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The highly complex contact interface phenomena require analysis at different length
scales ranging from nanometer up to nearly centimeter scales. When two nominally
smooth surfaces are brought into contact, solid-solid interaction across their contact
interface is confined at multiple protrusions (asperities) of various shapes and sizes.
The deformation mechanisms encountered at the asperity level control the surface
conformity, which, in turn, influences the transmission of traction, heat, and electric
current across the contact interface. Thus, the multiscale roughness of real surfaces
necessitates the advance of methodologies and contact models that bridge the spectrum
of relevant length scales. Rough surfaces have been traditionally characterized by
statistical parameters, which cannot be uniquely determined because they depend on the
sampling interval and the resolution of the measuring device. On the contrary, the scale-
invariant parameters employed in fractal geometry provide an unbiased representation of
the surface topography. This article provides an appraisal of the multiscale mechanical,
thermal, and electrical characteristics of rough contact interfaces demonstrating fractal
behavior. Theoretical treatments of elastic, elastic-plastic, and fully plastic deformation,
heat conduction, temperature rise, and electrical contact resistance are presented for
contact interfaces characterized by fractal geometry, providing a fundamental basis
for developing multiscale thermo-electro-mechanics analytical treatments for contacting
solid bodies.

Keywords: asperity microcontact, contact interface, deformation, electrical contact resistance, fractal surfaces,

multiscale surface roughness, temperature rise, thermal contact conductance

INTRODUCTION

Interface engineering is an interdisciplinary field devoted to the treatment of complex contact
interface interactions encountered at different length scales due to the multiscale nature of the
surface topography. Consequently, to study the mechanics, heat transfer, and electrical conduction
of contact interface phenomena it is necessary to employ multiscale treatments that bridge the
spectrum of relevant length scales. This topical area is of high importance because contact
interfaces may exhibit a profound effect on the overall response of components subjected to various
mechanical, thermal, and electrical effects. A contact interface is defined as the boundary between
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two solid bodies brought into contact under load. The
deformation behavior at a contact interface may diverge
significantly from that of bulk materials due to profound
differences between surface and bulk microstructures and
associated physical properties. Thus, to investigate the
mechanics, heat transfer, and electrical conduction of contact
interfaces it is necessary to use a multiscale treatment appropriate
for rough surface topographies.

The first contact mechanics study is attributed to Hertz
(1882, 1896), who derived an elastic contact theory while
investigating the effect of clamping on the optical properties of
multiple lenses stacked together. This breakthrough development
led to the establishment of the field of contact mechanics,
which is concerned with the contact deformation behavior of
solids possessing various Euclidean macroscopic configurations.
Since the primitive work of Hertz, the elastic-plastic contact
deformation of solids of revolution attracted significant research
attention, largely due to the recognized importance of contact
mechanics in the durability of mechanical systems with contact
elements. One of the first studies of quasi-static contact is
attributed to Hardy et al. (1971), who studied the deformation
of an elastic-perfectly plastic half-space compressed by a rigid
sphere. In another early study, Dumas and Baronet (1971)
analyzed the indentation of an elastic linear hardening half-
space by a rigid cylinder and observed flattening of the
contact pressure profile and a greater discrepancy from the
Hertzian pressure distribution for the least strain hardening
material. In following studies, Follansbee and Sinclair (1984) and
Sinclair et al. (1985) examined quasi-static spherical indentation
of a hardening material in the fully plastic deformation
regime, whereas Hill et al. (1989) used a non-linear elastic
power-law hardening model to approximate the deformation
behavior of a half-space indented by a rigid sphere in the
fully plastic regime.

With the development of advanced numerical methods,
such as the finite element method, finite difference method,
finite volume method, and boundary element method, and the
increase of the computational efficiency, more sophisticated
contact mechanics studies were performed in following years.
Specifically, Bhargava et al. (1985a,b) developed a finite element
model of a cylinder in rolling contact with an elastic-perfectly
plastic half-space, wherein the cylinder was modeled by a
translating elliptical or modified elliptical pressure distribution.
Kulkarni et al. (1990, 1991) examined the three-dimensional
(3D) problem of a rigid sphere in frictionless contact with a
linear kinematic hardening semi-infinite solid, using a translating
Hertzian pressure distribution to simulate the loading by the
sphere. Kral et al. (1993) examined cyclic spherical indentation
of an elastic-plastic half-space with or without isotropic strain
hardening and obtained solutions of the contact response in
the first load cycle of fully plastic deformation. Mesarovic
and Fleck (1999) presented results of the mean contact
pressure and deformation mechanism maps of indented elastic,
perfectly-plastic, and elastic-hardening solids. Yan and Li (2003)
analyzed contact of an elastic-perfectly plastic half-space with
a rigid sphere and reported an increasing trend of the contact
pressure distribution to deviate from the Hertzian solution with

accumulating loading cycles. Kadin et al. (2006a,b) considered
multiple indentation loading and unloading of an elastic-plastic
spherical contact for a wide range of material properties. Park
and Pharr (2004) and Kogut and Komvopoulos (2004a) provided
generalized solutions of the mean contact pressure in terms of
a normalized indentation strain parameter for elastic-perfectly
plastic materials. A similar concept, specific to dynamic contact,
was employed in recent contact mechanics studies dealing
with spherical indentation of elastic-plastic half-spaces with and
without strain hardening and strain rate-dependent constitutive
laws (Lee and Komvopoulos, 2018, 2019). An important finding
of the former dynamic contact studies is that general solutions of
dimensionless global field parameters, such as the dimensionless
mean contact pressure, can be derived in terms of a normalized
strain parameter defined as the product of two strains, i.e., the
yield strain and the indentation strain.

Despite invaluable insight into the macroscale contact
mechanics of Euclidean solids subjected to various loadings
provided by the above mentioned studies and many others
performed in recent years, real surfaces are not smooth but
they comprise geometrical features spanning a wide range of
length scales. Therefore, insight into the local deformation
behavior at the peaks of surface undulations (asperities)
where actual contact occurs necessitates the use of multiscale
treatments. Thus, microscale contact theories were advanced to
elucidate the evolution of deformation at asperity microcontacts.
Archard (1953, 1957) was one of the first researchers to realize
that nominally smooth surfaces actually comprise numerous
asperities of various sizes on top of each other. Greenwood and
Williamson (1966) are credited for the first probabilistic contact
model of rough surfaces wherein the asperity heights are assumed
to follow a normal distribution. However, the former model is
seriously limited by the invariance of the asperity radius and the
lateral spacing of the asperities. Consequently, all of the previous
contact mechanics analyses based on this model are inadequate.

The topography of real surfaces has been traditionally
characterized by statistical parameters of the surface height
distribution, such as the root-mean-square roughness and
the slope and curvature of the asperities (Greenwood and
Williamson, 1966; Nayak, 1973). However, because the
topography of real surfaces is a non-stationary process (Sayles
and Thomas, 1978), the statistical parameters used to describe
the surface morphologies depend on the sample size and
the resolution of the imaging instrument and, consequently,
cannot be uniquely defined. Therefore, for an accurate surface
description, it is necessary to employ approaches based on
surface parameters that do not depend on the length scale and
the resolution of the imaging device.

Following the observation that the power spectra of most
engineering surfaces obey an inverse power law over a wide
range of length scales (Majumdar and Tien, 1990), scale-invariant
surface characterization methods accounting for the presence
of geometrically similar features at different magnifications
(self-affinity property) began to attract the research attention,
ultimately leading to the implementation of fractal geometry
(Mandelbrot, 1983) in the field of contact mechanics. Many
natural phenomena, substances, and organs (e.g., cleavage,
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fracture, clouds, mountains, trees, coastlines, lightning, flames,
precipitation, turbulence, film growth, proteins, pulmonary
vessels, and heart beating) do not demonstrate shapes described
by Euclidean geometry. Fractal geometry offers an effective
means of describing, measuring, or even predicting these natural
phenomena, studying the response of matter to external stimuli,
and characterizing the topography of real surfaces. Indeed,
experimental evidence derived from high-resolution microscopy
has confirmed that most real surfaces exhibit fractal behavior.
The inverse power law followed by the power spectra of
most engineering surfaces over a wide range of length scales
(Majumdar and Tien, 1990) motivated the introduction of
fractal geometry in contact mechanics, ultimately leading to the
establishment of a new subfield known as contact mechanics of
fractal surfaces, which is concerned with multiscale deformation
behavior instigated at contact interfaces demonstrating fractal
behavior in a wide range of length scales (e.g., see studies of
Majumdar and Tien, 1990; Majumdar and Bhushan, 1991; Wang
and Komvopoulos, 1994a,b, 1995; Blackmore and Zhou, 1998a,b;
Komvopoulos and Yan, 1998; Yan and Komvopoulos, 1998;
Komvopoulos and Ye, 2001; Yang and Komvopoulos, 2005; Song
and Komvopoulos, 2014).

