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Graphene is an excellent heat conductor, with the potential to be used as a heat spreader

for applications where there are fast, transient heat pulses. In this study we analyze and

describe energy transport in graphene subject to an initial pulse of energy. We analyze the

effects of using harmonic, anharmonic, and a non-linear (Tersoff) potentials to describe

the transient energy transport and compare these to classical continuum descriptions.

The energy pulse produces pure wave-like behavior and a spatial energy distribution

that has geometric features similar to the graphene geometry itself. Depending on the

potential used, the energy travels outward from the impulse location following a similar

pattern as the hexagonal shape of graphene. This pattern is clearly identified when

the transport is treated with a harmonic potential. Increasing the anharmonicity and

non-linearity dampens this effect and results in thermal transport that does not follow

the geometry of graphene.

Keywords: graphene, energy transport, diffusive, wave-like, harmonic, anharmonic, Tersoff

1. INTRODUCTION

During the last 30 years there has been an exponential growth of devices and technologies built
from materials at the nanoscale, in large part a result of the advances in transistors predicted by
Moore (1965). Discovered by Novoselov et al. (2004), graphene has been shown to have excellent
electrical properties including an extremely high electron mobility (Geim and Novoselov, 2007),
and is thus a promising material to continue this growth. It also has good mechanical properties
including a large Young’s modulus that makes it a rigid and strong material (Frank et al., 2007).
These properties, as well as favorable optical and magnetic properties (Geim and Novoselov, 2007;
Kuzmenko et al., 2008; Nair et al., 2008), open a large window of possibilities for the exploration of
new graphene-based materials and devices.

The thermal properties of graphene are particularly exceptional. Balandin et al. (2008) reported
the first experimental value for the thermal conductivity, approximately 5,000 W m−1 K−1. This
extremely high number opened a new field of study to measure and to calculate the thermal
conductivity. Reported results show that the value can vary from 500 W m−1 K−1 (Cai et al.,
2010) up to above 5,000 W m−1 K−1 (Nika et al., 2009a,b; Evans et al., 2010; Aksamija and
Knezevic, 2011). The reasons behind such large range of values have been widely discussed. Nika
and Balandin (2012) reviewed the values and reported that differences in fabrication methods,
sample size, measuring technique, temperature and boundary conditions produce different results.
The variation among results helped guide investigations into which factors impact the thermal
transport. Calculations of the thermal conductivity from theoretical models and computational
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techniques provided similar conclusions as the measurements.
Seol et al. (2010) reported a value of ≈ 3,000 W m−1 K−1.
The value is calculated for free graphene at room temperature.
This condition is similar as the case we study here. The value is
extremely high value compared with metals. This property, in
particular, makes graphene attractive for thermal management
technologies, such as heat spreaders in electronics and other
applications (Pop et al., 2012; Cahill et al., 2014).

Despite the interest and broad study of energy transport
in graphene in the past decade, there is still not a consensus
on the characteristics of phonons traveling in graphene, and
specifically whether the transport is ballistic or exhibits normal
or anomalous diffusive behavior. A comparison of the mean free
path (MFP) of the phonons in graphene (Ghosh et al., 2008) with
the dimensions of the structure has been reported and provides
relevant information about ballistic transport or scattering
effects. In a complete review on the topic of anomalous diffusion
in graphene, Liu et al. (2012) described investigations where
anomalous diffusion is observed, specifically molecular dynamics
simulations and experimental measurements where the thermal
conductivity is size dependent. It is generally understood that for
dimensions smaller than the mean free path of the phonons, the
thermal conductivity is size dependent. Mu et al. (2015) studied
coherent and incoherent phonon transport in modified graphene
lattices. They also observed length dependence of the thermal
conductivity in the super lattice. In this same study, they reported
the relation of coherent phonons with ballistic transport and
the crossover from coherent phonons to incoherent phonons in
terms of length.

