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Artificial intelligence is changing perspectives of industries about manufacturing

of components, introducing emerging techniques such as additive manufacturing

technologies. These techniques can be exploited to manufacture not only precision

mechanical components, but also interfaces. In this context, we investigate the use of

artificial intelligence and in particular genetic algorithms to identify optimal multi-scale

roughness features to design prototype surfaces achieving a target contact mechanics

response. Exploiting an analogy with biology, the features of roughness at a given length

scale are described through model profiles named chromosomes. In the present work,

the mathematical description of chromosomes is firstly provided, then three genetic

algorithms are proposed to superimpose and combine them in order to identify optimal

roughness features. The three methods are compared, discussing the topological and

spectral features of roughness obtained in each case.

Keywords: surface roughness, multivariate Weierstrass-Mandelbrot function, contact mechanics, optimization,

genetic algorithms

1. INTRODUCTION

It is well-established in the literature that surface topology and texture are important for enhancing
the tribological behavior of contacts. Therefore, optimization of topological features is considered
as a research topic of paramount interest for industrial applications. For instance, optimization
of the shape and position of periodic grooved textures has been investigated in Buscaglia et al.
(2007) in relation to lubrication. Even more ambitious are the recent attempts to tailor roughness
of engineering surfaces by controlling end-milling operations, as discussed in Zhang et al. (2007), or
by cutting techniques as in Nouari et al. (2018). Artificial intelligence based on genetic algorithms
(Zain et al., 2008) and artificial neural networks (Moghri et al., 2014) have been recently exploited to
control milling operations and surface roughness manufacturing by material removal. As another
strategy, additive manufacturing (Brettel et al., 2014) is opening new perspectives to produce
surfaces with specified roughness (see e.g., Farina et al., 2016; Ko et al., 2019; Wüst et al., 2020).

In addition to tribology, the role of an interface between material constituents/phases is
becoming progressively dominant over the one of bulk properties, thanks to the increasing trend
in the miniaturization of components, and to the significant progress in the design of mechanical
systems and materials, starting from the sub-micrometer scale. The interface has very different
properties than the bulk, and is important in a variety of mechanical, physical, and chemical
processes. Interfaces can have significant effects also on the properties of composite materials
(Moroni et al., 2013; Guo et al., 2014, 2017; Kwon et al., 2019). Consequently, industrial applications
often require the design of surface textures able to achieve given target responses and/or to enable
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rapid manufacturing andmorphology changes for in-line control
of mechanical components, as in Bora et al. (2005) for Micro-
Electro-Mechanical Systems (MEMS). Nature is also offering
interesting perspectives for the identification of optimal surface
topologies for selected applications, see e.g., the successful
attempts to create artificial super-adhesives like Gecko’s pads
(Sherge and Gorb, 2001; Gao et al., 2005; Nosonovsky and
Bushan, 2008).

In the present study, a theoretical multi-scale description
of roughness is considered in relation to the Multivariate
Weierstrass-Mandelbrot (MWM) function as a model for a
fractal rough profile (Cinat et al., 2019). The aim of the research is
to establish a mathematical and a computational framework for
the robust identification of the profile model parameters that lead
to identified topologies whose contact response is matching any
requested real contact area-load and contact conductance-load
curves that can be specified by the user. Although the authors
are aware that not all the natural and manufactured surfaces do
obey to the fractal scaling, as pointed out by Carr and Benzer
(1991), Wen and Sinding-Larsen (1997), Borri and Paggi (2015),
Xiaohan et al. (2017), and Gujrati et al. (2018), the choice here
is motivated by the fact that the MWM function has been widely
studied in relation to contact mechanics, and, for instance, we
expect to find that optimization in the low frequency range is
the major concern for controlling the thermal/electric contact
conductance, while fine scale features are governing the real
area of contact (see e.g., Ciavarella et al., 2000, 2004; Paggi and
Barber, 2011). However, it has to be highlighted that, although
the MWM model is herein adopted for validating identification
predictions in relation to benchmark results established in the
literature, the overall proposed computational procedure can be
applied also to other profile or surface models as well, without
specific restrictions.

Motivated by an analogy with biology, the expression surface
roughness genome is herein used to denote the ensemble of
parameters, the genes, associated with the set of elementary
waves that describes the main features of roughness over
multiple length scales. Although such a terminology imported
from biology is not usually adopted in the contact mechanics
community, it is introduced here for its common use in the
research area of genetic algorithms. Within this framework,
we optimize the parameters above to identify a suitable
genome that produces a rough profile having a frictionless
elastic normal contact mechanics response close to a requested
target one. To achieve this goal, we propose various genetic
algorithms, combining mechanical considerations and suitable
optimization tools. The contact problem is solved in terms
of the boundary element method (BEM) (Vakis et al., 2018;
Paggi and Hills, 2020), based on the formulation validated in
Bemporad and Paggi (2015). See also Bemporad and Paggi
(2015) for a wide comparison of other BEM techniques
that could also be effectively applied to solve the same
contact problem.

Regarding the genetic algorithm research contribution,
differently from the previous publication by Cinat et al.
(2019) where a single algorithm was proposed to achieve that
task, here we propose an extensive numerical comparison

of the performance of various algorithms with clear
distinct features.

This article is structured as follows. In section 2, we describe
the normal contact problem, the surface roughness genome, the
features of a single length scale of roughness, and the roughness
reconstruction over multiple length scales. In section 3, we
propose three genetic algorithms, whose aim is to generate
prototype profiles able to achieve given target contact mechanics
responses. In section 4, the effectiveness of these algorithms is
tested and discussed through a representative example, based on
an artificial genome database. Finally, section 5 concludes the
paper and discusses possible future work.

