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Predicting the contact mechanical response for various types of surfaces is and has long
been a subject, where many researchers have made valuable contributions. This is
because the surface topography has a tremendous impact on the tribological
performance of many applications. The contact mechanics problem can be solved in
many ways, with less accurate but fast asperity-based models on one end to highly
accurate but not as fast rigorous numerical methods on the other. A mathematical model
as fast as an asperity-based, yet as accurate as a rigorous numerical method is, of course,
preferred. Artificial neural network (ANN)–based models are fast and can be trained to
interpret how in- and output of processes are correlated. Herein, 1,536 surface
topographies are generated with different properties, corresponding to three height
probability density and two power spectrum functions, for which, the areal roughness
parameters are calculated. A numerical contact mechanics approach was employed to
obtain the response for each of the 1,536 surface topographies, and this was done using
four different values of the hardness per surface and for a range of loads. From the results,
14 in situ areal roughness parameters and six contact mechanical parameters were
calculated. The load, the hardness, and the areal roughness parameters for the original
surfaces were assembled as input to a training set, and the in situ areal roughness
parameters and the contact mechanical parameters were used as output. A suitable
architecture for the ANN was developed and the training set was used to optimize its
parameters. The prediction accuracy of the ANN was validated on a test set containing
specimens not seen during training. The result is a quickly executing ANN, that given a
surface topography represented by areal roughness parameters, can predict the contact
mechanical response with reasonable accuracy. The most important contact mechanical
parameters, that is, the real area of contact, the average interfacial separation, and the
contact stiffness can in fact be predicted with high accuracy. As the model is only trained
on six different combinations of height probability density and power spectrum functions,
one can say that an output should only be trusted if the input surface can be represented
with one of these.
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1 INTRODUCTION

Surface topography plays an extremely important role in
processes such as wear, friction, lubrication, sealing, contact
resistance, and heat conduction. This is due to that the
roughness causes local contacts between the surfaces, as in
mixed lubrication, thus governing how the surface deforms
and behaves in contact and defining the boundary friction and
the real area of contact. The surface topography may be
characterized by a number of areal roughness parameters
defined in ISO 25178, see ISO Central Secretary (2012). These
parameters have, however, limited correlation to the real area of
contact, as well as to friction and wear processes, especially if only
a few out of the complete set of field parameters are considered.

By using computational contact mechanics, we can estimate
the real area of contact for a surface with given topography and
also show how the areal roughness parameters change inside the
contact. Notice that, an accurate and reliable result requires a
highly resolved surface topography measurement. Thereby, the
mesh considered in the numerical solution procedure will have to
be of equal resolution, which, in turn, increases the computational
time significantly. From an engineering point of view, a non-
iterative model that swiftly yields relatively exact predictions of
contact mechanics parameters, such as the real area of contact,
would therefore be highly desired.

The Greenwood and Williamson (GW) theory (Greenwood
andWilliamson, 1966; Greenwood and Tripp, 1970) has been and
still is very frequently used. Note that it was Archard (1957) who
laid the foundation for most of the (multi)asperity-based type of
models known of today (Nayak, 1971; Onions and Archard, 1973;
Bush et al., 1975; Bush et al., 1979; Carbone, 2009; Greenwood
et al., 2011). The Persson contact mechanics theory (Persson,
2006; Yang and Persson, 2008) is also a frequently used tool.
Although being highly useful models that provide insight and
yield rapid predictions, they are based on assumptions, making
them not always very accurate. The GW theory assumes that the
asperities at the surfaces exhibit Gaussian probability
distributions. The asperities are also assumed to deform
independently of each other which leads to that GW theory is
applicable only when the contact area is small (compared with the
nominal contact area). Persson’s theory assumes that the surfaces
exhibit Gaussian height probability distributions and it considers
interasperity coupling. Although Persson’s theory might not be
very accurate for small real area of contact, it applies well to study
the complete contact (see e.g. (Almqvist et al., 2011)). The study
by Müser et al. (2017) summarizes findings obtained with various
kinds of models, including asperity-based ones and Persson’s
theory. Moreover, results from numerical brute force methods,
all-atoms–based models, and experiments were presented as well.
It was concluded that 1) rigorous numerical brute force
approaches yield almost identical results on all properties, 2)
Persson’s theory, all-atom simulations, and experiments could be
used to identify the correct trends, and almost exact numbers for
some properties, and 3) asperity models predicted the real area of
contact rather well and provided alternative interpretations for
other properties. It would be very useful if it was possible to obtain
a mathematical model for fast calculation, which is as accurate as