In contrast to these studies, Saito et al. (2018) proposed that
the transport is ballistic or diffusive as a function of temperature
and size, using a Hamiltonian that included third-order terms.
They reported that the crossover from ballistic to diffusive occurs
at about 100 K, where the thermal conductivity becomes size
dependent. Above 400 K, however, the thermal conductivity did
not change for differently-sized samples. Behavior other than
diffusive or ballistic in graphene has also been reported, such as
the hydrodynamic behavior of phonons resembling Poiselle flow
(Lee et al., 2015).

Maassen and Lundstrom (2015) developed a model similar
to electron transport theory for phonons. They reported that
they obtained equivalent results from using Fourier’s Law
and the Boltzmann transport equation for ballistic transport.
Steady state ballistic transport can be captured using Fourier’s
law and proper boundary conditions (Kaiser et al., 2017),
but the method is limited to steady state without generation
terms. Thermoreflectance at the boundaries with periodic heat
generation in the boundary for ballistic transport can also
be modeled using an approach developed by Maassen and
Lundstrom (2016).

The identification of different behaviors or regimes of
transport based on conditions such as size, defects, boundary
conditions, and how the graphene is mounted, either isolated
or on a substrate, has also motivated investigations into
how to design graphene with specific thermal characteristics.
For example, Mu et al. (2014) reported the effects of
oxidation on the thermal transport, showing that ballistic

transport or scattering can be tuned depending upon the level
of oxidation.

Here we analyze how graphene responds to a pulse of thermal
energy, using different inter-atomic potentials and comparison
to continuum models to differentiate thermal behavior. In order
to determine if the behavior is diffusive, wave-like, or something
else, we initially perturb a single atom in a graphene sheet and
monitor its temporal response. We evaluate the autocorrelation
of the energy and compare it to solutions to the diffusion and
wave equation. We then also monitor the temporal evolution
of the spatial distribution of the energy pulse throughout the
graphene sheet. We observe interesting geometric behavior that
reflects the hexagonal shape of graphene, though this depends
strongly on the nature of the inter-atomic behavior. The findings
we present shed additional insight into the behavior of thermal
transport in graphene, and further inform how to design and
optimize graphene for applications such as heat spreaders.

2. METHODS

2.1. Model System
We study a single graphene sheet with 1,024 atoms and
dimensions of approximately 40 by 70 Å as a model system.
The length scale of the graphene sheet is at least one order
of magnitude smaller than the mean free path of phonons in
single layer graphene as reported by different authors (Ghosh
et al., 2008; Gholivand and Donmezer, 2017). The graphene
structure is two dimensional (2-d) and is fixed in space. Each
atom in the sheet is allowed to move in the x, y, and z directions.
The dynamics of the atoms in the crystal lattice were solved
numerically, and each atom was bonded to its closest neighbors
through an inter-atomic potential, U, with periodic boundary
conditions applied at the edges of the sheet. The derivative of the
potential with respect to the position is the force on the atom,
F = −∇U. The position and the velocity of each atom in the
system is solved in time by integrating the force on each atom
using the Gear-predictor numerical scheme, and then the kinetic
energy of each individual atom is calculated.

Phonons are bosons that observe the Bose-Einstein
distribution. Here we use equilibrium molecular dynamics
EMD, a classical mechanics approach that does not consider
quantum effects. Fan et al. (2019) introduced quantum effects in
the parameters of the Tersoff potential after doing first principles
calculations. They report that quantum effects below the Debye
temperature, as calculated here, are not negligible but small;
they affect about 10 % of the final value in the calculation of
the thermal conductivity. In the next sections we compare the
results of EMD with continuum models. The description here
considers only the energy transport contribution from a classical
mechanical description. The modeling used does not describe
the small contribution of the quantum effects of phonons.

