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Two-dimensional Cattaneo–Mindlin problem on a contact with slip and adhesion between

two elastic bodies of the same material is considered in classical statement for circular

cylinders as well as in more general statements: for non-circular cylinders with higher

order of touch and cylindrical bodies with a wavy periodic surface. Stress distributions

are found both in the contact area and inside the bodies. The question of how the friction

affects a formation of adhesion zone in the contact area and distribution of maximum

tangential stress within the bodies is investigated.
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INTRODUCTION

If elastic bodies are made of the same material and their sizes as well as the radii of curvature
of their surfaces are much larger than the size of contact area, then a mutual slip of contacting
surfaces will not occur in the case of normal contact. It means that friction forces do not appear
in the contact area (Johnson, 1985). If a shear loading is applied to such contacted bodies, then
depending on its magnitude, compared with a normal loading, two cases are possible. The first one
is full mutual slip of surfaces of the bodies in whole contact area, which occurs under ultimate shear
loading. In the second case, surfaces of the bodies clutch in the middle of contact area under the
friction influence and slide against each other at its edges. In the last case, we have a contact with
slip and adhesion. The size of adhesion zone is unknown in advance and depends, in particular, on
a friction coefficient.

Contact with slip and adhesion between elastic bodies of the same material, first considered
independently by Cattaneo (1938) and Mindlin (1949), is commonly called the Cattaneo–Mindlin
problem (Johnson, 1985). In a two-dimensional case, this problem involves the contact of elastic
cylindrical bodies under conditions of plane strain. In a three-dimensional case, it is about the
contact of elastic spheres or bodies, which have smooth convex surfaces and touch each other
previously at a point. The Cattaneo (1938) andMindlin (1949) have found distribution of tangential
stress in the contact area. The stress within the bodies, in particular, a parameter corresponding to
the von Mises yield criterion was investigated in Dini and Hills (2004).

The generalization of the Cattaneo–Mindlin problem on the cases of higher-order touch,
multiple contact areas and periodic contact are presented in Ciavarella (1998a,b), Jager (1998),
Block and Keer (2008), Papangelo and Ciavarella (2015), and Papangelo et al. (2015). The stress
distributions inside the contacting bodies were not studied in these papers. Periodic contact with
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slip and adhesion problems of plane strain between two elastic
bodies with the samematerial (one is a half-space and another has
a complex shape surface) were considered in Goryacheva et al.
(2012), Chumak et al. (2014), Goryacheva andMartynyak (2014),
and Malanchuk et al. (2017).

This article deals with two-dimensional Cattaneo–Mindlin
problem as in classical statement for circular cylinders and also
in two more general statements: for non-circular cylinders with
higher order of touch and cylindrical bodies with a wavy periodic
surface. In addition to the distribution of contact stresses, the
distribution of stresses is found inside the bodies, in particular,
the distribution ofmaximum tangential stress. Previously, a study
of distribution of maximum tangential stress in elastic bodies,
which are under conditions of smooth and sliding contact, was
performed by Belyaev (1924), Sneddon (1946, 1948), Kuznetsov
(1978), Kuznetsov and Gorokhovsky (1978), Johnson (1985),
Ostryk (2015a,b), Klimchuk and Ostrik (2017), and Klimchuk
and Ostryk (2018). Results of such studies enable to reveal zones
with high values of tangential stresses, where a plastic flow of
material appears according to the Tresca yield criterion.