the rigorous models are, when predicting contact mechanics
parameters such as real area of contact.

The ideal situation would be to describe surface topography by
its height probability distribution and its power spectrum, which
constitute the complete description. However, this complicates
the analysis, and if a subset of the areal roughness parameters ISO
Central Secretary (2012) would be sufficient, it would facilitate
the analysis tremendously. In this study, we will present an
artificial neural network (ANN)–based model. This model acts
as a transfer function, taking areal roughness parameters as input
and predicts the real area of contact and other contact mechanics
parameters. A similar ANN-based approach has been used in
contact mechanics before (see (Rapetto et al., 2009)). Other
examples where ANN-based approaches have been used in
tribology are Nasir et al. (2010), Nirmal (2010), Ćirović et al.
(2012), and Moder et al. (2018). If an ANN, which executes much
faster than a computational contact mechanics approach, is well
designed, trained, and tested, it can thus provide reasonably
accurate predictions of tribological performance parameters
very rapidly.

The idea with the present work is to generate thousands of
surfaces by means of the method developed by Pérez-Ràfols and
Almqvist (2019), and to compute parameters, such as the real area
of contact and areal roughness parameters when these surfaces
are pressed into contact with a flat rigid counter surface. To this
end, we will use the computational contact mechanics approach
presented by Almqvist et al.( 2007), which was further developed
by Sahlin et al. (2010).

The ANN is trained to find the relationship between the
surfaces’ original, the in-contact, that is, in situ areal
roughness parameters and the contact mechanics parameters,
for a range of loads, spanning from no load at all to a load that
causes nearly as much as 50% real area of contact.

2 METHODS

This section presents, in a workflow order, the implementation of
the ANN. It starts with describing surface topography generation,
followed by preprocessing and a brief description of the contact
mechanics approach adopted, and it ends with a presentation of
the architecture of artificial neural network that was developed
herein.

2.1 Surface Topography Generation
Training neural networks requires large data sets. Therefore, it is
necessary to generate a wide range of different surface
topographies. The surface randomization algorithm developed
by Pérez-Ràfols and Almqvist (2019) was employed to randomly
generate 2,022 surfaces topographies with given height
probability distribution (HPD) and a power spectrum (PS).
The HPD and PS can be mathematically modeled by classical
distribution and spectrum functions, but they may also be
obtained (and adapted) from measured surface topographies.
In this work, mathematical models for Gaussian, bi-Gaussian
and Weibull functions, and self-affine and exponential PS
functions were used. The reader is referred to Pérez-Ràfols
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and Almqvist (2019) for a precise description of these HPD and
PS. A surface topography generation selection scheme is depicted
in Figure 1, where one type of HPD and PS is selected together
with the corresponding shape-defining parameters, that is, c, k,H,
β, α, q0, and q1. Remark that the HPDs are defined with zero mean
value and unit standard deviation. With these constrains, the
Gaussian HPD requires no input, while the bi-Gaussian and the
Weibull distributions may be defined using one parameter, that is,
c and k, respectively. Specifying the PS requires four parameters,
that is, the Hurst exponentH for the self-affine and the parameter
β, which defines the autocorrelation length 1/β, for the
exponential function, plus α for the anisotropy and the wave
numbers (q0, q1) that specify the frequency bandwidth. A 256 ×
256 mesh was considered affordable for the grand total of 7,602
elastoplastic contact mechanics simulations performed. Themesh
limits the choice of the high frequency cutoff, and in order to
resolve the shortest wavelength with at least eight nodes, it was
chosen as q1 � 32 (in terms of its wave number). This parameter
was also kept constant when generating the sets of surfaces for
training, testing, and validation. Thus, each surface is generated
based on a pair of HPD and PS functions and five corresponding
numerical parameters, except for the Gaussian which needs four.