The basic strategy is to analyze the time variation of the spatial
distribution of kinetic energy throughout the graphene sheet.
An initial perturbation in velocity equally shared in all three
dimensions is given to the atom at the middle of the structure,
while all other atoms in the sheet were set in their equilibrium
position with a zero initial velocity. The initial condition given
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to the system is an initial velocity to a central atom, i.e., at a
temperature greater than 0 K and the rest of the atoms with no
kinetic energy (effectively 0 K). At time t = 0 all the energy in the
system is contained solely in the perturbed atom, and the rest of
the atoms are in equilibrium with no energy. The initial position
of the disturbed atom is the equilibrium position and the initial

velocity has a magnitude of 1.73 Å
ps . The magnitude corresponds

to an initial velocity in each direction with a value of 1 Å
ps . For

times t > 0, the energy is transferred from the central atom
to its neighboring atoms and so on throughout the structure.
This evolution is shown in Figure 1, where the distribution of
kinetic energy for two different times is shown. Figure 1A shows
the initial distribution of kinetic energy and Figure 1B shows the
distribution for time t = 3 ps where the initial peak at the center
of the lattice has decreased and additional peaks appear as the
energy spreads.

2.2. Inter-Atomic Potentials
Two different artificial potentials and then a single more realistic
potential are used here. The first artificial potential is a harmonic
potential, which in 1-d is defined as

Ui =
1

2
k1x

2
i , (1)

where k1 is a spring constant reflecting the inter-atomic bond and
xi is the displacement of the spring attached to atom i. The second
artificial potential is an anharmonic potential, which includes an
anharmonic term with spring constant k2 as

Ui =
1

2
k1x

2
i +

1

3
k2x

3
i . (2)

Both of these potentials are used in order to generically analyze
the effect of non-linearity in the inter-atomic potential on
energy transport. Also, both potentials just consider nearest
neighbor interactions.

Equivalent values for the spring constants k1 and k2 are
obtained by using the lower order terms of the Taylor series
expansion of the Lennard-Jones (LJ) potential for carbon
(Girifalco and Lad, 1956; Rafati et al., 2010). The values for k1 and
k2 are k1 = 0.1922N/m and k2 = 0.5291N/m, respectively, and the
ratio is k2/k1=2.75. The LJ potential models weak interactions
within atoms. These potentials represent the atomic vibrations
resulting from weak interactions and missing the primary bonds.
The geometry is graphene but the potential does not represent
the complete interatomic bonding.

We compare these two artificial potentials to the Tersoff
potential (Tersoff, 1988b, 1989), which more accurately reflects
the inter-atomic bonding in graphene (Tersoff, 1988a; Berber
et al., 2000; Guajardo-Cuéllar et al., 2010; Lindsay and Broido,
2010; Singh et al., 2011; Rajasekaran et al., 2016). Since the
Tersoff potential is significantly more complex, comparison to
these simpler potentials allows us to identify harmonic and
anharmonic behaviors.

The Tersoff potential not only accounts for the interaction
between atom i and its nearest neighbor j, but also the interaction

of i with all its neighbors k, where the covalent bonds maintain
the geometry of the crystal. The potential is given by

Uij = fC(rij)[fR(rij)+ γijfA(rij)], (3)

Here, fR(rij) is a repulsive term, fA(rij) is an attractive term, and
fC(rij) is a cut-off function, where rij is the distance between atoms
i and j. The parameter γij is a multi-body term that accounts for
atom k and ensures that when the two-body interaction between
atom i and atom j is calculated, the rest of the atoms of the
system are not ignored. That is, the Tersoff potential is a two-
body potential that takes into account the non-local environment
(atom k) when defining the local potential energy between atom
i and atom j. The parameters are given by Tersoff (1989) for
carbon, where the values of the parameters were obtained from
a fitting process of theoretical calculations.

3. RESULTS

3.1. Wave-Like vs. Diffusive Transport
Behavior
In order to analyze our simulations of the dynamics in
the graphene sheet, we compare the behavior to classical
wave and diffusive transport by analyzing a 2-d sheet using
continuum expressions.