Contact of Circular Cylinders
Let us consider two elastic cylinders, which have radii R1 and
R2 as well as the same elastic constants (G is a shear modulus
and ν a Poisson’s ratio). Cylinders touch previously along the
common generatrix (Figure 1A). They are being compressed
by normal forces of intensity P uniformly distributed through
the axial coordinate and form a contact area −a ≤ x ≤
a (Figure 1B). After that, cylinders are applied by uniformly
distributed tangential forces of intensity Q, perpendicular to
generatrix (Figure 1C). Under the friction influence, the contact
area divides into the adhesion zone c ≤ x ≤ c in the middle
as well as slip zones −a ≤ x < c, c < x ≤ a at its
edges. Boundary points of cylinders have the same tangential
displacements in the adhesion zone. Tangential and normal
stresses are subjected to the Amonton friction law in slip zones.
Thus, they are proportional with a friction coefficient µ0. The
plane strain independent of the axial coordinate takes place
within the cylinders. Owing to the assumption that a contact
area is small (a << R1, R2), the problem is formulated for two
elastic half-planes. Surfaces of the bodies near the contact area
are approximated by parabolic cylinders y = x2/(2R1), y =
−x2//(2R2).

On the first stage of normal loading, boundary conditions of
the problem have the form

(u
(2)
y − u

(1)
y ) |y=0 = x2

2R∗ , σ
(1)
y |y=0 = σ

(2)
y |y=0 ,

−a ≤ x ≤ a, σ
(1)
y |y=0 = σ

(2)
y |y=0 = 0, |x| > a,

τ
(1)
xy |y=0 = τ

(2)
xy |y=0 = 0 , −∞ < x < ∞, 1

R∗ = 1
R1

+ 1
R2

(1)

where R∗ is a combined radius of curvature. According to the
last condition, shear stresses are absent in the contact area due
to the problem symmetry with respect to axis Oy. With the
use of a solution of this problem (Johnson, 1985), the contact
pressure function

p(x) = −
1

2G
σ (1)
y |y=0 = −

1

2G
σ (2)
y |y=0, −a ≤ x ≤ a (2)

has a following form:

p(x) =
P

πa2G

√

a2 − x2 . (3)

A half-width of contact area is determined by an equality

a = 2

√

(1− ν) PR∗

πG
, (4)

which follows from an equilibrium condition

a
∫

−a

p(x)dx =
P

2G
. (5)

On the second stage of loading by tangential forcesQ, considered
in Cattaneo (1938) and Mindlin (1949), boundary conditions are
the following:

(

u
(2)
x − u

(1)
x

)

|y=0 = 0 , −c ≤ x ≤ c, τ
(1)
xy |y=0

= µ0 σ
(1)
y |y=0 , c < |x| ≤ a,

(

u
(2)
y − u

(1)
y

)

|y=0 = x2

2R∗ , σ
(1)
y |y=0 = σ

(2)
y |y=0 , τ

(1)
xy |y=0

= τ
(2)
xy |y=0 , −a ≤ x ≤ a,

σ
(1)
y |y=0 = σ

(2)
y |y=0 = τ

(1)
xy |y=0 = τ

(2)
xy |y=0 = 0, |x| > a.

(6)

Normal stress σ
(1)
y |y=0 in the contact area remains

the same as on the first stage. It is determined by
equalities (2) and (3). According to the Cattaneo–
Mindlin solution, a dimensionless function of tangential
contact tractions

q(x) = −
1

2G
τ (1)xy |y=0 = −

1

2G
τ (2)xy |y=0 , −a ≤ x ≤ a (7)

in slip and adhesion zones has the forms

q(x) =
µ0 P

πa2G

(
√

a2 − x2 −
√

c2 − x2
)

, −c ≤ x ≤ c ,

q(x) = µ0p(x), c < |x| ≤ a . (8)

The relative size of adhesion zone

c

a
=

√

1−
Q

µ0 P
(9)
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FIGURE 1 | Scheme of contact: (A) bodies prior to loading and (B) the first stage and (C) the second stage of loading.

is determined by an equilibrium condition

a
∫

−a

q(x)dx =
Q

2G
. (10)

Figure 2 shows the distribution of normalized normal p̄(x) =
(2Ga/P) and tangential q̄(x) = (2Ga/P)q(x) contact tractions
in the case µ0 = 0.25 for different values of ratio Q/P. The
distribution of contact pressure p̄(x) is permanent, and the
distribution of tangential tractions q̄(x) has characteristic breaks
at points x = ±c of transition from the adhesion zone to slip
zones. For values Q/P = 0.05, 0.1, 0.15, and 0.2, the relative
size c/a of the adhesion zone is 0.894, 0.775, 0.633, and 0.447,
respectively. In the case of Q/P = 0, tangential tractions do not
appear (q(x) ≡ 0) in the contact area (corresponding to a smooth
contact). In the case of Q/P = µ0, we have a sliding contact.
Herewith, the adhesion zone disappears (c/a = 0).