From the foregoing discussion, it follows that the multiscale
nature of surface roughness complicates the physical phenomena
encountered at contact interfaces, such as deformation, heat
transfer, and electrical conduction, making the assessment
of the performance of thermo-electro-mechanical systems
cumbersome. The objective of this article is to present a
multiscale theoretical treatment of contact interfaces subjected
to mechanical, thermal, and electrical effects and establish
correlations between dimensionless quantities that describe
the behavior of contact interfaces demonstrating multiscale
roughness characterized by fractal geometry.

MULTISCALE CHARACTERIZATION OF
REAL SURFACES

The most important properties of rough surfaces showing
fractal behavior are continuity, non-differentiability, and self-
affinity. These mathematical properties are scale-invariant
and are satisfied by the so-called Weierstrass–Mandelbrot
(W–M) function (Berry and Lewis, 1980), which in its
dimensionally consistent two-dimensional (2D) form is given by
(Wang and Komvopoulos, 1994a)

z(x) = L

(

G

L

)(D−1) nmax
∑

n=0

cos(2πγ nx/L)

γ (2−D)n
(1)

where L is the length of the imaged surface profile, G is the
fractal roughness, D (1 < D < 2) is the fractal dimension, n
is a frequency index, and γ (γ > 1) is a scaling parameter
that controls the density of frequencies in the profile and the
self-affine property. The right hand side of Equation (1) is a
superposition of cosine functions of geometrically increasing
frequency. The frequency index n assumes values between
zero and nmax = int

[

log (L/L0) / log γ
]

, where int[. . . ] denotes

rounding off of the quantity enclosed within the brackets to
its maximum integer and L0 is the smallest wavelength in the
surface profile. For continuum description to hold, L0 is typically
set equal to 5–6 times the lattice distance of the material.
The value of γ is chosen to yield phase randomization and a
high spectral density. Surface flatness and frequency distribution
density considerations suggest that a reasonable choice is γ = 1.5
(Yan and Komvopoulos, 1998). The scaling parameter γ plays
another important role in the fractal description. Specifically,
if the lateral length x is magnified by γ, then the height z is
magnified by γ (2−D), i.e., z(γx) = γ (2−D)z(x) (Berry and Lewis,
1980). The former is the self-affinity relation that characterizes
self-affine fractals and is attributed to fundamental physical laws
that are independent of length scale within certain geometrical
ranges (Le Mehaute, 1991).

The power spectrum function P̂c(ωc) of a fractal surface
profile is the Fourier transform of the autocorrelation function
of z(x) and is given by (Majumdar and Tien, 1990; Yang and
Komvopoulos, 2005),

P̂c(ωc) =
L2

2

(

G

L

)2(D−1) nmax
∑

n=0

δ(ωc − 2πγ n/L)

γ 2(2−D)n
(2)

where ωc is the spatial frequency, which is related to the circular
frequency ω by ωc = 2πω.

When two fractal surfaces with height functions z1(x) and
z2(x) are brought into contact, a bifractal contact interface
is formed whose power spectrum P̂c(ωc) is the sum of the
power spectra P̂c,1(ωc) and P̂c,2(ωc) of surfaces (1) and (2),
respectively. This relation holds because any two fractal surfaces
are statistically uncorrelated. Since P̂c,1(ωc) and P̂c,2(ωc) generally
intersect at a frequency ω∗

c , it may be inferred that P̂c(ωc) can
be approximated by either P̂c,1(ωc) or P̂c,2(ωc), depending on the
dominant power spectrum in the ranges ω < ω∗

c and ω > ω∗
c

(Yang and Komvopoulos, 2005). Consequently, the equivalent
topography of a two-surface system can be represented by
a single set of fractal parameters, i.e., those of the surface
with the dominant power spectrum in the particular frequency
(wavelength) range.

To account for dimensionally higher stochastic processes,
the W–M function can be generalized by introducing multiple
variables. In this generalization, the homogeneity and scaling
properties of the single-variable function given by Equation (1)
are preserved and the self-affine property still holds. Thus, a
two-variable function can be used to model 3D fractal surfaces
exhibiting undulated morphologies in all directions. The height
function of a 3D fractal surface demonstrating randomness in all
planar directions can be obtained as the real part of the function
given by (Ausloos and Berman, 1985)

z(ρ, θ) =
(

ln γ

M

)1/2 M
∑

m=1

Am

∞
∑

n=−∞

(

kγ n
)(D−3)

×
{

cosφm,n − cos
[

kγ nρ cos (θ − αm)+ φm,n
]}

(3)

where ρ and θ are the planar polar coordinates of a surface point
of height z and are related to the planar Cartesian coordinates x
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and y by ρ =
(

x2 + y2
)1/2

and θ = tan−1
(

y/x
)

, γ and n have the
same physical meaning and magnitudes as in Equation (1), Am is
a parameter controlling the anisotropy of the surface topography
(for isotropic surfaces Am = A regardless of the value of m,
whereas for anisotropic surfaces Am is a function of m), D (2 <
D < 3) is the fractal dimension of the 3D surface profile, φm,n is
a random phase uniformly distributed in the interval [0, 2π] by a
random number generator and is used to prevent the coincidence
of different frequencies at any point of the surface profile, k is
a wavenumber related to the sample size (k = 2π/L), αm is an
arbitrary angle used to offset the ridges in the azimuthal direction
(for equally offset ridges αm = πm/M), and M is the number
of superposed ridges used to construct the surface topography.
The appropriate value of M can be determined from the power
spectrum of the imaged surface morphology. For example, for a
2D surface with cylindrical corrugations M = 1, whereas for an
isotropic 3D fractal surface characterized by an axially symmetric
power spectrum M ≥ 4 (Komvopoulos and Yan, 1998; Yan and
Komvopoulos, 1998).

The surface height function z
(

x, y
)

of a 3D isotropic surface
(Am = A) can be obtained from Equation (3) by introducing a
length parameter G that satisfies the relation A = 2π(2π/G)2−D

and substituting the above relations of αm, ρ, θ , and k, and the
limits of n into Equation (3) (Yan and Komvopoulos, 1998), i.e.,

z(x, y) = L

(

G

L

)(D−2)( ln γ

M

)1/2 M
∑

m=1

nmax
∑

n=0

γ (D−3)n

{

cosφm,n − cos

[

2πγ n
(

x2 + y2
)1/2

L
cos

(

tan−1
( y

x

)

− πm

M

)

+ φm,n

]}

(4)

Figures 1A,B show 3D fractal surfaces generated with
Equation (4) for G = 9.46 × 10−4 nm and D = 2.3 and 2.6,
respectively, and all other parameters fixed. Considering the
different scales in the z-direction of the plots, although the
surface shown in Figure 1B is smoother than that shown in
Figure 1A, at a smaller scale (higher magnification) it appears
to be of similar roughness. Another important difference of the
two surface morphologies that elucidates the physical meaning
of the fractal dimension is that the surface topography with D =
2.6 is dominated by higher frequency components, whereas the
surface topography with D = 2.3 is characterized by a greater
contribution of lower frequency components.