2. NORMAL CONTACT PROBLEM AND
ROUGHNESS DESCRIPTION

According to Johnson (2003), the non-conforming contact
problem between two rough surfaces is proved to be equivalent—
under the assumption of linear elasticity—to the contact problem
between a rigid rough surface and an elastic half-plane, provided
with suitable effective elastic parameters. The reader is referred
to Barber (2003) for details and for a proof of this equivalence.
In this work, normal contact is controlled by imposing an
approaching far-field closing displacement1, which corresponds
to a rigid-body motion of the half-plane. Its value is computed
from the tallest summit of the rough surface. Elastic interactions
among asperities deform the half-plane. During the deformation
process, the tallest summit of the profile remains in contact
with the half-plane, while other asperities may loose such
contact. Their deformation produces a normal contact traction
distribution in the contact area A. Then, the average total contact
pressure p is computed as the ratio between the sum of all the
contact forces acting in this area, and the nominal contact area.
Finally, the contact stiffness K is computed as the derivative of
the contact pressure p with respect to the imposed displacement
1. The reader is referred to Bemporad and Paggi (2015) for
more details about the precise problem formulation and for a
comparison of several techniques that can be exploited to make
the unilateral contact constraints satisfied.

In the article, a surface roughness description is provided,
based on several parameters. For each choice of such
parameters, the contact problem above is solved by an
application of the boundary element method (BEM), as in
Bemporad and Paggi (2015).

2.1. Description of Multi-Scale Surface
Roughness
In the following, one-dimensional rough profiles are considered.
Likewise in Cinat et al. (2019), their height Z(x), expressed
as a function of the position x, is described in terms of the
real part of the Multivariate Weierstrass-Mandelbrot function
(MWM), which was proposed in Ausloos and Berman (1985)
to describe stochastic processes having a larger number of
features than in the original 2D formulation proposed earlier in
Mandelbrot (1977). In the work, a rough profile Z(x) is described
parametrically as
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FIGURE 1 | (A) The chromosome C1(x) is visualized by the red line, and corresponds to the sum of the other colored co-sinusoids with n = 1. (B) The chromosome

C2(x) corresponds to the set of co-sinusoids provided by the choice n = 2.

Z(x) =A
√

log10(γ )

M

(

2π

λ

)−H M
∑

m=1

+∞
∑

n=−∞
γ−(n−1)H

[

cos(φm,n)− cos

(

2π

λ
γ n−1x+ φm,n

)]

. (1)

Each co-sinusoid in Equation (1) is defined by a unique
combination of the parameters H, A, λ, γ > 0, and φm,n ∈
[0, 2π), whereas M is a positive integer, which represents the
number of ridges. In this framework, in analogy with biology,
these parameters are also called genes. Thus, the surface roughness
genome is the overall ensemble of genes providing the realization
of a surface over multiple length scales.

2.2. Description of a Generic Length Scale
of Roughness
The multi-scale description of profiles is governed by the genes
H, λ, γ . The gene γ rules the distance of consecutive wavelengths
in the frequency domain, and H their scaling in amplitude.
The gene λ indicates a reference wavelength. The particular
combination of genes associated with a fixed n identifies a rough
profile Cn(x), which is named chromosome, and is associated to
the features of roughness at the fixed reference length-scale λn =
λγ 1−n.

In biology, a chromosome is a structure composed by some
genes identifying specific features of the genome (King et al.,
2006). Here, it identifies the features of roughness at the
wavelength λn, as follows:

Cn(x) =A
√

log10(γ )

M

(

2π

λ

)−H M
∑

m=1
γ−(n−1)H

[

cos(φm,n)− cos

(

2π

λ
γ n−1x+ φm,n

)]

. (2)

A profile Z(x) is realized in an observation length L inN = L
δ
+ 1

nodes, where δ is the distance between two consecutive nodes,
i.e., the resolution, and L is a multiple of δ. Hence, the infinite

series in Equation (1) is replaced by a finite series, according
to the observation scale L and the resolution δ chosen. The
profile Z(x) is realized from its longest to its shortest observed
wavelength by summing a finite number nc of chromosomes:

Z(x) =
nf

∑

n=ns
Cn(x), (3)

where ns (starting index) and nf (final index) refer to
the chromosomes contributing with the longest and shortest
wavelengths to the realization of the rough profile. It holds nc =
nf − ns + 1.

The realization of roughness over multiple length scales of
observation is obtained by selecting different chromosomes, i.e.,
by varying n between ns and nf . The value ns refers to the
longest wavelength considered, and nf refers to the shortest
wavelength observed. In this way, the chromosomes contributing
to a realization at a given length scale depend on ns and nf .
Without loss of generality, the value ns = 1 is assigned to the
chromosome with longest wavelength referring to the coarsest
realization of a surface. In more details, denoting by ⌊·⌋ the
largest integer smaller than or equal to its argument, one has











ns = ⌊logγ

(

λ
L

)

⌋ + 1 ≥ 1 ,

nf = ⌊logγ

(

λ
δ

)

⌋ + 1 ,

nc = nf − ns + 1 = ⌊logγ

(

λ
δ

)

⌋ .
(4)

To visualize the concept of chromosome, a simple example is
presented in Figure 1. Here, two chromosomes are shown for
two different values of n (n = 1, 2). In both cases, the parent
M = 8 co-sinusoids are shown in Figures 1A,B through the
colored lines.

