 1953) by combining the coordinates
to complex variables (z � x + iy, w � η + iu) and exploiting the
properties of analytic functions. Expanding in powers of e−wp for
η> 0 (lower case) and in powers of ewp for η< 0 (upper case) leads to

φ0 � −E0Re(z) � ± E0a⎛⎝1 + 2∑∞
n�1

e ±nηcos(nu)⎞⎠. (11)

Ignoring the natural BC for now, the coefficients follow from
exploiting the orthogonality of the sine and cosine functions. This
leads to

A0 � V2η1 − V1η2
Δη − E0a(η1 + η2)

Δη , (12)

B0 � ΔV
Δη + 2

E0a
Δη , (13)

An � 2E0a
cosh(nη2)

sinh(n(η1 − η2))e−nη1 , (14)

Bn � −2E0a
cosh(nη1)

sinh(n(η1 − η2))enη2 , and (15)

Cn � Dn � 0. (16)

What remains is to determine the potentialsV1,2 the cylinders take
on in the external field. This can be achieved by using the natural BC
from above, φc(0, 0) � 0 and the fact that the cylinders are
uncharged, Q1 � Q2 � 0. Combining these two conditions one finds

V1 � −E0a + 2E0a∑
n

sinh[n(η1 + η2)]
sinh[n(η1 − η2)], (17)

V2 � E0a + 2E0a∑
n

sinh(n(η1 + η2))
sinh(n(η1 − η2)). (18)

For η1 � −η2 > 0, i.e., equally sized cylinders, the sum vanishes
and V1 � −V2 � −E0a.

Inserting these potentials into the above solution leads to the
final result for the potential

φ(η, u) � ± E0a

+ 2E0a∑
n�1

∞ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
( cosh(nη2)e−nη1
sinh(n(η1 − η2))enη − cosh(nη1)enη2

sinh(n(η1 − η2))e−nη ± e ± nη)cos(nu)
+ sinh(n(η1 + η2))
sinh(n(η1 − η2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(19)

where the + corresponds to η< 0 and the − to η> 0.
For equally sized cylinders, η1 ≡ − η2 > 0, φ simplifies to

φ(η, u) � ± E0a + 2E0a

× ∑∞
n�1

(2 cosh(nη1)
sinh(nη1)e− nη1 sinh(nη) ± e ±nη)cos(nu).

(20)

A colormap of the cylinder potential and the total potential
(cylinder potential plus external potential) is shown in Figure 4
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for a field of E0 � 100E0 � 100 kV/m and cylinder radii of
R1 � 75 nm and R2 � 50 nm.

2.2.2 Electrostatic Force
The force follows from the integration of the surface charge
density and electric field E � −grad φ over the surface S of the
cylinder. The force component in a specific direction (arbitrary
unit vector p̂) is given as

F · p̂ � ε0
2
∫
S

(1
h
zηφ)2

p̂ · n̂ dS. (21)

For the force in x-direction, p̂ � x̂. The normal vector of the
surface of cylinder two is η̂, which can be written in terms of
Cartesian unit vectors as

η̂ � 1
cosh η − cos u

[(cosh η cos u − 1)x̂ − sinh η sinuŷ]. (22)

For η � η2, the coefficients in the series of zηφ simplify to

gn :� 2n cosh(nη1)
sinh(n(η1 − η2)), (23)

0zηφ � 2E0a∑
n�1

∞

gncos(nu), (24)

Exploiting the orthogonality of the cosines, the force in
x-direction then results in

Fx � 2πε0E
2
0a

2L∑
n�1

∞

gn(cosh η2gn+1 − gn)
� 2πε0E

2
0a

2LFc,

(25)

with L being the length of the cylinder and Fc an abbreviation for
the sum. The orthogonality of the trigonometric functions also
yields Fy � 0.

In order to study the dependence of the force on distance and
radii, we assume equal radii R1 � R2 � R � 50, 75, 100 nm and
distances varying from 0.5 to 500 nm. The field be E0 � 100 kV/

m and the length L � 1 µm. The analytical force is again
compared with the numerical one obtained with Comsol.
Results are shown in Figure 5.

The main reason for the discrepancies is that the
analytical model does not consider the finite size effects
and the top and bottom faces of the cylinders. The force
decreases with the distance in the same way as for the two
spheres. The transition between the corresponding two rates
is again at roughly s � R. For small s, i.e., in the linear
decrease regime s<R, the force scales with R2, which
stems mainly from the factor a2.

Furthermore, it is interesting to investigate the force for the
different cylinder radii R1 ≠R2. In order to exclude other
dependencies, the force is calculated for varying R1,2 under the
condition that R1 + R2 � const. � 100 nm. The corresponding
results for L � 1 µm, E0 � 100 kV/m and s � 10 nm are shown

FIGURE 4 | Cylinder potential (left) and total potential (right) for an external electric field of E0 � 100 kV/m and cylinder radii R1 � 75 nm and R2 � 50 nm.