Figure 2 shows an example of a generated surface, using the
bi-Gaussian HPD model and the self-affine PS model. The
corresponding parameter settings are displayed to the right.

The parameter space for the surface dataset used for training
was defined by four equidistantly spaced values for each of the
seven parameters (q1 was kept constant). In this way, a wide and

dense dataset range was obtained. A surface dataset for testing is
also needed, and it is important that it is different from, but still
within, the same parameter space as the training set. Notice that
the validation set is a subset of the training set. The training and
test sets, for a pair of parameters (k and H), are schematically
illustrated in Figure 3. As the figure shows, the parameters in the
test set are shifted a half step to be placed in the void of the
training set. This ensures that the test set is located at the
maximum Euclidean distance to the training set. The
parameter space for the training range is specified in the table
shown to the right in the figure. The training set contains 1,536
unique surfaces and the test set contains 486 unique surfaces.
From the training set, 20% of the surfaces are transferred to a
validation set, which is used to detect overfitting during training.

2.2 Preprocessing and Contact Mechanics
The areal roughness parameters inTable 1 are calculated for all of
the 2,022 surfaces, which are made dimensionless by scaling to
exhibit unit rms roughness, that is, Sq � 1. This is done, in
connection with the non-dimensionalization of the contact

FIGURE 1 | Surface topography generation scheme.

FIGURE 2 | A randomized surface, generated by following the scheme in
Figure 1, using the settings presented to the right.

FIGURE 3 | The parameter space for the • Training-/⁃Validation set and
+ Test set, illustrating how the + Test set was positioned in the voids of the •
Training-/⁃Validation set.
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mechanics model Almqvist and Pérez-Ràfols (2019), to increase
the applicability of the ANN. The areal roughness parameters are,
in fact, also calculated for the scaled surfaces in situ, that is, as the
surfaces are loaded against a flat counter surface for a range of
loads, spanning from no load at all to a load that causes up to 50%
real area of contact. The loading sequence was defined in terms of
the dimensionless nominal contact pressure pc, and the contact
mechanics simulations were performed using the method
presented by Almqvist et al. (2007); Sahlin et al. (2010) and
the then utilized by Almqvist et al. (2011), Spencer et al. (2011),
Spencer et al. (2013), Pérez-Ràfols et al. (2016), and Pérez-Ràfols
et al. (2018).

The dimensionless areal roughness parameters (for the scaled
surfaces) in Table 1 are calculated according to ISO Central
Secretary (2012). They are grouped as parameters of field type
and of Bearing Area Curve (BAC) type. These parameters are the
input for the ANN described in Section 2.3, with architecture
illustrated in Figure 4. For more details on how to calculate the
areal roughness parameters according to the standard, see
Blateyron (2013). As a result of the contact mechanics
simulations, the surfaces may be plastically deformed, and it is
the hardness pp that limits the maximum pressure the surface can
exhibit before it yields plastically. Therefore, four equidistantly
spaced values for pp in the range [20, 100] were used for the
training set and three different values were chosen for the test set,
in the same way as described for H and k in Figure 3. Thereby,
there are in total 7,602 contact mechanics calculations performed.
Out of these, 6,144 were used to train the ANN and 1,458 were
used for testing.