The chromosome C1(x) is assumed to have a wavelength
equal to the sample wavelength, i.e., λ1 = L = 100 µm.
This chromosome, depicted by a thick red line in Figure 1A,
is obtained by summing all the M = 8 co-sinusoids with the
associated value n = 1.

Frontiers in Mechanical Engineering | www.frontiersin.org 3 May 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Cinat et al. Multi-Scale Surface Roughness Optimization

The chromosome C2(x), depicted by blue line in Figure 1B, is
obtained as the sum of all the M = 8 co-sinusoids with n = 2.
Then, since it is imposed γ = 1.5, the chromosome C2(x) has
λ2 = λ1

1.5 = 66.6 µm.
Each of the two chromosomes in Figure 1 maintains a co-

sinusoidal shape with the same wavelength λn as the associated
parent co-sinusoids, and with a phase angle θ . Its height field in
Equation (2) can be also written as

Cn(x) = Gn

{

gn,1

[

1− cos

(

2π

λ
γ n−1x

)]

+ gn,2 sin

(

2π

λ
γ n−1x

)}

.

(5)

In Equation (5), the amplitude parameter Gn =
A

√

log10(γ )

M

(

2π
λ

)−H
γ−(n−1)H has been introduced, together

with the two constants gn,1 and gn,2, which depend on the phases
φm,n of the ridges with first indexm:

gn,1 =
M
∑

m=1
cos(φm,n), gn,2 =

M
∑

m=1
sin(φm,n). (6)

A feasible mathematical model of a chromosome might be one
in a form similar to that of the MWM function in Equation (1)
withM = 1 and a single value of n, obtained by introducing the
parameters Kn, θn,1, and θn,2:

Cn(x) = Kn

[

cos(θn,1)− cos

(

2π

λ
γ n−1x+ θn,2

)]

. (7)

A particular case of Equation (7) is when the angles θn,1 and θn,2
coincide, say, with the same θn. In such a case, a chromosome is
described exactly according to the MWM profile in Equation (1)
with M = 1 and a single value of n. The expressions of Kn, θn
in Equation (7) are obtained equating Equations (5) and (7), and
are given by







Kn = Gn
√

M+ 2gn,3 ,

θn = arccos

(

gn,1√
M+2gn,3

)

,
(8)

where the parameter gn,3 is defined as follows:

gn,3 =
M−1
∑

i=1

M
∑

j=i+1
cos

(

φj,n − φi,n

)

. (9)

For its validity, Equation (8) requires the argument of

arccos

(

gn,1√
M+2gn,3

)

to be between−1 and 1, i.e.,

∣

∣gn,1
∣

∣ ≤
∣

∣

∣

√

M+ 2gn,3

∣

∣

∣
. (10)

In the above, the additional conditionM+2gn,3 ≥ 0 has not been
imposed explicitly, since it always holds. Indeed, one can easily
check that M + 2gn,3 is the square of the Euclidean norm of the

FIGURE 2 | Percentage of validity of Equation (10) over 1,000 random choices

for the phases (uniformly and independently sampled between 0 and 2π ), for

each value of M. The red line depicts the average percentage of validity.

vector with components (
M
∑

i=1
cos

(

φi,n
)

,
M
∑

i=1
sin

(

φi,n
)

). Of course, this

norm is always larger than or equal to 0.
A numerical simulation has been conducted to verify the

validity of condition (10). This has been evaluated for several
values of M, considering each time 1,000 random choices
(uniformly and independently sampled between 0 and 2π) for the
phases. Figure 2 reports, for each such value ofM, the percentage
of cases for which Equation (10) is satisfied. Such percentage
ranges between 88.5 and 98%, with an average value of∼ 95%.

2.3. Roughness Reconstruction Over
Multiple Length Scales
The definition of chromosome allows the reconstruction of
profiles Z(x) over multiple approximate realizations of the
same surface. This can be done by limiting the summation in
Equation (3) to a subset of chromosomes Cn(x).

For both the stiffness-load curve K(p) and the area-load curve
A(p), only one subset of the chromosomes can be considered to
represent the main features of the contact mechanics response.
This is shown in Figure 3 for a representative example coming
from a fractured alloy interface (black line), considering both
the K(p) and A(p) evolutions. The red dashed line is the contact
mechanics response of the profile obtained by summing up
chromosomes that have a K(p) evolution with a correlation
coefficient larger than 0.95 with the complete K(p) one. Both
the K(p) and A(p) evolutions of this profile overlap significantly
with the ones corresponding to the complete profile, which is
obtained when all the chromosomes are taken into account in
the summation. This means that the interaction of chromosomes
composing only one part of the complete genome is sufficient
to approximate the stiffness-load curve K(p) well, as previously
deduced in Paggi and Barber (2011).

The selection of chromosomes outlined above is detailed in
Algorithm 1. From the genome of a surface, one obtains the
K(p) evolution of the profile described by Equation (1) (Step
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FIGURE 3 | Mechanical curve K(p) in (A) and A(p) in (B) for the alloy fractured profile in the one-dimensional case. The red line refers to the contact mechanics

response of the profile obtained summing up all the chromosomes with a correlation coefficient cn larger than 0.95 with the complete K(p) curve. In the legend, “seq”

stands for “sequenced,” and refers to the complete profile (the one identified from the whole set of genes).

1). The mechanical curves Kn(p) of all the nc chromosomes
composing the considered rough profile are iteratively extracted
using the BEM algorithm for the frictionless elastic normal
contact problem, which is solved via the Non-Negative Least
Squares method proposed in Bemporad and Paggi (2015) (Steps
2–7). The correlation coefficients cn between the extracted curves
and the one K(p) of the complete rough profile are calculated (see
Step 6). Only chromosomes with a correlation coefficient higher
than 0.95 are then retained in the final set Uc of chromosomes
(see Step 8).