Stresses at each point (x, y) of elastic half-plane (cylinder 1) are
found with use of the Kolosov formulas (Muskhelishvili, 1966):

1

2G
(σx + σy) = −4ℜ8(z) ,

1

2G
(σy − σx + 2iτxy)

= 2 [8(z) + 8(z) + (z − z)8′(z)], (11)

where 8(z) is the Kolosov–Muskhelishvili potential, an analytic
function of complex variable z = x+ iy, presented by the Cauchy
type integral

8(z) =
1

2π i

a
∫

−a

p(s)− iq(s)

s− z
ds . (12)

According to formulas (3) and (8), density of integral (12) has
the form

p(s) − iq(s) =
P

πa2 G

{

(1− iµo)
√
a2 − s2 + iµ0

√
c2 − s2 , −c ≤ s ≤ c,

(1− iµo)
√
a2 − s2 , −a ≤ s < −c, c < s ≤ a.

(13)

Taking into account (Equation 13), we write the function 8(z)
from Equation (12) as follows:

8(z) =
P

πa2G

1

2π i



(1− iµ0)

a
∫

−a

√
a2 − s2

s− z
ds

+ iµ0

c
∫

−c

√
c2 − s2

s− z
ds



 . (14)

With the use of a value of integral

a
∫

−a

√
a2 − s2

s− z
ds = π

(
√

z2 − a2 − z
)

, (15)

obtained by the contour integration method (Muskhelishvili,
1966), finally, we find that

8(z) = −
iP

2πa2G

[

(1− µ0)
√

z2 − a2 + iµ0

√

z2 − c2 − z
]

.(16)

With the use of formula (11), the combinations of stresses
are determined:

σx + σy = − 4P
πa2

ℑ
[

(1− iµ0)
√
z2 − a2 + iµ0

√
z2 − c2 − z

]

,

σx − σy + 2iτxy = 4P
πa2

[

µ0

(√
z2 − a2 −

√
z2 − c2

)

+ y
(

(1−iµ0)z√
z2− a2

+ iµ0z√
z2− c2

− 1
)]

.

(17)

To find separate components of stress tensor from Equation
(17), we set distances r±1 , r

±
2 , ρ and angles ϑ±

1 , ϑ±
2 , ϑ by the

following dependences:

z ∓ a = r1
±ei

ϑ±
1 , z ± c = r2

±ei
ϑ±
2 , z = ρeiϑ . (18)

Then we get
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FIGURE 2 | Distribution of normal p̄(x) and tangential q̄(x) contact tractions (µ0 = 0.25, ν = 0.3, Q/P = 0.05, 0.1, 0.15, 0.2, 0.25).

σx + σy = − 4P
πa2

[
√
r1+r1−(sin

ϑ+
1 +ϑ−

1
2 − µ0cos

ϑ+
1 +ϑ−

1
2 )

+
√
r2+r2−µ0cos

ϑ+
2 +ϑ−

2
2 − y],

σx − σy + 2iτxy = 4P
πa2

[−µ0

√
r1+r1−e

i
ϑ
+
1 +ϑ

−
1

2

+µ0

√
r2+r2−e

i
ϑ
+
2 +ϑ

−
2

2

+(1− iµ0)
ρy√
r1+r1−

ei(ϑ−
ϑ
+
1 +ϑ

−
1

2 ) + iµ0
ρy√
r2+r2−

ei(ϑ−
ϑ
+
2 +ϑ

−
2

2 ) − y ] .