The output from the contact mechanics calculations are the in
situ, areal roughness parameters, and the six contact mechanics
parameters in Table 2. These are the real area of contact to
nominal contact area ratio Ar � Ae + Ap, the elastic- Ae and
plastic contributions Ap to it, the dimensionless maximum

contact pressure pmax � pmax/E, the dimensionless average
interfacial separation u � u/hr , and the dimensionless contact
stiffness K � Khr/E.

2.3 The Artificial Neural Network
Here, the ANN architecture depicted in Figure 4, which is
engineered to predict the contact mechanical response of
surfaces represented by the areal roughness parameters (given
in Table 1), will be described. The areal roughness parameters in
Table 1 and the dimensionless hardness pp are used as input for
the ANN and it outputs the corresponding, in situ, areal
roughness parameters and the six contact mechanics
parameters in Table 2. As emphasized with double borders in
Figure 4, the ANN consists of five subnetworks. These all have
four fully connected layers, but a different amount of neurons per
layer. The arrows with continuous lines indicate connections that
are fully connected with weights, whereas arrows with dashed
lines indicate just passing the data from one part of the network to
another. A regular MSE loss function was adopted for the training
procedure.

The first subnetwork(1), with 64 neurons, has rectifier (ReLU)
activation functions (f (x) � max(0, x)), and it takes the 14 areal
roughness parameters in Table 1 and the value of the hardness as
input. The purpose of this network is to process the areal
roughness parameters, without the influence of the contact
pressure, to extract suitable input for the second subnetwork(2)

with 128 neurons. This subnetwork has sigmoid activation
functions (f (x) � 1/(1 + e− x)), and it is fully connected to the
14 areal roughness parameters, the hardness, the dimensionless
contact pressure, and the output of the first subnetwork.

The input to the first and second subnetworks and their
output are assembled into one vector with 64 values. This
vector is the input to each of the three parallel
subnetworks(3)–(5), which have softplus (smooth rectifying)

TABLE 1 | Areal roughness parameters calculated according to ISO Central
Secretary (2012).

Field type Sa Sq Ssk Sku Sdq

BAC type Sk Spk Svk Smr1 Smr2 Vmp Vmc Vvv Vvc

FIGURE 4 | Multitask neural network architecture, with pc and the 14 original areal roughness parameters as input and with the 14 in situ areal roughness
parameters and six the contact mechanics parameters as output.

TABLE 2 | Contact mechanics parameters.

Ar Ae Ap pmax u K
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activation functions (f (x) � ln(1 + ex)) and 256 nodes each. As
mentioned previously, the purpose of the ANN is to predict the
14 in situ areal roughness parameters as well as the six contact
mechanics parameters in Table 2. To this end, each of the three
parallel subnetworks output parameters grouped by its origin,
that is, the five in situ areal roughness parameters of field type,
the nine in situ areal roughness parameters related to the
bearing area (or Abbott-Firestone) curve, and the six contact
mechanics parameters.

3 RESULTS AND DISCUSSION

First, in Section 3.1, the performance of the ANN model will be
evaluated with linear regression between predicted values and the
output in the test dataset. Then, in Section 3.2, examples of how
the predictions changes with the load will be presented and
compared to the correct values.

3.1 Predicting Contact Mechanical
Response
Herein, the test set, which contains 1,458 specimens that it has
never seen before, is used to evaluate the ANN’s predictive
performance on surfaces for a whole range of loads. Depicted
in Figures 5, 6 are linear regression of all the predicted parameter
values and the R2-value, that is,

R2 � 1 −∑
i

(yi − ŷi)
2/∑

i

(yi − y)2,

where y is the target output, ŷ is the predicted output, and y is the
mean target output, is used as a measure of the accuracy. Overall,
one can see that some parameters are predicted with
extraordinary high accuracy, whereas a few are predicted with
less precision. Figure 5 reveals that there is a systematic error for
the predictions of Sa and Sq, which both have relatively low
R2-values. The reason for the low R2-values is because the
absolute majority of predictions (for both Sa and Sq) are

underestimated. Among the output shown in Figure 5, the
one with highest accuracy is the mean quadratic slope
parameter Sdq. Visually, the bearing area curve parameter Smr1

shows a quite large spread, while the R2-value is rather high. This
is caused by a relatively small percentage predictions with large
errors.