In 2-d, the wave equation is

∂2C

∂t2
= v

(∂2C

∂x2
+

∂2C

∂y2

)
, (4)

where C is a transport quantity that for the purpose of this
investigation is kinetic energy, and v is the wave speed. Similarly,
the 2-d diffusion equation is

∂C

∂t
= D

(∂2C

∂x2
+

∂2C

∂y2

)
, (5)

where D is the diffusivity coefficient. A unit value is used for the
wave speed and the diffusivity. The value is adequate to capture
the qualitative characteristics of each behavior. For the wave
speed, the value leads to results that are on the same order of
magnitude for the wave speed and the dimensions of the sample.
The same criteria is used for the diffusivity, where a unit value
leads to the proper time scale for the transient behavior and a
good comparison within the same time scale as the motion of
each individual atom.

Similar to our treatment of the graphene sheet, periodic
boundary conditions are imposed for both equations

C(x = 0, y, t) = C(x = Lx, y, t), (6)

C(x, y = 0, t) = C(x, y = Ly, t), (7)

where Lx is the length in the x direction and Ly is the length in the
y direction. To simulate an impulse of energy on a single atom in
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FIGURE 1 | Kinetic energy distribution at time t = 0 ps for an initial energy of 19 ×10−4 eV using the harmonic potential. (A) t = 0 ps and (B) t = 3 ps.

the graphene sheet, an initial condition is imposed at the middle
of the domain

C(x0, y0, t = 0) = δ(x0, y0), (8)

where x0 = Lx/2, and y0 = Ly/2. We solve both the 2-d wave
and diffusion equations numerically using the finite difference
method, and have confirmed convergence of the solution. The
convergence is verified via energy conservation of the initial pulse
during the entire time of the solution. The time step for the
finite differences is 6.6 × 10−5 arbitrary units (au), and with
this time step stability and energy conservation is observed. The
integration for the equations of motion for the EMD simulations
used an integration time step of 1 fs for the harmonic and
anharmonic potentials, which was sufficient to avoid numerical
diffusion. A time step of 0.5 fs was used for the Tersoff potential,
which was required to keep the scheme stable. The time units
compare well for both the finite difference and EMD methods
as the time step is four order of magnitude smaller than the time
domain of interest. Themaximum time studied in the continuum
descriptions is 0.2 arbitrary units with a time step four orders of
magnitude smaller. The time domain of interest for the EMD
is 40 ps with a time step of 1 fs, which is also four orders of
magnitude difference.

We use the quantity C2(x0, y0) at the center of our domain to
compare the results of the continuum models to the normalized
kinetic energy of the central, perturbed atom from our molecular
dynamics simulations. As an example, Figure 2 shows the
temporal evolution from the solution of the 2-d wave and
diffusion equations. It is clear the two behaviors are distinct. For
diffusion, the energy spreads uniforms away from the center of
the domain (x0, y0) such that the quantity C2 decays constantly
(dotted line). In the graph C2 is presented in logarithmic scale
and as expected the exponential decay is linear. In contrast, the

FIGURE 2 | Temporal evolution of the quantity C2(x0, y0) for the wave equation

Equation (4) (solid line) and for the diffusion equation Equation (5) (dotted line).

wave equation results in a wave-like, oscillatory behavior of the
transport quantity C2.

For comparison, Figure 3 shows the time evolution of
the normalized kinetic energy of central atom in the lattice
for the harmonic (Figure 3A), anharmonic (Figure 3B), and
Tersoff (Figure 3C) inter-atomic potentials. In the wave equation
solution shown in Figure 2, the magnitude of the solution decays
with oscillatory behavior until approximately t = 0.03 au
(arbitrary units), then the magnitude grows for approximately
t = 0.02 au before falling suddenly and repeating this behavior.
This is the result of the wave traveling through the periodic
structure. A similar effect is observed in the simulation of
kinetic energy using the harmonic potential, Figure 3A. The
energy decays for the initial 20 ps, then energy starts recovering
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FIGURE 3 | Kinetic energy atom 544 in graphene. (A) Harmonic potential, (B) anharmonic potential, and (C) Tersoff potential.

amplitude, and wave-like behavior is again observed after 30 ps.
The harmonic potential results in behavior similar to the wave
equation since it represents a perfect harmonic oscillator.