3. GENETIC ALGORITHMS TO IDENTIFY
OPTIMAL PROFILES TO MATCH TARGET
CONTACT MECHANICS RESPONSES

The goal of this section is to illustrate methods aimed to design
a prototype profile able to achieve a target contact mechanics
response yt(ξ ) of a rough profile, where t stands for “target”.
This contact mechanics response depends on the specific needs of
the frictionless elastic normal contact problem and is discretized
using nt points, where nt is the number of far-field displacements
1 imposed to the frictionless elastic normal contact problem
(see Johnson, 2003; Bemporad and Paggi, 2015). This target
evolution yt(ξ ) can be, e.g., either the stiffness-load curve K(p)
or the contact area-displacement curve A(1). The unknown
rough profile Zt(x) to be identified is discretized using N = 512
nodes for a length L. Then, the values of ns and nf are defined
according to Equation (4). Here, without loss of generality and
for simplicity, it is imposed ns = 1 for each realization. The
frictionless elastic normal contact problem is solved in nt = 20
equi-spaced rigid body displacements from the topmost summit
of the considered profile to its deepest valley.

In the following, the variable ξ is taken as the contact pressure
p. Moreover, the gene Ai of a generic genome (indexed by i in

Algorithm 1 | Chromosome selection

Input: genome of a profile, ns, nf , number nt of far-field
displacements to be imposed in BEM
Output: Uc: set of chromosomes determining the K(p) evolution
of the profile

1: yr ← BEM results (K(p)) for the reference profile given by
the genome, ns, and nf

2: for all n = ns : nf do
3: for all j = 1 : nt do

4: y
j
n ← BEM results (K

j
n(p))

5: end for
6: cn ← corr. coeff.(yr , yn)
7: end for
8: Uc ← Cn(x) with cn > 0.95

the database) is rescaled to match a given pressure requirement,
p ≤ ptmax, as follows:

Ai ←
ptmax

pimax

Ai . (11)

The maximum pressure pimax is computed imposing a far-
field displacement equal to the original profile amplitude. In
such a way, the new profile shows a maximum pressure
ptmax if a far-field displacement equal to the peak-valley
amplitude is considered to solve the frictionless elastic normal
contact problem.

Three different methods to design the prototype profile are
proposed. All these methods start from a known database of
genomes. In the first case, a genome is selected that has the closest
contact mechanics response to yt among all the genomes in the
database. Its genes are then optimized to increase the similarity
with the target contact mechanics response. In the second case,

Frontiers in Mechanical Engineering | www.frontiersin.org 5 May 2020 | Volume 6 | Article 29

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Cinat et al. Multi-Scale Surface Roughness Optimization

two genomes are selected that match the target response in
different imposed ranges 1p. Then, these genomes are combined
using an optimized cross-over mechanism. The third and last
case is similar to the second one but, instead of the complete
genomes, two sets of chromosomes are mixed. These two sets
are contained in two genomes that match the target response in
different imposed ranges 1p.

3.1. Simple Optimization of Genes
In this section, the Simple Optimization of Genes (SOG)
genetic algorithm is presented. Genes to be optimized belong
to a genome producing a rough profile with a contact
mechanics response very similar to the target one. The following
similarity score

si = s(yt , yi) = 1−
∣

∣

∣

∣

∣

∣

∣

∣

yt(ξ )− yi(ξ )

yt(ξ )

∣

∣

∣

∣

∣

∣

∣

∣

∞
(12)

is defined to quantify how much the target contact mechanics
response, yt(ξ ), and the one yi(ξ ) associated with the parent
i-th rough profile, are similar. Here, ‖ · ‖∞ denotes the l∞-
norm, computed on the nt points used to discretize the contact
mechanics response. Due to Equation (12), the i-th curve
coincides with the target one when si = 1 holds. Otherwise, it
is close to the target one when si ≃ 1 holds.

The numerical steps performed to select the best profile from
the set of ND genomes in the given database are described in
Algorithm 2. The similarity score in Equation (12) is computed
for all the ND rough profiles available in the database, rescaled
according to Equation (11) (Step 2). The contact mechanics
response yi(ξ ) is computed via BEM, considering nt different far-
field displacements, from 0 to the new profile amplitude (Steps
3–5). Finally, si = s(yt , yi) in Equation (12) is computed (Step 6).

Algorithm 2 | Similarity score extraction from a database of
genomes

Input: target contact mechanics response yt , database of ND

genomes (genes, pimax, nt)
Output: si(yt , yi) with i ∈ {1, . . . ,ND}
1: for all i = 1 :ND do
2: Ai ← Eq. (11)
3: for all j = 1 : nt do

4: y
j
i ← BEM results at 1

j
i

5: end for
6: si ← Eq. (12)
7: end for

Genes belonging to the three genomes with the three largest
associated values of s(yt , yi) are now optimized using the
Globally Convergent Method of Moving Asymptotes (GCMMA)
(Svanberg, 2002). This is an iterative optimization algorithm,
which is often used in optimal design for mechanical problems
(see Bacigalupo et al., 2016, 2017 for some of its recent
applications to band gap optimization). The GCMMA algorithm
replaces a nonlinearly constrained optimization problem by a
sequence of approximating nonlinearly constrained optimization

subproblems, which are simpler to solve. In the work, the
objective function has been chosen to be the square of the
similarity score, i.e., s2(yt , yi), in order to increase its smoothness.
The GCMMA iterative solution is obtained after a number nit of
steps, starting from an initial choice for the vector of optimization
variables. In the case of the SOG, this initial choice is provided
by Algorithm 2, which provides an initial value of the similarity
score close to 1. In such a way, there is no risk to get a negative
similarity score by locally maximizing its square.