There is much that can be said about the results presented in
Figure 6. One thing, which is nearly impossible not to notice, is
the regression for the dimensionless maximum pressure pmax,
with wide-spread and a low R2-value. The reason for this is that
the pmax is a local event, while areal roughness parameters are
averaged in some sense. In other words, prediction of a local
quantity based on average terms is a complicated task, and the
low accuracy is, therefore, to be expected. The more important
outputs Ar , Are, Arp, u, and K are, fortunately, predicted with
higher accuracy. For more details on the ANN’s predictability, the
reader is referred to next section.

3.2 Application
In this section, the accuracy of the predictions of the ANN for
three different test specimens, taken from the test set that the
network never has seen before, will be investigated over the whole
range of loads considered when the test set was generated with the
contact mechanics simulations. The test specimens are listed in
Tables 3, 4, and they consist of the areal roughness parameters,
corresponding to the surfaces topographies presented in Figure 7,
combined with a value of the dimensionless hardness.

The predictions of the in situ dimensionless mean square
height Sq and skewness Ssk are depicted in Figure 8, which
also shows the correct values. This figure and Figures 9–12
share the same legend in which the lines (continuous blue,
dashed red, and dotted turquoise) are for the predictions, and
the correct values are represented with the markers (round
blue, round red, and cross turquoise). The ANN predicts
both the Sq and Ssk output parameters for Specimen 1 (bi-
Gaussian and self-affine) with best accuracy. The lowest
accuracy was observed when predicting Sq for Specimen 2
(Gaussian and self-affine), and the lowest accuracy was

FIGURE 5 | Linear regression of target (x-axis) and predicted (y-axis) outputs.
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observed when predicting Ssk for Specimen 3 (Weibull and
exponential).

The predictions of the in situ dimensionless kurtosis Sku and
mean quadratic slope Sdq are depicted in Figure 9. For Sku, to the
left in Figure 9, the accuracy is rather high and approximately the

same for all three specimens. The variation of the in situ kurtosis
is very complex, but still accurately captured by the ANN. To the
right in Figure 9, it can be seen that the predictions of the in situ
Sdq are of very high accuracy, and this can be understood from the
linear regression analysis presented in Figure 5.

FIGURE 6 | Linear regression of target (x-axis) and predicted (y-axis) outputs.

TABLE 3 | Test specimens containing the dimensionless areal roughness
parameters, corresponding to the topographies depicted in Figure 7 and a
value of the dimensionless hardness: part 1—field type parameters.

Sa Sq Ssk Sku Sdq

Specimen 1 0.792 1.000 0.832 3.863 82.254
Specimen 2 0.798 1.000 -0.013 2.967 51.310
Specimen 3 0.829 1.000 0.561 2.701 31.001

TABLE 4 | Test specimens containing the dimensionless areal roughness parameters, corresponding to the topographies depicted in Figure 7 and a value of the
dimensionless hardness: part 2—BAC type parameters and dimensionless hardness.

Smr1 Smr2 Sk Spk Svk Vmp Vmc Vvv Vvc pp

Specimen 1 13.260 95.596 2.499 1.443 0.299 0.069 0.880 0.064 1.355 33.333
Specimen 2 9.877 89.899 2.567 0.937 0.953 0.047 0.911 0.112 1.215 60.000
Specimen 3 15.712 99.890 2.568 1.160 0.010 0.054 1.022 0.039 1.393 86.667

FIGURE 7 | Surface topographies for the three test specimens (A–C) with dimensionless areal roughness paraeters and hardness, listed in Tables 3, 4.