An interesting difference between classical geometry and
fractal geometry is that while the former uses integer dimensions
(i.e., 0 for points, 1 for lines and curves, 2 for planes, and
3 for 3D geometries), a dimension in fractal geometry varies
between two integer numbers. For example, although a straight
segment has a dimension of 1, a surface consisting of many
interconnected segments can have a dimension between 1 and
2 (1 < D < 2) for 2D surfaces or between 2 and 3 (2 < D < 3)
for 3D surfaces, depending on the space-filling capacity of the
surface profile. Thus, a surface containing a very large number
of tiny hills and valleys residing on a tall hill would be close to
the second dimension, whereas a nominally flat surface profile
with a very large number of hills and valleys would be close to
the third dimension. Therefore, the amplitude ratios of high-to-
low frequency (short-to-long wavelength) components increase
with D and the surface topography appears rougher when the

vertical scale is comparable to the amplitude of the lowest
frequency component, as shown in Figure 1B. This illustrates
the physical significance of the fractal dimension. With regard
to the physical meaning of the fractal roughness, Equations
(1, 4) show that G controls the amplitude of the frequency
components comprising the surface profile. Equations (1, 4) also
indicate that the fractal roughness is a height scaling parameter
independent of frequency. Thus, the 2D and 3D functions
given by Equations (1, 4) can be used to generate randomized
rough surface profiles because the only unknown parameters are
the scale-independent parameters D and G that can be found
experimentally. Therefore, fractal description is not limited by
the resolution of the imaging instrument and/or length scale of
measurements due to the intrinsic capability of fractal geometry
to represent surfaces at various length scales, even different
from those of the measurements. Consequently, a fractal surface
can be characterized by three uniquely defined parameters, i.e.,
D, G, and L.

The frequency (or wavelength) range where fractal behavior
is observed can be determined as the range where the power
spectrum of the surface profile is an inverse power function of
frequency [Equation (2)]. In general, the range of length scales
where an engineering surface demonstrates fractal behavior
depends on the architecture of the topography. This is because

the processes used to produce the final surface may contribute
differently to the resulting surface morphology. For example,
although polishing is a random process at length scales equal
to or less than the average grit size, at larger scales its effect
can be described by a deterministic process, such as in the case
of wafer planarization, for example. Consequently, although a
fractal description may be applicable at the micro/nanoscale, the
macro/mesoscale configuration of the majority of engineering
surfaces is described by Euclidean geometry. Nonetheless, if the
macroscopic shape of surfaces is also produced by a random
process (e.g., lithographically fabricated thin-film devices), a
fractal surface description at the macroscale is also plausible. In
the foregoing case, the above fractal surface theory is applicable
provided the fractal parameters determined for each range of
length scales are used in the analysis. In these circumstances, a
unique set of fractal parameters cannot be used throughout the
range of length scales where fractal behavior is observed and
the surface is said to exhibit multi-fractal behavior. Moreover,
if fractal behavior is limited to a certain range of length scales
and the geometrical shape above this scale is deterministic,
that is, the topography comprises both fractals and regular
shapes, the surface is referred to as fractal-regular (Wang and
Komvopoulos, 1994b) and fractal description holds up to a
finite length Lu, termed the upper limit of sample length for
fractal characterization, which can be determined from the power
spectral density function of the surface topography. For instance,
Lu can be obtained as the wavelength corresponding to the
spatial frequency at which the spectral density function begins to
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FIGURE 1 | Fractal surfaces generated from Equation (4) with G = 9.46 × 10−4 nm and (A) D = 2.3 and (B) D = 2.6.

deviate from the fractal power-law behavior [e.g., Equation (2)].
Thus, for fractal characterization to be applicable, the fractal
sample length L in Equations (1, 4) must be less than
or equal to Lu.

MULTISCALE CONTACT MECHANICS

The mechanical characteristics of contact interfaces are a
manifestation of multiple asperity deformation encounters
instigated by the multiscale nature of the surface roughness
(Figure 2A). Consequently, the mechanics of contact interfaces
require the integration of contact deformation at the asperity
level with multiscale surface description. The contact interface of
two fractal surfaces can be modeled by Equations (1, 3, 4) using
the fractal parameters of the dominant power surface spectrum
in the frequency (wavelength) range of interest or a multi-fractal
description as stated in the previous section. Thus, the problem
can be simplified to that of a deformable fractal surface in
contact with a rigid flat plane at a global surface interference
d, resulting in the formation of multiple asperity microcontacts
of various sizes (scale effect), as shown in Figure 2B. Each
truncated asperity is modeled as a sphere with its truncation
by a local surface interference distance δ yielding a circular
truncated contact area of radius r′, as shown in Figure 2C.
Therefore, a contact mechanics analysis of the interface requires
knowledge of the distribution of asperity microcontacts at a given
global surface interference and the deformation behavior at the
asperity scale.

An example of a fractal surface truncated by a rigid
plane is shown in Figure 3. For a relatively small global
surface interference, contact is confined to a few scattered
microcontacts of various sizes (Figure 3A). With increasing
global surface interference, more microcontacts form and some
of the previously established microcontacts enlarge by merging
with neighboring microcontacts (Figure 3B). Figure 4 shows an
analogous model of asperity microcontacts, approximated by
circular spots, forming at the contact interface of two rough
surfaces brought together under a normal load P. Thus, the real
contact area A, i.e., the sum of all the microcontact spots, is much
smaller than the apparent contact area Aa. If the contact model

shown in Figure 2B is simplified to that shown in Figure 4, the
truncated areas of the resulting asperity microcontacts can be
described by a power-law relation given by (Mandelbrot, 1983)

N
(

a′
)

=
(

a′L
a′

)(D−1)/2

(5)

where N
(

a′
)

denotes the number of asperities with truncated
contact areas greater than a′, and a′L is the largest truncated
microcontact area. Using Equation (5), the distribution function
of truncated asperity microcontact areas can be expressed as
(Yan and Komvopoulos, 1998)

n
(

a′
)

= −dN(a′)

da′
= (D− 1)

2a′L

(

a′L
a′

)(D+1)/2

(6)

where a′L can be determined from the measured truncated
contact area A′ of the surface profile using the relation,

A′ =
∫ a′L

a′s
n
(

a′
)

a′da′ =
(

D− 1

3− D

)

[

1−
(

a′s
a′L

)(3−D)/2
]

a′L (7)

where a′s is the smallest truncated microcontact area, which
represents the cut-off contact area below which a continuum
mechanics description cannot be applied. Since a′s/a

′
L ≪ 1,

Equation (7) can be simplified to the following

a′L ≈
(

3− D

D− 1

)

A′ (8)

The total area of the truncated asperity microcontacts A′

can be determined from the fractal surface height profile
[Equation (4)] by summing all the pixels with z-heights greater
than the height of the truncation plane. Accordingly, a′L and
n
(

a′
)

can be obtained from Equation (7, 8) and Equation (6),
respectively. Therefore, the spatial distribution of the truncated
asperities of a given surface profile can be fully determined.
However, because a′L depends on the global surface interference
d (or contact load P) through A′, the contact behavior can
be very inconsistent. After the truncation of the rough surface
by the rigid plane to a certain global surface interference
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FIGURE 2 | (A) Contact of two rough surfaces confined at asperity microcontacts, (B) equivalent contact configuration of a deformable half-space with effective
elastic-plastic material properties and an equivalent rigid and rough surface with fractal parameters those of the dominant surface power spectrum in the frequency
range of interest, and (C) model of an asperity microcontact consisting of a rigid spherical asperity truncated by an elastic-plastic half-space.

and the establishment of the area distribution of truncated
asperity microcontacts [Equation (6)], the deformation mode
of each microcontact must be examined. This necessitates
the implementation of contact deformation equations at the
asperity level.

The deformation of spherical (point) and cylindrical (line)
contacts has been the focus of numerous 3D and 2D studies,
respectively. The common 3D approach has been to represent an
asperity microcontact at the contact interface of two deformable
surfaces, denoted by (1) and (2) in Figure 2A, by two spheres
of radius of curvature R1 and R2, elastic modulus E1 and
E2, Poisson’s ratio ν1 and ν2, and yield strength Y1 and
Y2, respectively, and simplify the analysis by considering the
equivalent normal contact problem of a spherical asperity with

an effective radius of curvature R =
(

1/R1 + 1/R2
)−1

, effective

elastic modulus E =
[(

1− ν21
)

/E1 +
(

1− ν22
)

/E2
]−1

, and yield

strength Y = min [Y1,Y2] truncated by a rigid plane to a local
surface interference δ, resulting in the formation of a circular
truncated contact area a′ of radius r′, as shown in Figure 2C.