FIGURE 5 | Analytical (solid lines) and numerical forces (circles) on a
cylinder of length L � 1 µm for different radii R1 � R2 � R and distances for a
field strength of E0 � 100 kV/m.
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in Figure 6. It can be seen that having equal radii is the best case
for maximising the force.

3 DEFLECTION AS FIGURE OF MERIT

The actual deflection δx at the tip of the nanopillar (circular cross-
section, width w � 2R, length l) depends not only on the force load
but also on the effective stiffness k � F/δx of the pillar. There are two
different cases to be considered for the stiffness, since the pillar can
be actuated either at the tip, (e.g., by a metal disc on top of an
insulating pillar) or at the whole pillar (if the whole pillar is a
conductor). Note that for now only the (quasi) static deflection is
considered. Dynamical actuation at the pillar resonance yields
deflections amplified by the quality factor.

For the force as a point load on the tip, the stiffness can be
written as

kp � 3YI
l3

� 12πYw4

l3
, (26)

with the geometrical moment of intertia I � πR4/4 � 4πw4 and
the Young’s modulus Y.

For nanopillars with w � 100 nm and l � 1 µm, the stiffness
therefore is kp(Si) N/m if it ismade of Si (Y ≈ 150GPa) and kp(SiO2)
N/m if it is made of SiO2 (Y ≈ 70GPa), which is quite large.

For the force as a uniformly distributed load, the stiffness

kd � 8YI
l3

� 32πYw4

l3
, (27)

is larger than for the point load. E.g., for a Si pillar with the same
parameters as above, Kd � 1.5 kN/m. A combined expression for
both cases can be written as km � αmπYw4/l3, with αm � 12 or 32,
for m � p or d, respectively.

An expression for the deflection can be obtained by inserting
the force Eq. 25. It reads

δx � Fx
km

� 2ε0E2
0Fc

αmY
a2Ll3

w4
. (28)

Since in both cases, a force at the tip or a length-distributed
force, the stiffness depends on R4 and the force is proportional to
a2, which for s < R roughly corresponds to R2, the deflection is
approximately proportional to R−2. When considering the
length, the deflection scales with l3 and with the length L of
the conducting (part of the) cylinder. For using the whole pillar
actuation L � l and the dependency is l4 in total. Furthermore,
the force depends on the applied field strength as E2

0. In
summary, long, slim pillars and strong fields are beneficial
for actuation. When comparing point and distributed load, it
follows from the ratio L/αm that the distributed load yields larger
deflections.

For a width of w � 100 nm, a distance of d � 50 nm and an
applied electric field of E0 � 1E0 � 1 MV/m and different lengths
l of 1, 2 and 5 μm, the forces are in the order of Piconewtons. In
the case of tip actuation with L � 50 nm even smaller. This
means quasistatic deflections in the order of smaller than one fm
for the shortest pillars and in the order of 0.1 pm for the 5 µm
ones. Considering a quality factor of the order of 10,000 (Molina
et al., 2020), this results in vibrational amplitudes of the order
of 1 nm.

3.1 Limitations of the Model
It is important to notice that the presented modeling approach
by means of two infinitely extended cylinders is only valid as
long as the neutral axes of the two considered pillars remain
nearly straight and parallel to each other. This involves two
subconditions: First, the maximum deflection of the individual
pillars imposed by electrostatic forces must be small so that the
deviations of the real electrostatic induction and the associated
charge distribution remain negligible in comparison to the
our simplified model. Secondly, there must be no pull-in
effect between the two adjacent pillars, i.e., the restoring
elastomechanical force of the individual cantilever-like pillars
must always be larger than the attractive electrostatic force
between the pillars (Wen-Hui and Ya-Pu, 2003; Wang et al.,
2004; Zhang and pu Zhao, 2006).

If both conditions are met, then the analytical model offers the
great advantage that its evaluation with common mathematical
toolboxes such asWolframMathematica or direct implementations
in, e.g., Python provides a good estimate of the occurring
electrostatic excess field strengths, the electrostatic forces, and
the fundamental system behavior within fractions of a second.
In contrast, a solely computational analysis with COMSOL takes
several minutes yielding comparable results. In the case of a
parametric sweep as, e.g., depicted in Figure 5, this may even
take several hours our days.

However, as soon as the modeling prerequisites are
substantially violated, our strongly, simplified two-dimensional
model loses its validity and must be replaced by a three-
dimensional model of dielectric cantilevers exposed to a
homogenous external electric field. The rigorous mathematical
description of the electromechanical interaction between the two
elastic pillars and the external electric field would be usefully
implemented via the energy-momentum tensor of the dielectric
material composed of two components (Penfield and Haus,
1967). The first component describes the elastomechanical

FIGURE 6 | Analytical (solid lines) and numerical forces (circles) on a
cylinder of length L � 1 µm for varied radii under the condition R1 + R2 �
100 nm for a field strength of E0 � 100 kV/m and a distance s � 10 nm.
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properties of the cantilever-like pillar while the second
component incorporates the electric field interaction.
Mechanical and electrical components governing the electro-
elastomechanical interaction are related to each other via a
suitably selected material law. From this model, the electric
field distribution in the field space would have to be
calculated. As soon as this is known, the resulting force of
electric origin on the pillar can be derived by simple
integration over a closed surface, which encloses the pillar and
runs completely in free space (Penfield and Haus, 1967).