To save CPU time, the number of variables in the optimization
problem is limited as follows. The genes H, λ, and γ

determine the frequency spectrum, i.e., the interaction among
different length scales. Therefore, they are not varied during
the optimization, but fixed to their original values. The gene
A is varied at each optimization step to satisfy the pressure
requirement, according to Equation (11). So, only the phases φm,n

are considered as optimization variables. In the optimization,
their values are constrained in the range between ∓10%
of their initial values, to preserve the main features of the
original chromosomes. Moreover, only the phase genes φm,n

of chromosomes that determine the main features of the K(p)
response are considered. Such genes are selected according to
Algorithm 1.

Finally, the SOG algorithm is summarized in Algorithm 3.
Starting with a profile scouting from the available database (Step
1), the three profiles whose contact mechanics responses are most
similar to the target yt are chosen (Step 2). The genes of each
such genome are then optimized using the GCMMA algorithm
(Steps 3–6), limiting the optimization variables only to the
chromosomes determining the main features of the target yt , as
determined by Algorithm 2. The resulting optimized genomes are
denoted by Û i

1. Finally, among such genomes, the new genome
is chosen as the one with the best (square of the) similarity
score with respect to the target response (Step 7). In this last
step, argmax(fi)i=1,...,n1 denotes the index i associated with the
largest fi.

Algorithm 3 | Simple Optimization of Genes (SOG)

Input: target contact mechanics response yt , genome database
Output: new genome USOG with contact mechanics response
close to yt

1: s from Alg. 2
2: U1 ← the three genomes with the three largest similarity

scores (Eq. 12)
3: for all i = 1 : n1 do (n1 = card(U1))
4: U i

c ← Alg. 1 applied to U i
1

5: fi ← s(yt , yi), Û
i
1, both from GCMAA(U i

c)
6: end for
7: USOG ← Û

argmax(fi)i=1,...,n1
1

3.2. Genome Cross-Over
In this section, the Genome Cross-Over (GCO) genetic algorithm
is presented. In this method, different pairs of genomes are
mixed, to obtain a new genome matching the target response
yt(ξ ). The best pair of genomes is chosen in relation to
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FIGURE 4 | A generic profile y1(p) approximates the target response yt (p)

[here, K(p)] accurately under a certain level of pressure p̄. At the opposite,

another profile y2(p) provides a good approximation of yt (p) only above p̄.

their similarity scores in two specific ranges of the target
response yt(ξ ).

This concept is explained through Figure 4, where a target
response yt(p) is shown by the red line. For the sake of
explanation, two curves y1(p) (dashed black line) and y2(p)
(dashed dot blue line) have been manually generated, which have
a similarity score with respect to yt(p) equal to s1 ≃ 0.89 and
s2 ≃ 0.88, respectively.

However, the curves y1(p) and y2(p) describe quite accurately
the curve yt(p) in different ranges of pressures, if a suitable
threshold pressure p̄ is defined. The value of p̄ can be chosen
arbitrarily, or might be imposed by the particular problem
formulation. In the specific case shown in the figure, in the
interval [0, p̄], the curve y1 represents with good accuracy yt
[s1(yt , y1) ≃ 0.97]. The same happens in the interval [p̄, ptmax]
for the curve y2 [s2(yt , y1) ≃ 0.99].

Then, it is reasonable to expect that a new profile obtained
by combining the two genomes associated with y1 and y2,
respectively, should provide a contact mechanics response closer
to yt over the whole range of pressures. However, mixing
these two genomes may also lead to a very different roughness
organization. For this reason, the GCO iterative scheme checks if
the new genome, obtained by mixing the genome of y1 and the
one of y2, is able to represent accurately yt over the whole range
of pressures, before using the GCMMA algorithm to increase the
value of the similarity score.

The GCO structure is presented in Algorithm 4. According to
the value of p̄, two different sets U1 and U2 are identified from
the database of genomes (Steps 1–2). The first set U1 contains
the genomes with a value of the similarity score (Equation 12)
larger than 0.95 in the interval [0, p̄] (Step 3). The second set
U2 contains the genomes with a value of the similarity score

(Equation 12) larger than 0.95 in the interval [p̄, ptmax] (Step
4). All possible combinations of genomes from the two sets
above are now considered, defining the set U3 (Step 5–11). A
new genome corresponds to each of these combinations, whose
gene A is rescaled according to Equation (11) (Step 8). Then,
the value of the similarity score (Equation 12) is computed
with respect to the target response (Step 9). The three new
genomes showing the three largest values of the similarity score
are used as inputs to the GCMMA algorithm, defining the set
U4 (Step 12). Also in this case, the number of genes to be
optimized is limited, considering only the phases φm,n associated
with the chromosomes that determine the main features of the
K(p) evolution of the parent curve (see Algorithm 1). The new
genomeUGCO with the maximum value of the similarity is finally
identified (Step 17).

3.3. Chromosomes Cross-Over
In this section, the Chromosomes Cross-Over (CCO) genetic
algorithm is presented. We recall that, as observed in section 2,
the main features of the contact mechanics response of a rough
profile are determined by specific chromosomes of the genomes.
This subdivision allows the introduction of a chromosomes
selection step to reduce the number of variables to be optimized
using the GCMMA algorithm, as presented before for the SOG
(section 3.1) and the GCO (section 3.2).