The dimensionless local surface interference δ/r′ and asperity
radius of curvature R/r′ are given by (Yan and Komvopoulos,
1998)

δ

r′
= 2(4−D)π (D−2)/2 (ln γ

)1/2
G(D−2) (a′

)(2−D)/2 (9)

R

r′
= 2(D−5)π (2−D)/2 (ln γ

)−1/2
G(2−D)

(

a′
)(D−2)/2

(10)

Various deformation modes may occur at the asperity level
depending on the effective elastic-plastic material properties E
and Y and the magnitudes of δ/r′ and R/r′, which are functions
of D and G [Equations (9, 10)]. The contact behavior of asperity
microcontacts can be simply characterized by elastic and fully
plastic deformation (Johnson, 1985; Majumdar and Bhushan,

Frontiers in Mechanical Engineering | www.frontiersin.org 6 July 2020 | Volume 6 | Article 36

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Komvopoulos Thermo-Electro-Mechanics of Fractal Contact Interfaces

FIGURE 3 | Plane views of a truncated fractal surface. (A) At a given global surface interference, the truncated microcontact areas resemble islands of various sizes.
(B) At a larger global surface interference, new microcontacts form and some merge with existing microcontacts to form larger microcontact areas.

1991; Komvopoulos and Yan, 1998; Yan and Komvopoulos,
1998), more realistically by elastic, elastic-plastic, and fully plastic
deformation (Wang and Komvopoulos, 1994b; Komvopoulos
and Ye, 2001; Kogut and Komvopoulos, 2004a), and more
precisely by elastic, linear elastic-plastic, non-linear elastic-
plastic, transient fully plastic, and steady-state fully plastic
deformation (Song and Komvopoulos, 2013). Relations of the
dimensionless mean contact pressure and real contact area at
the asperity level are given below for the simpler case of three
deformation modes, i.e., elastic, elastic-plastic, and fully plastic
deformation without strain hardening.

The deformation mode of an asperity microcontact is
controlled by the local surface interference δ and the effective
elastic-plastic material properties E and Y (Figure 2C). It has
been shown that a single dimensionless parameter, such as
Eδ/Yr′, does not effectively capture the evolution of deformation
in the elastic-plastic deformation regime; therefore, it is preferred
to treat the ratios E/Y and δ/r′ as independent dimensionless
parameters (Kogut and Komvopoulos, 2004a). Hence, the local
contact parameters, such as the dimensionless mean contact
pressure pm/Y and the truncated-to-real contact area ratio a′/a,
must be interpreted for a wide range of E/Y and δ/r′. Figures 5
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FIGURE 4 | A model of two rough surfaces under load showing that actual contact occurs at asperity microcontacts of various sizes.

and 6 show finite element simulation results revealing the
variation of pm/Y and corresponding a′/awith δ/r′, respectively,
in the elastic-plastic deformation regime for E/Y in the range
of 11–450. All of the simulation cases show that yielding is
instigated at pm/Y = 1.07, which, according to Hertz theory,
implies elastic deformation in the dimensionless local surface

interference range δ/r′ < 1.07
(

3π/4
√
2
)

/(E/Y) ≈ 1.78/(E/Y).

By curve fitting the maximum values of pm/Y , the critical local
surface interference at the initiation of fully plastic deformation
is found to be δ/r′ = 1/

[

1+ 0.037(E/Y)
]

. For a very small
yield strain (e.g., E/Y = 450), pm/Y increases to a maximum
of∼2.85, which is close to the similarity solution pm/Y = 3 (Hill
et al., 1989; Biwa and Storåkers, 1995), whereas a′/a decreases
to a minimum of ∼1 as δ/r′ approaches 0.1. Alternatively, for
a relatively large yield strain (e.g., E/Y = 11), pm/Y reaches a
much lower maximum of∼2.1 for a significantly larger δ/r′ value
of∼0.8.

From curve fitting the data shown in Figures 5 and 6, the
following contact relations for elastic, elastic-plastic, and fully
plastic deformation can be obtained (Kogut and Komvopoulos,
2004a).

For elastic deformation (δ/r′ < 1.78/(E/Y)),

pm

Y
= 4

√
2

3π

(

E

Y

)(

δ

r′

)

(11)

a′

a
= 2 (12)

For elastic-plastic deformation (1.78/(E/Y) ≤ δ/r′ <

1/
[

1+ 0.037(E/Y)
]

),

pm

Y
= 0.839+ ln

[

(

E

Y

)0.656 (
δ

r′

)0.651
]

≈ 0.84+ 0.65 ln

[(

E

Y

)(

δ

r′

)]

(13)

FIGURE 5 | Dimensionless mean contact pressure pm/Y vs. dimensionless
local surface interference δ/r′ and effective elastic modulus-to-yield strength
ratio E/Y (Kogut and Komvopoulos, 2004a).

a′

a
= 2.193− ln

[

(

E

Y

)0.394 (
δ

r′

)0.419
]

≈ 2.2− 0.4 ln

[(

E

Y

)(

δ

r′

)]

(14)

For fully plastic deformation (δ/r′ > 1/
[

1+ 0.037(E/Y)
]

),

pm

Y
= 1.685+ 0.201 ln

(

E

Y

)

≈ 1.69+ 0.2 ln

(

E

Y

)

(15)

a′

a
= 1 (16)
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FIGURE 6 | Truncated-to-real contact area ratio a′/a vs. dimensionless local
surface interference δ/r′ and effective elastic modulus-to-yield strength ratio
E/Y (Kogut and Komvopoulos, 2004a).

Equation (15) indicates that fully plastic deformation is
reached when the dimensionless mean contact pressure reaches

a maximum, which (by definition) is the material hardness
H = min[H1,H2], where H1 and H2 denote the hardness of
contacting surfaces (1) and (2), respectively. For a rigid spherical
indenter and rigid-perfectly plastic half-space, the similarity
solution gives H = 3Y (Hill et al., 1989; Biwa and Storåkers,
1995). However, Equation (15) shows a significant deviation from
the similarity solution with increasing E/Y (i.e., decreasing yield
strain Y/E), implying a marked effect of elastic deformation on
material hardness. Equation (16) shows that the real contact
area reaches a maximum equal to the truncated contact area, in
agreement with the slip-line plasticity theory of rigid-perfectly
plastic deformation behavior.

By substituting Equation (9) into the critical local surface

interference at yielding, δ/r′ = 1.07
(

3π/4
√
2
)

/(E/Y), and

fully plastic deformation, δ/r′ = 1/
[

1+ 0.037(E/Y)
]

, the
truncated microcontact areas a′ep and a′

fp
demarcating the

boundaries between elastic and elastic-plastic deformation
and between elastic-plastic and fully plastic deformation,
respectively, are obtained as

a′ep ≈
[

2(13−2D)/2

3π (4−D)/2

(

ln γ
)1/2

G(D−2)
(

E

Y

)]2/(D−2)

(17)

a′fp =
[

2(4−D)

π (2−D)/2

(

ln γ
)1/2

G
(D−2)

(

E

Y

)[

0.037+
(

Y

E

)]]2/(D−2)

(18)

Substitution of Equations (9, 18) into Equation (14) gives

a′

a
≈ 2.2+ 0.4 ln

[

0.037+
(

Y

E

)]

− 0.4 ln

(

a′

a′
fp

)(2−D)/2

(19)

Equations (17, 18) indicate that a′ep and a′
fp

are functions

of the fractal parameters and elastic-plastic material properties.
Accordingly, the deformation mode at asperity microcontacts
can be determined from their truncation areas to be elastic
(

a′ep < a′ ≤ a′L

)

, elastic-plastic
(

a′
fp
≤ a′ ≤ a′ep

)

, or fully plastic
(

a′s ≤ a′ < a′fp
)

.
Defining the dimensionless load applied to an asperity

microcontact by1P∗ = pma/EAa and using Equations (9, 11–13,
15–19), the following relations of the dimensionless contact load
carried by an asperity microcontact can be obtained for elastic,
elastic-plastic, and fully plastic deformation.