Frontiers in Mechanical Engineering | www.frontiersin.org May 2021 | Volume 6 | Article 5798256

Kalliorinne et al. ANN Architecture Prediction Contact Response

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


The predictions of the dimensionless average interfacial
separation u and real area of contact ratio Ar are depicted in
Figure 10. It is observed that the ANN very accurately predicts u
for Specimen 2 over the whole range of loads tested. The accuracy
for Specimen 1 is not so high at low loads but really good for
moderate and high loads, and it is vice versa for Specimen 3.
Overall, the ANN’s accuracy in predicting u is good, which is
required if the ANN would be employed in a mixed lubrication
model like the one in Sahlin et al. (2010). As displayed in the right
of Figure 10, the real area of contact ratio can be predicted with
satisfactory accuracy for all but the lowest load, where it ideally
should extrapolate Ar → 0 as pc → 0. Better performance could
(most likely) have been obtained, by extending the training set to
include more results for lower loads. Note that this would also
require a higher mesh density than the 256 × 256 used presently.

The ANN is trained such that the areal roughness parameters for
pc � 0 remains unchanged. The ANN is also trained such that the
contact mechanics parameters are zero for pc � 0, except for the
average interfacial separation, which is specified as the surface’s
maximum peak height.

The predictions of the elastic part of the real area of contact
ratio Ae (left) and plastic part of the real area of contact ratio Ap

(right) are depicted in Figure 11. When looking at the predictions
for Ae, it is noticeable that there is a large error for Specimen 1;
however, the other specimens are predicted with acceptable
accuracy. From the results for Ap presented to the right in
Figure 11, it seems as if the ANN has qualitatively learned
what the variation of Ap would be. More precisely, that it is
constant for low loads but that it starts to increase at some point.
The reason for that it does not quantitatively capture the variation

FIGURE 8 |Dimensionless root mean square heightSq (left) and skewnessSsk (right) for varying dimensionless nominal pressure pc, predicted (line) and real value
(marker).

FIGURE 9 | Dimensionless kurtosis Sku (left) and mean quadratic slope Sdq (right) for varying dimensionless nominal pressure pc, predicted (line) and real value
(marker).
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correctly has probably to do with that a relative error for a large
Ap is much more significant than it is for a small Ap, during the
training procedure. Notice that the ANN predicts that Specimen
3 exhibits plastic deformation, but that the correct result is that
the deformations are purely elastic for all loads considered
(Ap � 0 is not displayed on the log-scaled axis).

The predictions of the dimensionless maximum pressure pmax
(left) and contact stiffness K (right) are depicted in Figure 12.
When looking at the predictions for pmax, one can see that there is
a quite large error. This was also brought up in connection to the
presentation of Figure 6. Most surfaces will be plastically
deformed, and it seems as it would be fairly easy for the ANN
to learn that the pmax will saturate at pp. Indeed, by looking at the
predictions for Specimen 1 and 2, it is also clear that it has learned
this. Specimen 1 that has the lowest pp is already plastically
deformed at the smallest load in the range and Specimen 3 with

the highest pp is not plastically deformed at all. Specimen 2 does,
however, exhibit pmax for an intermediate load in the range, and it
can be observed that the ANN is able to predict that it will and
that it is capable of capturing the position where it occurs. From
Figure 12, it can also be observed that the contact stiffness, for all
three specimens, can be predicted with quite high accuracy for
moderate and high loads but that the accuracy decreases for
lower loads.

4 CONCLUDING REMARKS

Two datasets containing a total of 2,022 different surface
topographies were generated using the algorithm developed by
Pérez-Ràfols and Almqvist (2019). Three different HPD
functions and two different PS functions were obtained from

FIGURE 10 | Dimensionless average interfacial separation u (left) and real area of contact ratio Ar (right) for varying dimensionless nominal pressure pc, predicted
(line) and real value (marker).