As one can see, the exact theoretical description of this
problem is quite complex and very likely does not have a
closed-form analytical solution. Fortunately, the two
conditions mentioned above were generally fulfilled in our
considerations, so that our simplified two-dimensional model
can be applied for the pillars discussed above. This can be seen
in the example above, which estimated dynamical deflections
up to 1 nm for a pillar diameter of 100 nm and a distance of
50 nm. Nevertheless, care must be taken for larger relative
deflections.

3.2 Maximum Possible Field Strength
One remaining question is how far the electric field strength
can be increased, if the two aforementioned conditions of
small deflections and large restoring force stay fulfilled.
The limit faced here seems to be the maximum total
field (E � E0 + Ecylinders) strength at which field emission of
conduction electrons takes place. The following crude
estimation of this limit is based on the Fowler-Nordheim
description for the current density through the tunnel barrier
of the material (Fowler and Nordheim, 1928). The current
density can be written as

j(E) � e3

8πhWe

m*

m
E2exp⎛⎜⎜⎝− 4

������
2mW3

e

√
6πheE

⎞⎟⎟⎠, (29)

with e the electron charge, h the Planck constant, We the work
function, m* the effective mass in the metal and m the electron
mass in vacuum.

The mass ratio depends on many circumstances and is not
isotropic. For Au, a value can be extracted from tables such as
given in (Ashcroft and Mermin, 1976), where m*/m � 1.1. The
work function also varies, for Au it is approximatelyWe ≈ 5 eV
� 8 · 10−19 J. The current density rises extremely rapidly with
increasing E (Figure 7). The rate slows down at roughly
100 MV/m still being very steep. This marks the emergence
of field emission.

The total electric field between the nanopillars is larger
than E0. The enhancement factor E/E0 depends on the radii
of and the distance between the pillars. Therefore, for a given
applied field E0, j(E) depends indirectly on the radii and
distance. For the dimensions considered above, a mean
factor E/E0 ≈ 10 should be considered. This means that, in
theory, the applied field E0 can be as high as 10 MV/m
increasing the above calculated forces and deflections by a
factor of 100. This is, however, a crude estimation. The actual
limit has to be determined experimentally.

A possibility to provide the electric field would be to
implement coplanar electrodes on the substrate. The
nanopillars would then be located between these electrodes.
Depending on the size of the area reserved for the nanopillars,
a distance del between these electrodes has to be chosen. This
distance, in turn, determines the voltage Vel necessary to
provide a suitable electric field. As a rough estimate, the
applied field would be E0 ≈ Vel/del. Thus, for a nanopillar
region 10 µm wide, a voltage of around 10 V would be
necessary to provide a field of 1 MV/m.

4 CONCLUSION

In this paper, analytical and numerical calculations for
the electrostatics of two cylinders in an electric field have
been used to study the possible electrostatic actuation of
nanopillar dimers. While the associated electrostatic forces
are very tiny, the pillars can be driven quasistatically to a
deflection of up to ∼100 fm for 1 µm long and 100 nm wide
pillars separated by 50 nm in an applied field of 10 MV/m. If
the pillars are 5 µm long, the deflection lies in the order of 10
pm. Considering the displacement amplification by the
quality factor, with typical values up 10,000 (Molina et al.,
2020), vibrational amplitudes in the nanometer regime can be
expected.

Detection or exploiting the effects of these small deflections
remains a challenging task. The limit of detection of optical
methods, which are the most accurate at the moment,
are already capable of detecting, e.g., nanowire motion.
Moreover, they are becoming ever more effective with new
promising techniques emerging such as optical plasmonic
transduction.

It should also be noted that the treatment in this paper was
strictly electrostatic. With rising frequencies, there can be
expected an increasing magnetic contribution, which was
neglected in this manuscript. A comparison of the forces with
the ones obtained in an electrodynamical approach and with
optical forces should be performed in a future work.

FIGURE 7 | Field emission current density vs. applied electric field strength.
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Since there are several quantities having an influence on the
electrostatic force and the stiffness of the pillars, it is possible to
tweak the system in order to obtain even larger deflections, both
statically and dynamically. In addition to geometrical dimensions
these are, e.g., thematerials involved, the arrangement of (arrays of)
dimers and even using other systems than pillars. The approach
may also be applied to pairs of nanostrings or nanowires. Especially
due to their length, they can be driven presumably more effectively
than the pillar dimers.
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