(19)

Equality (19) yields the following stresses:

σx = − 2P
πa2

{

√

r+1 r
−
1

(

sin
ϑ+
1 +ϑ−

1
2 − 2µ0 cos

ϑ+
1 +ϑ−

1
2

)

+ 2µ0

√

r+2 r
−
2 cos

ϑ+
2 +ϑ−

2
2

+ ρ
2a

√

r+1 r
−
1

[

cos
(

ϑ − ϑ+
1 +ϑ−

1
2

)

+ µ0 sin
(

ϑ − ϑ+
1 +ϑ−

1
2

)]

sin
(

ϑ+
1 − ϑ−

1

)

−µ0
ρ
2c

√

r+2 r
−
2 sin

(

ϑ − ϑ+
1 +ϑ−

1
2

)

sin
(

ϑ+
2 − ϑ−

2

)

− 1
a r

+
1 r

−
1 sin

(

ϑ+
1 − ϑ−

1

) }

,

σy = − 2P
πa2

{

√

r+1 r
−
1 sin

ϑ+
1 +ϑ−

1
2

+ µ0
ρ
2c

√

r+2 r
−
2 sin

(

ϑ − ϑ+
2 +ϑ−

2
2

)

sin
(

ϑ+
2 − ϑ−

2

)

− ρ
2a

√

r+1 r
−
1

[

cos
(

ϑ − ϑ+
1 +ϑ−

1
2

)

+ µ0 sin
(

ϑ − ϑ+
1 +ϑ−

1
2

)]

sin
(

ϑ+
1 − ϑ−

1

) }

,

τxy = 2P
πa2

{

−µ0

√

r+1 r
−
1 sin

ϑ+
1 +ϑ−

1
2

+ µ0

√

r+2 r
−
2 sin

ϑ+
2 +ϑ−

2
2 + ρ

2a

√

r+1 r
−
1

[
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(

ϑ − ϑ+
1 +ϑ−

1
2

)
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(
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1 +ϑ−

1
2

)

] sin
(

ϑ+
1 − ϑ−

1
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+µ0
ρ
2c

√

r+2 r
−
2 cos

(

ϑ − ϑ+
2 +ϑ−

2
2

)
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(

ϑ+
2 − ϑ−

2

) }

.

(20)

In addition, we find the principal normal σ1, σ2, σ3 and tangential
τ1, τ2, τ3 stresses (Timoshenko and Goodyear, 1979)

σ1,2 =
1

2
(σx + σy)± τ1, σ3 = ν(σx + σy), τ1

=
1

2

∣

∣σy − σx + 2iτxy
∣

∣ , τ2,3 =
1

2

∣

∣σ2,1 − σ3| (21)

as well as maximum tangential stress

τmax = max(τ1, τ2, τ3). (22)

Figures 3, 4 present the level lines of maximum tangential stress
τmax, calculated for Poisson’s ratio ν = 0.3. The solid lines
correspond to τmax, and the dashed ones point to τ1, if τ1 <

τmax = τ2. Figure 3A refers to a smooth contact (Q/P = 0),
Figure 3B (µ0 = 0.25, Q/P = 0.15), and Figure 4A (µ0 = 0.5,
Q/P = 0.3) refer to a contact with slip and adhesion, and
Figure 3C (µ0 = Q/P = 0.25) and Figure 4B (µ0 = Q/P =
0.5) refer to a sliding contact. Distribution of stress τmax for a
contact with slip and adhesion is transitional between the same
distribution for the smooth and sliding contacts. In this case, the
largest values of stress τmax increase, while the force ratio Q/P
moves from 0 to µ0. If a friction coefficient µ = 0.25, then
the value max τmax = max τ1 is reached at point x = ± x0,
y = ± y0 inside each of contacting bodies. This point is shifting
in a direction of shear loading and closer to the surface of the
body in comparison with a smooth contact (Table 1). If a friction
coefficient µ0 = 0.5, then with increase in Q/P, this point comes
first to the surface of the body; and second, while moving to a
sliding contact, the value τmax becomes the largest at all points
of contact area (max τmax = max τ1 = 0.5 2P