In the CCOmethod, only chromosomes determining themain
features of the contact mechanics responses of two different

Algorithm 4 | Genome Cross-Over (GCO)

Input: target contact mechanics response yt , genome database,
threshold pressure p̄
Output: new genome UGCO with contact mechanics response
close to yt

1: s(1) from Alg. 2, with similarity score computed in the
interval [0, p̄]

2: s(2) from Alg. 2, with similarity score computed in the
interval [p̄, ptmax]

3: U1 ← genomes with s
(1)
i > 0.95

4: U2 ← genomes with s
(2)
i > 0.95

5: for all i1 = 1 : n1 do (n1 = card(U1))
6: for all i2 = 1 : n2 do (n2 = card(U2))

7: U
(i1 ,i2)
3 ← U i1

1 + U i2
2

8: U
(i1 ,i2)
3 rescaled according to Eq. (11)

9: s(i1, i2)← s(yt , y(i1 ,i2)) from Eq. (12) applied

to U
(i1 ,i2)
3

10: end for
11: end for
12: U4 ← the three genomes in U3 with the three largest

similarity scores (obtained from s)
13: for all i = 1 : n4 do (n4 = card(U4))
14: U i

c ← Alg. 1 applied to U i
4

15: fi ← s(yt , yi), Û
i
4, both from GCMAA(U i

c)
16: end for
17: UGCO ← Û

argmax(fi)i=1,...,n4
4
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genomes are mixed to match the target response yt . These two
sets of chromosomes come from genomes that have the largest
values of the similarity score in specific ranges of the target
response yt , as done for the GCO method (see section 3.2).
Then, in this case the GCMMA is applied to the complete set
of chromosomes composing this new genomes, since they all
determine its mechanical evolution.

The CCO iterative scheme is summarized in Algorithm 5.
According to the value of the threshold pressure p̄, two different
sets U1 and U2 of reduced genomes are identified, starting from
the given database (Steps 1–2). The first set U1 is obtained as
follows. First, one generates a subset of genomes that show a
value of the similarity score (Equation 12) larger than 0.95 in the
interval [0, p̄] (Step 3). Then, these genomes are reduced, limiting
to those chromosomes that affect theK(p) evolution significantly.
Such chromosomes are selected according to Algorithm 1. The
resulting reduced genomes form the set U1. The second set U2

is obtained in a similar way as U1, but computing the similarity
score in the interval [p̄, ptmax] (Step 4). All possible combinations
of these reduced genomes from the two sets above are now
considered, defining the set U3 (Steps 5–11). A new genome
corresponds to each of these combinations. Its amplitude gene
A is rescaled according to Equation (11), to match the pressure
requirement (Step 8). Then, the value of the similarity score
(Equation 12) is computed with respect to the target response
(Step 9). The three new genomes showing the three largest
values of the similarity score are used as inputs to the GCMMA
algorithm, defining the set U4 (Step 12). Only in the case of
the CCO algorithm, the GCMMA algorithm is applied to all the
genes of this new genome, as the size of the optimization problem
has been already reduced in Steps 3–4. The new genome UCCO

with the maximum obtained value of the similarity score is finally
identified (Step 16).

4. OPTIMAL GENOME TO MATCH A
SPECIFIED CONTACT MECHANICS
RESPONSE

In this section, the genetic algorithms described in section 3
are compared in their application to a representative example.
Before doing that, the characteristics of the numerical genome
database considered in the paper are reported. Then, the set-
up of the numerical experiment proposed is introduced. Finally,
the related results are discussed, focusing the attention on the
characterization of the so-obtained new genomes.

4.1. Database of Genomes
A database of genomes is needed to apply all the genetic
algorithms proposed in the paper. In the following, a small
database is generated numerically, to show a representative
example of this approach. To generate the database, the
amplitude parameter is fixed toA = 1, and the main wavelength
is put equal to λ = 849.42 µm.

The number of ridges is set to M = 1, to save computational
time. This particular case corresponds to chromosomes described
according to Equation (7) with θn,1 = θn,2 = θn. As discussed

Algorithm 5 | Chromosomes Cross-Over (CCO)

Input: target contact mechanics response yt , genome database,
threshold pressure p̄
Output: new genome UCCO with contact mechanics response
close to yt

1: s(1) from Alg. 2, with similarity score computed in the
interval [0, p̄]

2: s(2) from Alg. 2, with similarity score computed in the
interval [p̄, ptmax]

3: U1 ← Cn(x) from Alg. 1, for those genomes with s
(1)
i > 0.95

4: U2 ← Cn(x) from Alg. 1, for those genomes with s
(2)
i > 0.95

5: for all i1 = 1 : n1 do (n1 = card(U1))
6: for all i2 = 1 : n2 do (n2 = card(U2))

7: U
(i1 ,i2)
3 ← U i1

1 + U i2
2

8: U
(i1 ,i2)
3 rescaled according to Eq. (11)

9: s(i1, i2)← s(yt , y(i1 ,i2)) from Eq. (12) applied to

U
(i1 ,i2)
3

10: end for
11: end for
12: U4 ← the three genomes in U3 with the three largest

similarity scores (obtained from s)
13: for all i = 1 : n4 do (n4 = card(U4))
14: fi ← s(yt , yi), Û

i
4, both from GCMAA(U i

4)
15: end for
16: UCCO← Û

argmax(fi)i=1,...,n4
4

in section 2, this can be considered as representative of several
situations for a rough profile. Each profileZi(x) is then discretized
using N = 512 nodes. The elastic modulus is imposed to be
equal to E = 1MPa. Furthermore, nh = 20 different pairs of
values forH and γ are considered. They are generated according
to a Sobol’ sequence (Niederreiter, 1992) (see Figure 5A), with
H ranging between 0.5 and 1.5, and γ between 1.4 and 2.
The value of γ is chosen in such a way to keep small the
number of frequencies composing the profile spectrum (see
Equation 4), thus limiting the computational costs. Also the
phase matrix 8 is generated according to a Sobol’ sequence.
This matrix is made of nφ = 5 columns, corresponding to 5
choices for the set of phases. The number of rows is equal to
the maximum possible number of phases for these choices of the
parameters. According to Equation (4), such number is obtained
in correspondence of the smallest value of γ . Then, ND = nhnφ

rough profiles Zi(x) are generated, combining each pair (H, γ ) to
each column of8, considering only the number of values needed
for the phases.