For elastic deformation
(

a′ep < a′ ≤ a′L

)

,

1P∗e = 1

2

(

Y

E

)(

a′

Aa

)

(

a′

a′ep

)(2−D)/2

(20)

For elastic-plastic deformation
(

a′
fp
≤ a′ ≤ a′ep

)

,

1P∗ep ≈
(

Y

E

)(

a′

Aa

)

















0.84− 0.65



ln

[

0.037+
(

Y

E

)]

− ln

(

a′

a′fp

)(2−D)/2




2.2+ 0.4



ln

[

0.037+
(

Y

E

)]

− ln

(

a′

a′fp

)(2−D)/2




















(21)

For fully plastic deformation
(

a′s ≤ a′ < a′
fp

)

,

1P∗fp =
(

Y

E

)(

a′

Aa

)[

1.69+ 0.2 ln

(

E

Y

)]

(22)

The dimensionless (total) contact load P∗ = P/EAa and
real contact area A∗ = A/Aa can be obtained from Equations
(20–22) and Equations (12, 16, 19), respectively, by numerical
integration, i.e.,

P∗ =
N(a′s)
∑

j=1

1P∗j (23)

A∗ =
N(a′s)
∑

j=1

(

aj

Aa

)

(24)

where N
(

a′s
)

is the total number of truncated asperity
microcontacts with areas greater than the cut-off microcontact
area a′s.

In general, for fixed fractal roughness G, both the contact
load and real contact area increase with the fractal dimension D.
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This is because fractal surfaces characterized by high D values
demonstrate relatively smooth (dense) surface topographies,
which, therefore, demonstrate a higher load-bearing capacity due
to the resulting larger real contact area. A similar trend of the
contact load and real contact area is observed with decreasing
fractal roughness and fixed fractal dimension. This is due to the
fact that high G values characterize relatively rough (less dense)
surface profiles, signifying a lower load-carrying capacity due to
the resulting smaller real contact area.

The foregoing theoretical treatment yields insight into
topography and material parameters affecting the evolution of
the real contact area at rough contact interfaces exhibiting
multiscale (fractal) topographies and has direct implications in
experimental methods used to estimate the real contact area that
are limited by the sampling length and resolution-dependence
of the measuring device. Particularly, the above contact analysis
can be used to evaluate real contact area measurements obtained
with various experimental methods, including optical (Maegawa
et al., 2015), interferometric (Bhushan and Dugger, 1990; Eguchi
et al., 2009), electrical (Kogut and Komvopoulos, 2003, 2004b,
2005; Lumbantobing et al., 2004; Sick and Ostermeyer, 2007),
and X-ray and electron computed tomography (Yan et al., 2020;
Zhang et al., 2020) techniques. The above contact mechanics
analysis can also be used to assess the capability of other contact
theories and models to reliably analyze the mechanical behavior
of contacting rough surfaces, such as those proposed by Archard
(1953, 1957), Greenwood and Williamson (1966), Ciavarella
et al. (2000), Ciavarella and Demelio (2001), Persson (2001), and
Persson et al. (2002). Furthermore, the contact mechanics theory
described herein can be extended to include the deformation
effect of neighboring asperities, encountered at relatively high
loads where plasticity is the dominant mode of deformation, by
implementing a more comprehensive theoretical treatment, for
example, such as that employed in a recent contact plasticity
theory (Wang et al., 2018).

MULTISCALE CONTACT
THERMOMECHANICS

Even though the transfer of energy in solids has been studied
both experimentally and theoretically for many years, relatively
fewer studies have been carried out for the energy transferred
between contacting solids, presumably because of the difficulties
to access the hindered contact interfaces and the fast, localized,
and scale depended thermal phenomena instigated by the
multiscale roughness. The resistance to transfer heat through
contact interfaces has been recognized for a long time and
its inconsistency has been attributed to the effects of surface
topography, applied contact pressure, and thermomechanical
properties of the contacting solids. Thus, the restriction of heat
transfer across a contact interface, known as the thermal contact
resistance, Rth, is a multiscale thermomechanical phenomenon
encountered in many components comprising dynamic contact
elements, such as microswitches, gears, bearings, and guideways.
As shown in Figure 4, the multiscale nature of roughness at
the contact interface leads to A ≪ Aa. Thus, heat conduction
across a contact interface is restricted to asperity microcontact

spots having a size distribution depending on the fractal
parameters that characterize the morphology of the contact
interface and the elastic-plastic properties of the interacting solid
surfaces. Consequently, a heat transfer analysis of fractal contact
interfaces requires a multiscale thermomechanical approach
because the deformation and heat conduction at the asperity
level are coupled.

The thermal contact resistance depends on the mechanical
and thermophysical properties of the contacting bodies, the
contact interface morphology, and any interstitial substance
(solid or liquid film) that may exist between the surfaces.
Considering a vacuum environment (i.e., no heat convection)
and that radiation between conductive surfaces is negligible
compared to heat conduction, the thermal contact resistance can
be analyzed in terms of the heat conducted through the asperity
microcontacts. The thermal contact conductance hc is defined as

hc =
1

Rth
= Q

Aa 1Tc
(25)

where Q is the total heat flux and 1Tc = T1 − T2 (T1 > T2),
where T1 and T2 are the nominal temperatures of contacting
surfaces (1) and (2), respectively. For two contacting spheres (or
spherical asperities) with temperatures T1 and T2, the heat flux
Q through their circular contact area is given by (Cooper et al.,
1969)

Q = 4

(

k1k2

k1 + k2

)

r 1Tc ψ
−1 (26)

where k1 and k2 are the thermal conductivities of surfaces
(1) and (2), respectively, and ψ is a contact resistance factor
approaching 1 for small values of r/R. Equation (26) can be used
to compute the fraction of heat flux 1Q passing through an
asperity microcontact of area aj, i.e.,

1Q(aj) =
4√
π

(

k1k2

k1 + k2

)

1Tc a
1/2
j (27)

Because 1Tc is the same at all asperity microcontacts, the
dimensionless thermal contact conductance hc is given by

hc = Q

Aa 1Tc
= 1

Aa

N(a′s)
∑

j=1

1Qj(aj)

1Tc

= 4√
π

(

k1k2

k1 + k2

)

1

Aa

N(a′s)
∑

j=1

a
1/2
j (28)

or in dimensionless form

h∗c =
(

k1 + k2

k1k2

)

A1/2
a hc =

4√
π

N(a′s)
∑

j=1

(

aj

Aa

)1/2

(29)

where aj is given in terms of a′j by Equations (12, 16, 19),
depending on the mode of deformation, and N(a′s) is the
total number of asperity microcontacts for a global surface
interference d. Equation (29) indicates that the thermal contact
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FIGURE 7 | A model of heat conduction at the asperity microcontact level for (A) slow and (B) fast sliding contact conditions.

conductivity is a function of the topography (fractal parameters),
thermophysical properties of the contacting surfaces, and contact
load (or global surface interference).

In addition to restricting the conduction of heat, the surface
roughness is responsible for raising the temperature at sliding
contact interfaces. A 2D fractal theory of heat conduction at
contact interfaces based on the distribution density function of
the temperature rise has provided insight into the fractions of the
real contact area subjected to various temperature rises and the
maximum temperature rise of a fractal domain for slow and fast
sliding contact conditions (Wang and Komvopoulos, 1994a,b,
1995). In this paper, a 3D fractal approach is introduced based on
the simplifying concept of the dimensionless average temperature
rise T

∗
c at an asperity microcontact given by (Rabinowicz, 1995)

T
∗s
c =

(

k1 + k2
)

T
s
c

µυEA
1/2
a

= 1

4EA1/2
a

(

1P

r

)

(30)

or

T
∗f
c =

(

k2ρ2c2
)1/2

T
f
c

µυ1/2EA
1/4
a

= 1

3.6EA1/4
a

(

1P

r3/2

)

(31)

where µ is the coefficient of friction, υ is the relative sliding
velocity at the contact interface, ρ is the density, c is the specific
heat capacity, and superscripts s and f imply slow and fast
sliding, respectively. Whether slow or fast sliding occurs depends

on the Péclet number Pe = υr/2(k2/ρ2c2). For slow sliding
[Equation (30)], Pe < 0.5 and the heat is conducted into both
surfaces (Figure 7A), whereas for fast sliding [Equation (31)],
Pe > 10 and the heat is conducted from the hotter surface to the
relatively cooler surface (Figure 7B).