FIGURE 11 | Real area of elastic contact ratio Ae (left) and real area of plastic contact ratio Ap (right) for varying dimensionless nominal pressure pc, predicted (line)
and real value (marker). Note that the correct values for Ap for Specimen 3 is zero for all loads.
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Gaussian, bi-Gaussian, and Weibull HPD functions and self-
affine and exponential PS functions, described with as few shape-
defining parameters as possible. Fourteen areal roughness
parameters were calculated for all surfaces in the dataset.
Together with the surface indentation hardness and a given
applied load, these 14 areal roughness parameters were used as
input for the ANN.

A numerical elastoplastic contact mechanics approach, in which
the hardness limits the maximum pressure the surface can exhibit
before it yields plastically, was then employed to perform simulations
of pressing each of the generated surfaces against a flat rigid counter
surface for a sequence of loads. Since four values for the hardness
were considered for the training set with 1,536 different surface
topographies and three were considered for the test set with 486
topographies, a grand total of 4 × 1536 + 3 × 486 � 7602
realizations were conducted. Out of these, 6,144 specimens were
used for training and 1,458 were left for testing and validation. For
each of the these specimens, 14 in situ areal roughness parameters
and six contact mechanics parameters were calculated for the
sequence of loads that was also used as input for the ANN.

An architecture for an artificial neural network (ANN), which
consisted of five different subnetworks, was designed and trained
on the dataset. Linear regression was applied, and the R2-value
was used to appreciate the correlation between the network
prediction and the correct data. A few parameters were almost
perfectly predicted, whereas other were predicted with large
errors. According to the R2-values, the most important
parameters, that is, the real area of contact ratio Ar , the
dimensionless average interfacial separation u, and contact
stiffness K were all predicted accurately by the ANN.

Summing up, the ANN can be used to roughly appreciate the in
situ behavior of various kinds of surface topographies, if the areal
roughness parameters, the indentation hardness, and the nominal
contact pressure are known. Some parameters, that is, the real area
of contact ratio, the dimensionless average interfacial separation,
and contact stiffness can actually be predicted with high accuracy.
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NOMENCLATURE

α anisotropy coefficient

Sa arithmetic mean height (μm)
1/β auto-correlation length

u average interfacial separation (μm)
c bimodal shape parameter

K contact stiffness (N/m)

Vmc core material volume (μm3/μm2)
Sk core roughness depth (μm)
Vvc core void volume (μm3/μm2)
Sa dimensionless arithmetic mean height Sa/hr

u dimensionless average interfacial separation u/hr

K dimensionless contact stiffness Kxr/E

Vmc dimensionless core material volume Vmc/hr

Sk dimensionless core roughness depth Sk/hr

Vvc dimensionless core void volume Vvc/hr

pp dimensionless hardness pp/(Ehr/xr)
Sku dimensionless kurtosis Sku/hr

pmax dimensionless maximum pressure pmax/(Ehr/xr)
Sdq dimensionless mean quadratic slope Sdqxr/hr

pc dimensionless nominal pressure pc/(Ehr/xr)
Vmp dimensionless peak material volume Vmp/hr

Spk dimensionless reduced peak height Spk/hr

Svk dimensionless reduced valley depth Svk/hr

Sq dimensionless root mean square height Sq/hr

Ssk dimensionless skewness Ssk/hr

Vvv dimensionless valley void volume Vvv/hr

pp hardness MPa

H Hurst exponent

Sku kurtosis (μm)
q0 long wavelength cutoff

Smr1 material ratio 1 –

Smr2 material ratio 2

pmax maximum pressure MPa

Sdq mean quadratic slope (μm/mm)
pc nominal pressure MPa

Vmp peak material volume (μm3/μm2)
Ar real area of contact ratio

Ae real area of elastic contact ratio

Ap real area of plastic contact ratio

Spk reduced peak height (μm)
Svk reduced valley depth (μm)
hr reference height Sq (μm)
xr reference length (mm)

Sq root mean square height(μm)
q1 short wavelength cutoff

Ssk skewness (μm)
Vvv valley void volume (μm3/μm2)
k Weibull shape parameter

t worn shape parameter
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