4.2. Set-Up of the Numerical Experiment
In Figure 6, the contact mechanics response yt = K(p) is
depicted through the black line. All the values are considered
independent from E, as this is equal to unity. Also the K(p)
responses of all the genomes in the generated database are
visualized in Figure 6. The target contact mechanics response
yt has been generated manually, and has a trend similar to
the ones belonging to the database. The maximum pressure
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FIGURE 5 | Genome database: (A) enumeration of all the pairs H and γ generated. (B) First thirteen elements of the first three columns of the matrix 8 (M = 1),

which are common to each combination. A larger number of phases is considered for smaller values of γ (i.e., for γ < 1.6).

FIGURE 6 | (A) Target curve yt = K(p) along with all the corresponding curves associated with the genomes in the generated database; (B) all A(p) curves associated

with those genomes.

reachable is imposed to be ptmax = 1.6× 10−4N/m. This value
is larger than the ones of all the genomes in the database
considering, for each profile, a far-field displacement equal to the
profile amplitude.

For each algorithm, the stage just preceding the application
of the GCMMA algorithm is referred to as “GCMMA (0).”
For the SOG, it corresponds to the selection of the three best
values obtained from the scouting of the database (Step 2 in
Algorithm 3). For both the GCO and the CCO algorithms, it
corresponds to the computation of the similarity scores of the
new genomes determined after the cross-over (Step 12 in both
Algorithms 4 and 5). For the SOG, the GCMMA algorithm
is applied with nit = 5, while for the GCO and CCO, only
with nit = 3. The output of this optimization step is denoted

by “GCMMA (1).” These different choices for nit are made
in order to have comparable computational times of about 1
minute. In such a way, it is possible to observe variations
in the results in a sufficiently small time, enabling in-line
control as a possible successive step. Moreover, in the numerical
experiment, for the SOG and GCO algorithms, the GCMMA
is also applied in a second optimization step, whose output is
denoted as “GCMMA (2),” using nit = 2 iterations. In this
case, the genes to be optimized are the ones referred to the
chromosomes excluded in the selection step (see Algorithm 1).
For the CCO, this second step cannot be applied since these
chromosomes are excluded in the first part of the algorithm
(Steps 1–4 in Algorithm 5). However, to make the notation
uniform for the three algorithms, a fictitious “GCMMA (2)”
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output is introduced for the CCO, by duplicating the results of
“GCMMA (1).”

4.3. Numerical Results
The values of the similarity score s given by Equation (12) for the
genomes obtained by combination and optimization using the
SOG, GCO, and CCO algorithms are reported in Figure 7. The
threshold pressure used for both the GCO and CCO is set equal
to p̄ = 0.08 [1/mm]. For each algorithm, solutions at different
stages are reported in the figure. The first ones correspond
to the three best solutions obtained in the first stage of each
algorithm, before the application of the GCMMA (such solutions
are represented in the figure by the triangle, circle, and cross, in
increasing order). The figure shows that all the algorithms are
quite efficient in matching the target contact mechanics response,
achieving large values for the similarity score. The application of
the GCMMA is beneficial for all the algorithms. However, the

FIGURE 7 | For the outputs of the SOG, GCO, and CCO algorithms, values of

the similarity scores with respect to the target curve yt. The threshold pressure

is p̄ = 0.08 for both the GCO and CCO.

GCO and CCO algorithms might provide even better solutions
by varying the threshold pressure p̄.

4.4. Effect of the Threshold Pressure p̄
A threshold pressure p̄ has been introduced for the GCO and the
CCO, to select individual genomes able to approximate locally
the target curve with a good accuracy. Additional simulations
have been made, to assess the sensitivity of the results with
respect to such a parameter. Both the GCO and CCO algorithms
have been applied with different values of p̄. Such values have
been chosen between 0.5× 10−4N/m and 1.1× 10−4N/m. A
significant variation on the maximum value of the similarity
score is observed for the GCO algorithm (see Figure 8A). On
the contrary, the CCO algorithm seems to be not affected by
the value of p̄, and the new genomes obtained by that algorithm
are composed by the same starting genomes, independently of
the threshold pressure p̄. This may be due to the fact that
our investigation has been conducted starting from a small
database of genomes. In Figure 8B, the cardinality of the set
U3 is presented, for both the GCO and CCO algorithms. This
set contains the new genomes obtained after the cross-over
of genomes/chromosomes. The white part indicates, for both
algorithms, the number of genomes whose value of the similarity
score with respect to the target curve yt is larger than 0.95. The
cardinality of the setU3 varies significantly with p̄, and is the same
for both algorithms. Nevertheless, the GCO algorithm is more
efficient in terms of the obtained similarity with the target curve.