Substitution of Equations (12, 16, 19–22) into Equations
(30, 31) yields the following equations of dimensionless average
temperature for elastic, elastic-plastic, and fully plastic asperity
microcontacts at the contact interface of relatively slow and fast

sliding surfaces, T
∗s
c and T

∗f
c , respectively.

For elastic asperity microcontacts
(

a′ep < a′ ≤ a′L

)

,

T
∗s
c,e =

√
2π

8

(

Y

E

)(

a′

Aa

)1/2
(

a′

a′ep

)(2−D)/2

(32)

T
∗f
c,e =

(2π)3/4

7.2

(

Y

E

)(

a′

Aa

)1/4
(

a′

a′ep

)(2−D)/2

(33)

For elastic-plastic asperity microcontacts
(

a′
fp
≤ a′ ≤ a′ep

)

,

T
∗s
c,ep =

√
π

4

(

Y

E

)(

a′

Aa

)1/2



















0.84− 0.65



ln

[

0.037+
(

Y

E

)]

− ln

(

a′

a′
fp

)(2−D)/2






2.2+ 0.4 ln

[

0.037+
(

Y

E

)]

− 0.4 ln

(

a′

a′
fp

)(2−D)/2




1/2



















(34)

T
∗f
c,ep = (π)3/4

3.6

(

Y

E

)(

a′

Aa

)1/4



















0.84− 0.65



ln

[

0.037+
(

Y

E

)]

− ln

(

a′

a′
fp

)(2−D)/2






2.2+ 0.4 ln

[

0.037+
(

Y

E

)]

− 0.4 ln

(

a′

a′
fp

)(2−D)/2




1/4



















(35)

For fully plastic asperity microcontacts
(

a′s ≤ a′ < a′
fp

)

,

T
∗s
c,fp =

√
π

4

(

Y

E

)(

a′

Aa

)1/2 [

1.69+ 0.2 ln

(

E

Y

)]

(36)
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FIGURE 8 | (A) Maximum temperature rise on 2D fractal ceramic and
diamond surfaces vs. sliding speed for D = 1.5 and G* = 2× 10−7, and (B)

effect of fractal parameters D and G* on the fraction of real contact area at a
temperature ≥ 69 oC vs. sliding speed for Pe < 0.5 and µ = 0.15 (Wang and
Komvopoulos, 1994b).

T
∗f
c,fp = (π)3/4

3.6

(

Y

E

)(

a′

Aa

)1/4 [

1.69+ 0.2 ln

(

E

Y

)]

(37)

Equations (32–37) show a dependence of the temperature rise
at asperity microcontacts on the thermomechanical properties
and fractal parameters of the contacting surfaces, the sliding
speed, and the coefficient of friction. They also indicate a stronger
dependence of the temperature rise onmicrocontact area for slow
sliding than fast sliding conditions. It is noted that Equations
(32–37) are limited to relatively low-friction surfaces, such as
lubricated surfaces and low-adhesion (incompatible) solid-solid
contact systems (Komvopoulos, 2012) because, in the present
treatment, asperity deformation is considered to be due to normal
contact loading. However, the present analysis of the frictional
temperature rise at the asperity microcontact level can be easily
extended to high-friction/high-adhesion contact interfaces by
including the effect of the friction force in the contact mechanics
analysis presented in the previous section.

TABLE 1 | Thremomechanical properties of sliding ceramic materials (Wang and
Komvopoulos, 1994b).

Property Material

ZrO2 Al2O3-TiC WC Diamond

E (GN/m2) 210 450 690 1000

ν 0.24 0.24 0.19 0.20

H (GN/m2) 12 22.6 20.6 88

k (W/m·oC) 2.2 16.8 29 1000

ρ (kg/m3 ) 6100 4220 15800 3500

c (J/kg·oC) 630 660 200 525

α (m2/s) 5.72 × 10−7 6.03 × 10−6 9.18 × 10−6 5.44 × 10−4

E*(GN/m2) 111 239 358 521

E*/k (s·oC/m2) 50.5 × 109 14.2 × 109 12.3 × 109 0.521 × 109

To provide quantitative insight into the important effect of
the thermomechanical and surface topography properties on
the temperature rise at sliding contact interfaces, results of
frictional heating for slow sliding (Pe < 0.5) and low friction
(µ = 0.15) conditions obtained from a previous 2D thermal
analysis of frictional heating at fractal contact interfaces (Wang
and Komvopoulos, 1994b) are reproduced in Figure 8. The
results are for typical ceramic bearing materials and diamond
with thermomechanical properties given in Table 1 and elastic-
perfectly plastic material behavior. The higher thermal diffusivity
α = k/ρc of diamond is responsible for the larger speed range
demonstrated by this material, whereas the higher maximum
temperature rise computed for ZrO2 is attributed to its higher
effective elastic modulus-to-thermal conductivity ratio E∗/k
(Table 1). The effect of the fractal parameters D and G∗ on the
fraction of the real contact area of Al2O3-TiC and WC ceramics
exposed to temperature rises of ≥69oC due to slow speed sliding
can be interpreted in the light of the results shown in Figure 8B.
The reason that a larger fraction of the real contact area of
the Al2O3-TiC composite ceramic is subjected to temperatures
≥69oC compared to the WC is its higher E∗/k ratio (Table 1).

In general, the temperature rise at asperity microcontacts
intensifies with increasing fractal roughness and/or decreasing
fractal dimension. The analysis presented in this section reveals
a coupling of the topography, mechanics, and thermal aspects
of contact interfaces. This is illustrated in the flow chart
shown in Figure 9. From the scanned surface topographies, the
fractal description of the equivalent surface topography can be
obtained and D and G∗ can be calculated. Subsequently, from
the restructured topography [Equation (1) or (4)] and effective
mechanical properties E and Y of the contact interface, the
dimensionless contact load and contact area of each asperity
microcontact can be obtained using the contact equations of
the appropriate deformation mode [Equations (5–22)]. Then,
the dimensionless contact load [Equation (23)] and contact area
[Equation (24)], which are correlated through Equations (11–
22), can be obtained by numerical integration. Consequently,
the information generated from the contact mechanics analysis
together with the thermophysical properties of the contact
interface k, ρ, and c, the sliding speed υ , and the coefficient
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FIGURE 9 | Thermomechanics flow chart for rough (fractal) contact interfaces. Dimensionless parameters are indicated by an asterisk.

of friction µ can be used to compute the temperature rise T∗
c

using the appropriate temperature equation [Equations (30–
37)], depending on the mode of deformation and magnitude
of the Péclet number at each asperity microcontact. If the
spatial temperature distribution does not meet the application
specifications, suitable modifications of the surface topography
and thermomechanical properties can be made iteratively using
the flow chart shown in Figure 9 until the contact analysis
yields a size distribution of asperity microcontacts that produces
temperature rises in the desired range for a given contact load,
apparent contact area, sliding velocity, and coefficient of friction.

In the above thermomechanical contact theory, the effect of
heating on the deformation of asperity microcontacts is assumed
to be secondary; consequently, the asperity microcontact areas
[Equations (12, 16, 19)] used in the temperature rise relations
[Equations (30–37)] are determined from the contact mechanics
treatment presented in the previous section. The elastic-plastic
material properties needed to calculate the asperity microcontact
area at the particular temperature rise can be inserted in the
appropriate contact mechanics relations after using an iterative
procedure. Although this approach couples the thermal analysis
with the mechanics analysis, it does not directly account for
the effect of temperature on the asperity microcontact size. This
can be accomplished by employing a thermomechanical analysis
wherein the heat conduction and contact deformation are fully
coupled, as demonstrated in other studies (Ye and Komvopoulos,
2003; Gong and Komvopoulos, 2004, 2005).