When adding non-linearity through anharmonic terms,
the same general wave-like transport is still observed
as shown in Figure 3B. Even more surprising, when
using the Tersoff potential, which adds more severe non-
linearity, the same oscillatory, wave-like behavior also
occurs, Figure 3C, but the time timescale of the initial
decay is far faster than the decay for the harmonic and
anharmonic potentials. Figure 3C shows the normalized
kinetic energy over the first 1 ps and the initial wave decays
really fast, in less than 10% of 1 ps. This is approximately
two orders of magnitude faster than the harmonic and
anharmonic potentials, and could possibly be attributed to
the multi-body terms in the Tersoff potential increasing
damping in the energy. The qualitative comparison between
the continuum equations and the dynamics simulations
confirm that for this periodic graphene structure, the
energy transport from an initial energy pulse takes on
wave-like behavior.

Another way of analyzing the behavior is using the
autocorrelation function. Autocorrelation analysis compares a
signal in time with the same signal after some time lag τ .

Mathematically this is defined as

〈C(t + 1t)C(t)〉 = lim
τ→∞

1

τ

∫ τ

0
C(t + 1t)C(t)dt, (9)

where 1t is a time delay from the origin. Figure 4 shows the
autocorrelation function of C for the wave and the diffusion
Equations (4) and (5). Again there is a notable difference; the
autocorrelation of the wave equation decays steadily, but for the
diffusion equation it initially decays and then recovers.

For comparison, Figure 5 shows the autocorrelation of the
normalized kinetic energy for the central atom in the lattice
for the (Figure 5A), anharmonic (Figure 5B), and Tersoff
(Figure 5C) potentials. In all cases, the autocorrelation is quickly
damped, with much longer time scales for the harmonic and
anharmonic potentials (τ ∼ 10 ps) relative to the Tersoff
potential. This is consistent with the wave equation shown in
Figure 4, with the major exception that the autocorrelation is
much noisier from the dynamics simulations. In particular, the
Tersoff potential produces an autocorrelation that damps within
1 ps but is noisier than either the harmonic or anharmonic.

Both the magnitude analysis and autocorrelation analysis
suggest that even though there is significant non-linearity in the
Tersoff potential, the energy transport behavior in a graphene
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FIGURE 4 | Evolution of the autocorrelation of C for the diffusion (dash) and wave (solid) Equations (4) and (5).

FIGURE 5 | Autocorrelation function of the normalized kinetic energy of the central atom in the graphene lattice for the (A) harmonic, (B) anharmonic, and (C) Tersoff

potentials.

sheet will still have wave-like features when subjected to a
localized energy pulse. To understand this wave behavior more,
we analyzed the power spectral density (PSD) of the signal. The
PSD is calculated in Fourier space by

PSD = (K̂E(ω)K̂E(ω)∗)2, (10)

where K̂E(ω) is the kinetic energy in frequency space, and
K̂E(ω)∗ is the complex conjugate. The components of frequency
for the harmonic potential are shown in Figure 6A. Using
this potential, there are low frequency components up to 2.5
THz. The anharmonic potential also produces low frequency

components as shown in Figure 6B with only small qualitatively
different features from the harmonic potential. The frequencies
are lower than the reported values for graphene (Taheri et al.,
2018). As discussed previously the harmonic and anharmonic
potential used here do not model the primary atomic bonds; the
spectra observed are from the vibrations of atoms due to weak
interatomic bonding. The Tersoff potential, in contrast, produces
frequencies an order of magnitude larger than the harmonic and
the anharmonic potentials, with component frequencies up to 35
THz. Similar values for the Tersoff potential spectra have been
reported (Nika and Balandin, 2012; Taheri et al., 2018). Further,
there are three distinct frequencies at≈ 4.8,≈ 27, and≈ 33 THz,
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FIGURE 6 | Power spectral density of kinetic energy of the central atom in the graphene lattice for the (A) harmonic, (B) anharmonic, and (C) Tersoff potentials.