4.5. Description of the Optimized Genomes
Representing yt
The best three new genomes obtained at the end of the three
algorithms presented in this paper have contact mechanics
responses overlapping significantly with the target curve (see
Figure 9A). However, the three genomes present different
evolutions of the bearing area, as depicted in Figure 9B. Only the
A(p) curves obtained by the SOG and GCO are similar. This may
be due to the fact that, in the case of the CCO, high-frequency

FIGURE 8 | Sensitivity of the GCO and CCO outputs with respect to p̄: (A) best similarity scores obtained for each algorithm. (B) Cardinality of the set U3 which

contains the new genomes obtained just before the application of the GCMMA, i.e., at the stage “GCMMA (0)” in Figure 7.
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FIGURE 9 | Mechanical behavior of the best rough profiles (see Figure 10), that approximate the target curve yt: (A) contact stiffness versus contact pressure; (B)

real contact area versus contact pressure.

FIGURE 10 | Topography of the best rough profiles approximating the target curve yt (see Figure 9).

features of the rough profile might have been neglected. This is
clear from Figures 10, 11.

The topography of these rough profiles is presented in
Figure 10. The profiles obtained by the SOG, GCO, and CCO
algorithms are depicted, respectively, through a black dash dot-
line, a red dashed line, and a blue continuous line. All these
profiles have very similar geometrical features, regarding the
locations of peaks and valleys. Moreover, it is interesting to
notice that the profile provided by the CCO algorithm is a good
approximation of the profile given by the GCO algorithm, which
presents more high-frequency features.

To conclude, the discrete Power Spectral Density (PSD) P(ω)
of the new obtained genomes is shown in Figure 11, and is
represented by markers in both sub-figures. For each case, the
continuous PSD function, which is obtained through the Fast
Fourier Transform (FFT) filtering (Berry and Lewis, 1980), is
shown by a continuous line. For the SOG (see Figure 11A), the
peaks of the continuous PSD function match the discrete one
accurately for high frequencies. No good matching is found for
low frequencies. The same remark holds for the case of the GCO

(see Figure 11B). Here, the spectrum is more dense and, only
for high frequencies, peaks of the continuous PSD function are
located in the same positions of the genome. For both the SOG
and the GCO, a consistent difference in the amplitude of P(ω) is
found. Finally, the spectrum of the profile obtained by the CCO
is composed by a small set of frequencies. The high-frequency
part of the PSD is flat. In this case, the discrete power spectral
density is nearly proportional to the one of the SOG in the low-
frequency range. Since the GCO approximation of the target
curve is obtained using a smaller set of chromosomes, it can
be easily controlled for the case of in-line control of the rough
profile morphology. However, in this case, the PSD is almost
flat, and some peaks are found in frequencies where there are no
genome components.

5. CONCLUSION

The main goal of this work was to provide a mathematical and
computational methodology to identify new surface topologies
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FIGURE 11 | Power spectral density of the obtained new genomes, whose associated profiles are shown in Figure 10: (A) case of the SOG algorithm; (B) case of the

GCO algorithm; (C) case of the CCO algorithm.

with given target contact mechanics responses, based on a
multi-scale characterization of roughness. This was described
by a superposition of a finite set of successive length scales
of roughness, where each scale is associated with a particular
form of the MWM function, named chromosome. Based on
this representation, three genetic algorithms were proposed to
combine profiles and identify the best one which meets the given
target contact mechanics response.

The first genetic algorithm (Simple Optimization of Genes,
SOG) optimizes the genes of a known genome. Embedded in
the SOG, an iterative optimization algorithm (the GCMMA)
was used to increase the similarity with the target contact
mechanics response. To save computational time, optimization
was performed only with respect to the dominant chromosomes
of the genome, i.e., the ones for which the correlation coefficient
between the associated contact mechanics response and the target
one is above a given threshold.

The second genetic algorithm (Genome Cross-Over,
GCO) crosses-over two different genomes that show a high
similarity with respect to the target response in two given
intervals determined by a threshold pressure p̄. Also in this
case, only dominant chromosomes were optimized to save
computation time.

The third genetic algorithm (Chromosomes Cross-Over,
CCO) consists in a cross-over of chromosomes that provide
the main features of the contact mechanics responses of two
genomes that well approximate the target curve in two reference
intervals determined by the threshold pressure p̄. In this case,
GCMMA was applied to the complete new genome, since the
number of optimization variables is smaller than for the other
two approaches.

The three genetic algorithms proposed in this work generated
profiles that almost fully reproduce the given K(p) curve, when
this is chosen as the target contact mechanics response. Also, they

have in common similar features regarding their topography,
such as the locations of peaks and valleys. This characterization
might be caused by the fact that a limited number of genomes
was present in the database used for the numerical experiment
reported in the paper. A much wider set of profile topologies
is expected to be obtained by exploiting a significantly larger
database, facilitating the discovery of optimal patterns/textures,
based on the specific needs. Also, the investigation can be
extended to all the genomes that provide a good approximation
of the target curve, in order to identify some geometrical features
that drive the elastic response of a rough profile. Once identified,
these features can be taken into account in the optimization by
adding specific chromosomes, to be controlled in the case of
in-line profile morphing.

Finally, the authors would like to remark that the proposed
approaches could be extended to the two-dimensional case,
although this is expected to require a larger computational
effort. Moreover, the use of micromechanical contact theories
such as those compared in Zavarise et al. (2007) and Paggi
and Ciavarella (2010) could be another interesting research
direction. For instance, one could assume not to have
the surface height field at all, but only a set of relevant
statistical parameter inputs of micromechanical contact theories.
In such a context, the search for the optimal topology
to match a prescribed contact response would reduce to
the identification of the statistical parameters based on the
combination of the initial dataset and of the proposed
genetic algorithms.
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