MULTISCALE CONTACT
ELECTROMECHANICS

Similar to the restriction of heat transfer through the contact
interface, the multiscale roughness together with a possibly
existing insulating surface film, such as a native oxide layer
or an adsorbed organic substance, can significantly inhibit the
flow of electric current. The restriction of current flux across
a contact interface, known as the electrical contact resistance
(ECR), is of great importance in many application areas, such
as contact-mode microelectromechanical devices, switches, and
relays. Holm (1967) was first to observe the evolution of the
ECR between two flat electrical conductors pressed into contact.
Greenwood (1966) proposed a method for computing the ECR
generated by a cluster of microcontacts and showed that it can
be regarded as the sum of parallel microcontact resistances.
The so-called Holm ECR arises when the size of the contact
area is larger than the electron mean free path (Malliaris and
Turner, 1971; Schneegans et al., 1998), while the so-called
Sharvin resistance (Sharvin, 1965) is encountered when the size
of the contact area is smaller than the electron mean free path.
Barber (2003) considered elastic contact between two rough
conductors and using an analogy between elastic contact and
electrical conductance he developed a contact mechanics theory
that yields bounding solutions of the electrical conductance. On
the basis of the foregoing analogy and Archard’s hypothesis,
Ciavarella et al. (2004) analyzed the contact conductance of rough
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FIGURE 10 | (A) Contact of two rough surfaces separated by an insulating thin film, (B) equivalent contact model of rough surfaces separated by a thin-film insulator,
and (C) electrical analog of the contact interface consisting of parallel constriction and tunneling resistances of the asperity microcontacts.

surfaces with topographies described by theWeierstrass function.
Paggi and Barber (2011) studied the effect of contact pressure
on the electrical conductance of rough surfaces exhibiting
self-affinity and proposed a power-law relation between the
electrical conductance and the mean contact pressure. A general
electromechanics theory that uses fractal geometry to describe
the surface topography, elastic-plastic deformation at the asperity
microcontact level, and size-dependent ECR of microcontacts
that includes both the Holm and Sharvin resistances as the
asymptotic limits (Mikrajuddin et al., 1999) is presented in
this section.

Figure 10A shows two conductive rough surfaces separated
by an insulating thin film brought into contact under load
P, whereas Figure 10B shows the equivalent contact model
consisting of a rigid plane in contact with a deformable rough
surface coated with an insulating film of thickness t = t1 + t2,
dielectric constant K, and energy height above the Fermi level
of the conductive surfaces ϕ0. The ECR caused by an asperity

microcontact comprises the constriction resistanceRc caused by
the convergence (or divergence) of the current flow (Holm, 1967)
and the tunnel resistance Rt introduced by the thin insulating
surface film that acts as a potential barrier to the flow of electrons
(Simmons, 1963). According to Greenwood (1966), the electrical
analog of the total electrical contact resistance R of the contact
interface consists of parallel resistances of asperity microcontacts,
Rcj and Rtj, as shown in Figure 10C. When the contact radius
of an asperity microcontact rj is larger than the average electron
mean-free path of the contacting surfaces λ = λ1 + λ2, the
constriction resistance caused by an asperity microcontact is
dominated by a scattering mechanism and is given by (Holm,
1967)

R
H
cj =

√
π

2
̺





1

a
1/2
j



 (38)
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Alternatively, when rj < λ, the constriction resistance caused
by an asperity microcontact is dominated by the Sharvin
mechanism and is given by (Sharvin, 1965)

R
S
cj = λ̺

(

1

aj

)

(39)

where ̺ is the average specific resistivity of the contacting
surfaces, i.e., ̺ = (̺1 + ̺2 ) /2.

For the electrons to pass through a microcontact interface,
they must overcome the energy barrier of the insulating film by
entering its conduction band. However, according to quantum
theory, there is a finite probability for electrons with energy even
less than the insulator’s energy barrier to tunnel through the
insulating film. For very small voltage dropVi (Vi ≈ 0) across the
jth asperity microcontact with area aj, Rtj is ohmic and is given
by (Simmons, 1963; Kogut and Komvopoulos, 2004b)

Rtj =
[

1S exp
(

1.0251Sϕ1/2
)

3.16× 1010ϕ1/2

]

(

1

aj

)

(40)

where1S = S2 − S1 and

S1 = 6

Kϕ0
(41)

S2 = t − 6

Kϕ0
(42)

ϕ = ϕ0 −
[

5.75

K1S

]

ln

[

S2 (t − S1)

S1 (t − S2)

]

(43)

where S1 and S2 are the limits of the energy barrier at the Fermi
level and ϕ is the mean barrier height.

Equation (40) indicates that Rtj is inversely proportional to
aj. Moreover, numerical results show thatRtj increases with t, K,
and ϕ0 (Simmons, 1963).

When the voltage drop Vi across an asperity microcontact is
not very small,Rtj is non-ohmic and is given by (Simmons, 1963;
Kogut and Komvopoulos, 2004b)

Rtj = Viϕ

[

6.2× 1010

(1S)2

]

[

exp
(

−1.0251Sϕ1/2
)

−
(

1+ Vi

ϕ

)

exp

(

−1.0251Sϕ1/2
(

1+ Vi

ϕ

)1/2
)]−1

(

1

aj

)

(44)

where

S1 = 6

Kϕ0
(45)

S2 =











t

[

1− 46

3Ktϕ0 + 20− 2KTVi

]

+ 6

Kϕ0
, (Vi < ϕ0)

Ktϕ0 − 28

KVi
, (Vi < ϕ0)

(46)

ϕ = ϕ0 −
(

Vi

2t

)

(S1 + S2)−
[

5.75

K1S

]

ln

[

S2 (t − S1)

S1 (t − S2)

]

(47)

Equation (44) shows a non-linear current-voltage relation and
an inverse proportionality between Rtj and aj, while Equations
(45–47) indicate that 1S and ϕ are functions of Vi. Moreover,
numerical results show that the non-ohmic resistance given
by Equation (44) decreases with increasing voltage (Simmons,
1963).

The tunnel resistance given by Equations (40, 44) can be
written in dimensionless form as following,

R
∗
tj =



















(

ϕ

ϕ0

)−2 (
1S

t

)

exp
(

1.0251Sϕ1/2
)

(

aj

Aa

)−1

, (V i ≈ 0)

(

Vi

ϕ

)(

ϕ

ϕ0

)(

1s

t

)−2
[

exp
(

−1.0251Sϕ1/2
)

−
(

1+ Vi

ϕ

)

exp

(

−1.0251Sϕ1/2
(

1+ Vi

ϕ

)1/2
)]−1

(

aj

Aa

)−1

, (Vi 6= 0)

(48)

In the presence of a thin insulating film at the contact interface
of two conductive rough surfaces,Rtj ≫ (RH

cj ,R
S
cj), especially for

highly conductive surfaces, even when Vi is not small (Simmons,
1963; Kogut and Komvopoulos, 2004b). Therefore, in this case
it may be assumed that R

∗
j ≈ R

∗
tj. Consequently, when the

contacting surfaces are separated by a thin-film insulator, the
dimensionless (total) electrical contact resistance R

∗ can be
obtained by numerical integration, i.e.,

R
∗ =

N(a′s)
∑

j=1

R
∗
tj (49)

where R
∗
tj is given by Equation (48) and aj is given in terms

of a′j by Equation (12, 16, or 19), depending on the mode of
deformation at each asperity microcontact. Equations (5, 8,
17–19, 40–49) indicate that the dimensionless ECR depends
on the fractal parameters D, G, and γ , the effective mechanical
properties E and Y , the thickness t and electrical properties K
and ϕ0 of the insulating film, the voltage drop Vi (if it is not very
small), the truncated contact area A′, and the apparent contact
area Aa.