FIGURE 7 | Contour lines of kinetic energy distribution: (a) harmonic potential at 0.02 ps, (b) harmonic potential at 0.28 ps, (c) anharmonic potential at 0.02 ps, (d)

anharmonic potential at 0.28 ps, (e) Tersoff potential at 0.02 ps, and (f) Tersoff potential at 0.28 ps.

which suggest that oscillations at these frequencies dominate the
wave-like behavior.

3.2. Geometric Behavior
While the above analysis focused solely on the energy of the
perturbed atom in the graphene lattice, analyzing the spatial

evolution of the energy also reveals important facets of the
energy transport. Figure 7 shows snapshot contours of the kinetic
energy for the entire lattice. When using the harmonic potential,
the energy is initially concentrated at the center at 0.02 ps
immediately after the initial pulse (Figure 7a) and then spreads
radially, creating a profile that reflects the hexagonal structure
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of the graphene lattice (rotated 30◦) by 0.28 ps (Figure 7b).
Similarly, for the anharmonic potential, the profile from the
initial energy pulse at 0.02 ps (Figure 7c) to 0.28 ps (Figure 7d)
also produces a clear hexagonal shape.

This geometric behavior suggest that the waves propagate
in an ordered fashion, where the geometry of the lattice plays
a significant role in the energy transport. However, the non-
linearity and multi-body terms in the Tersoff potential disrupt
this behavior, as shown in Figures 7e,f. As the energy spreads,
the hexagonal shape is not observed, and behavior appears more
diffuse. Thus, while the behavior of a single atom has wave-
like attributes, when the whole geometry of the 2D lattice is
considered, the wave propagation is much more complex.

Previously, wave-like behavior was identified in Figure 6.
The wave-like behavior energy transport is not evident using
the Tersoff potential in Figures 7e,f. (Dong et al., 2014)
conducted a study for ripple propagation in 2-d graphene.
The initial condition of their study is an initial energy
perturbation after a C60 molecule hits the graphene sheet.
For pristine graphene, they observe a disordered distribution
of energy after the initial disturbance, similar as what is
observed here. The energy distribution observed in Dong et al.
(2014) is the result of reflection of the ripples from the fixed
edges. Here, the traveling wave comes back to the initial
perturbed atom once it travels through the domain due to
the periodic boundary conditions. The wave interacts with the
instant vibration of the atom, a similar effect as reflection.
Consequently, we cannot distinguish wave behavior in the
energy distribution.

4. DISCUSSION AND CONCLUSIONS

In this work, we investigated the transport of a single, discrete
pulse of thermal energy through a periodic graphene sheet.

By evaluating different atomic potentials and comparing the
simulated behavior to classical wave and diffusion expressions,
we found that the thermal transport has significant wave-like
characteristics, which we owe to the fact that the dimensions
of the graphene sheet studied here are smaller than the mean
free path of phonons in graphene. With different sizes, we
might observe a delay in the scattering observed from the initial
traveling wave reaching the location of the initial perturbation.
The results report pure wave-like behavior. The characteristics
for the transport studied here are not expected to vary with
different sizes of the graphene sheet. However, when comparing
the realistic Tersoff potential tomodel harmonic and anharmonic
potentials, it is clear that multi-body effects accelerate the
thermal transport, with characteristic times about an order of
magnitude smaller for every characterized parameter (amplitude,
autocorrelation, and geometric behavior). Interestingly, when
the potential is harmonic or only weakly anharmonic, the
wave propagates through the graphene sheet along the bonds
of the atoms, forming a hexagonal pattern that resembles the
honeycomb structure of graphene. The greater anharmonicity
and multi-body interactions introduced by the Tersoff potential
do not show this geometric behavior, and although the transport
still retains wave-like qualities, diffusive aspects also appear.
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