For additional insight into the multiscale electromechanics of
contact interfaces, results of the dimensionless electrical contact
resistance R

∗ of elastic and fully plastic asperity microcontacts
obtained by an iterative procedure in a previous study (Kogut and
Komvopoulos, 2004b) are reproduced in Figure 11. Figure 11A
shows the effect of the insulating film thickness t on the variation

of the dimensionless electrical contact resistanceR∗ with contact
load P∗ for D = 2.3, G∗ = G/A

1/2
a = 10−7, E/Y = 106,

and I = 5 µA. The decreasing trend of the ECR is attributed
to the formation of more and larger asperity microcontacts
with increasing load, providing more electron paths across the
contact interface. The variation of the ECR comprises an initial
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FIGURE 11 | (A) Dimensionless electrical contact resistance R
* vs. dimensionless contact load P* for t = 8, 10, and 12 Å (D = 2.3, G* = 10−7, E/Y = 106, K = 6,

ϕ0 = 2 eV, and I = 5 µA), (B) dimensionless electrical contact resistance R
* vs. dimensionless contact load P* for I = 0–10 µA (D = 2.3, G* = 10−7, E/Y = 106, t =

10 Å, K = 6, ϕ0 = 2 eV), and (C) dimensionless contact area A* vs. dimensionless electrical contact resistance R
* (2 < D < 2.5, 10−11 ≤ G* ≤ 10−7, E/Y = 106,

288, and 391, t = 10 Å, K = 6, ϕ0 = 2 eV, and I = 5 µA) (Kogut and Komvopoulos, 2004b).

stage of rapid decay and a succeeding stage of gradual decrease,
a consequence of the multiscale surface roughness effect. For
relatively light contact loads (P∗ < 0.5), surface contact is mostly
confined at small asperities residing on top of large asperities;
thus, the real contact area is very small and electron flow through
the contact interface is greatly restricted. In the high-load range
(P∗ > 0.5), however, the formation of more and larger asperity
microcontacts increases electron flow significantly. Figure 11A
also shows that the ECR decreases with the insulating film
thickness. This trend is attributed to the enhancement of electron
tunneling with decreasing insulating film thickness. Figure 11B
shows the dimensionless electrical contact resistance R

∗ vs.
contact load P∗and current I for D = 2.3, G∗ = 10−7,

E/Y = 106, K = 6, t =10 Å, and ϕ0 = 2 eV. The
results for I ≈ 0 were obtained from Equation (40), whereas all
other results were obtained from Equation (44). The decrease
of R

∗ with increasing I is attributed to the decrease of R
∗
tj

with Vi [Equation (44)]. This is attributed to the ECR drop with
increasing P∗, which, for a fixed I, leads to a smaller voltage drop
Vi. Consequently, R∗ decreases because R

∗
tj is enhanced by the

decrease of Vi. This voltage compensation mechanism represents
another manifestation of the multiscale roughness effect in
contact electromechanics. Although the solutions corresponding
to I ≈ 0 and I = 0.1 µA are in good agreement, the high voltage
drop at light loads invalidates the assumption of Vi ≈ 0, despite
the very low current (I = 0.1 µA). The noticeable decrease of
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FIGURE 12 | Electromechanics flow chart for rough (fractal) contact interfaces. Dimensionless parameters are indicated with an asterisk.

the ECR by almost two orders of magnitude in the case of
low current (I ≤ 0.1 µA) is due to the ohmic behavior of R∗

tj

[Equation (40)], whereas the less pronounced ECR decrease in
the cases of high current (I ≥ 2.5 µA) is a consequence of
the voltage dependence of R

∗
tj [Equation (44)] and the voltage

compensation mechanism. Figure 11C shows the dimensionless
real contact area A∗ as a function of the dimensionless electrical
contact resistance R∗ for a wide range of fractal parameters and
material properties. Importantly, despite significant differences
in fractal parameters and electrical/mechanical properties, all the
data lay on the same curve, even for the cases of no small voltage.
This suggests that the dependence of A∗ onR

∗ is not affected by
surface topography and material properties. By curve fitting the
data shown in Figure 11C, the following general relation can be
obtained (Kogut and Komvopoulos, 2004b)

A∗ = B exp
(

−βR∗
)

(50)

where B and β are functions of the insulating film properties
(i.e., K, t, and ϕ0) and the current I used to measure the ECR
(i.e., the voltage drop V across the contact interface). The ECR
generally decreases with increasing fractal dimension, contact
load, and current flow and with decreasing fractal roughness,
insulating film thickness and dielectric constant, and height of
energy barrier.

In view of the results shown in Figure 11 and Equation
(50), it may be inferred that the mechanical and electrical

behaviors of contact interfaces are intertwined. Thus, the
flow chart shown in Figure 12 is proposed for the design of
contact-mode electromechanical devices. Specifically, the contact
geometry (either point or line contact) and the topography of
the contacting surfaces are first used to estimate the apparent
contact area and the fractal parameters [Equations (1)–(4)],
respectively. This information and the mechanical properties
of the surfaces are then introduced into the contact mechanics
analysis to obtain the dimensionless contact load and contact
area of each asperity microcontact from the contact equations
of the appropriate deformation mode [Equations (5)–(22)],
the dimensionless contact load [Equation (23)] and contact
area [Equation (24)] by numerical integration, and the size
distribution function and critical truncation areas demarcating
the elastic, elastic-plastic, and fully plastic modes of deformation
at the asperity scale. The next step is to determine the ECR based
on the electrical properties of the contacting surfaces, the applied
voltage, the topography and mechanics information obtained
in the previous step, and the current [Equations (38–49)] and
establish the relation of the ECR with the dimensionless real
contact area A∗ [Equation (50)] and, through Equations (11–22),
with the dimensionless contact load P∗. Thus, a comprehensive
electromechanics analysis of the contact interface can be achieved
by using the correlations of the ECR with the real contact area
and contact load, which are interdependent. If the electrical
performance does not meet the desired specifications, the flow
chart shown in Figure 12 provides a means of modifying the
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topography and/or electromechanical properties of the surfaces
so that the new contact load and real contact area to produce
electrical characteristics that satisfy the application requirements.

When electric current flows through a conductor, electric
power is dissipated in the form of thermal power due to electron
energy loss caused by collisions with the conductor atoms.
The heating generated by this loss of electric energy (Joule
heating) is of high importance in electronics because it can
negatively impact on-chip integration of electronic components.
Thermal effects are even more significant in contact-mode
electromechanical devices, such as switches and relays, because
the inconsistent restriction of current flow through contact
interfaces can seriously affect their performance and durability.
For instance, the temperature at the contact interface of high-
current electromechanical relays may increase to a level causing
melting and hot welding of the contacting surfaces, hence
severely limiting the lifetime of the device. Another example is
the detrimental effect of arcing on the performance of high-speed
switches, where contact bouncing during open/close of the device
can re-establish arcing, consequently prolonging the deleterious
effect of arc heating. The ECR theory presented above can be
used to analyze thermal effects due to Joule heating, implying
a coupling between electrical and thermal analysis of electronic
contacts. Considering that thermal effects can also affect the real
contact area and, in turn, the mechanics of the contact interface,
fully coupled thermo-electro-mechanical (TEM) analyses must
be developed by intertwining mechanics, thermal, and electrical
contact theories, such as those presented herein, for example, and
employing an iterative procedure among key TEM parameters.
This concept provides impetus for the advancement of new
theoretical treatments, which can lead to the construction of
3D TEM maps that can be used to optimize the design of
micro/nanoelectronic devices.

CONCLUSIONS

A fundamental understanding of the mechanics, heat transfer,
and electrical conduction of contact interfaces is of critical
importance to a wide range of traditional and contemporary
technologies. The intricacies of underlying physical mechanisms

controlling contact interface phenomena require a multiscale
treatment that takes into account the hierarchical structure of
surface topography. The integration of realistic, scale-invariant
surface description methods, such as those derived from fractal
geometry, with hybrid analytical-numerical approaches that use
constitutivemodeling at the asperity scale is essential for studying
contact interface phenomena at different length scales. Such
methodology is of particular importance because it can affect
the design and operation efficacy of devices with contacting
components. A general multiscale theoretical treatment of
contact interfaces that exhibit self-affine behavior was presented
in this article. The central objective was to introduce a rigorous
mathematical treatment of the fundamental mechanical, thermal,
and electrical characteristics of contact interfaces exhibiting
multiscale roughness. The present analysis can be extended to
include the influence of the deformation of neighboring asperity
microcontacts, sliding friction, and thermoelectric effects on
contact deformation by introducing more sophisticated contact
mechanics treatments. Surface topography, mechanics, thermal,
and electrical parameters were used in dimensionless form to
analyze the mechanical, thermal, and electrical characteristics
of contact interfaces exhibiting multiscale roughness. The
correlations established among various dimensionless quantities
provide a means of real-time monitoring of important contact
interface parameters, such as the real contact area, thermal
contact conductance, and electrical contact resistance, as
demonstrated by the flow charts presented herein. Perhaps, the
most important contribution of this paper is the establishment of
a theoretical framework for thermo-electro-mechanics studies of
contact interfaces.
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