πa , −1 < x/a <

1, Figure 4B). In addition, under sliding contact conditions for
µ0 = 0.25 (as shown in Figure 3C), the largest value τmax =
0.331 2P

πa , slightly bigger than the value max τ1 = 0.330 2P
πa inside

a half-plane, is reached within the slip zone at points x/a =
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FIGURE 3 | Distribution of maximum tangential stress τmax in the cases of (A)

smooth contact (µ0 = 0, Q/P = 0), (B) contact with slip and adhesion

(µ0 = 0.25, Q/P = 0.15), and (C) sliding contact (µ0 = Q/P = 0.25).

TABLE 1 | Points with the largest value of maximum tangential stress.

Q/P 0 0.05 0.1 0.15 0.2

πa
2Pmaxτ1 0.3003 0.3009 0.3026 0.3058 0.3135

x0/a 0 0.101 0.203 0.325 0.649

y0/a 0.786 0.780 0.764 0.738 0.600

±0.243 by stresses τ2 and τ3, respectively. For µ0 = 0.5 and
Q/P = 0.3 (Figure 4A), the largest value τmax = τ1 = 0.387 2P

πa is
the same at all points of slip zones (0.633a < |x| < a).

A more detailed numerical analysis shows that for friction
coefficients from µ0 < 0.25 and for any ratio of forces in range
0 ≤ Q/P ≤ µ0, the value max τmax is reached at point inside a
body. For each µ0 ≥ 0.25, there is such a transient value (Q/P)∗
that the value max τmax is realized inside a half-plane while 0 ≤
Q/P < (Q/P)∗ and at the boundary of a half-plane in slip zones
while (Q/P)∗ ≤ Q/P ≤ µ0. Values (Q/P)∗ are given in Table 2

FIGURE 4 | Distribution of maximum tangential stress τmax in the cases of (A)

contact with slip and adhesion (µ0 = 0.5, Q/P = 0.3) and (B) sliding contact

(µ0 = Q/P = 0.5).

TABLE 2 | Transient values (Q/P)* for various friction coefficients µ0.

µ0 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Q/P)* 0.248 0.246 0.229 0.191 0.157 0.133 0.116 0.102 0.092

for various friction coefficients. The largest value τmax = τ2,3 is
reached at certain symmetrical points x = ±x1 inside the right
and left slip zones, while 0.25 ≤ µ0 < 0.5. The largest value
τmax = τ1 is constant along both slip zones while µ0 ≥ 0.5.

To summarize these results, we have obtained in analytical
form the largest values τmax in slip zones.With the use of relations
(17), (21), and (22), the following expressions are found for the
principal tangential stresses:

τ1 = µ0
2P
πa

√

1−
(

c
a

)2
, τ2,3

= P
πa2

∣

∣

∣(1− 2ν)

(√
a2 − x2 + sgnx· µ0

√
x2 − c2

)

± µ0

√
a2 − c2

∣

∣

∣
,

y = 0, c < |x| < a.

(23)

Here, we find that
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max
c<|x|<a

τmax|y=o =



















τ2,3
∣

∣

y=0,x=±x1 = P
πa2

√
a2 − c2

[

(1− 2ν)
√

1+ µ
2
0 + µ0

]

,µ0 ≤ µ
∗
0 ,

τ1
∣

∣

y=0,c<|x|<a = µ0
2P
πa

√

1− (c/a)2,µ0 ≥ µ
∗
0 ,

x1 =
√

µ
2
0a

2+c2

1+µ
2
0
, µ

∗
0 = 1−2ν

2
√

ν(1−ν)
.

(24)

In particular, µ∗
0 = 0.436 for ν = 0.3. Values max

c<|x|<a
τmax|y=0 in

Equation (24) become the largest values τmax, if they are bigger
than the values max τ1 inside a half-plane. This is illustrated in
Figures 3C, 4A,B.

We note that in the case µ0 = 0.5, Q/P = 0.15, the
distribution of maximum tangential stress is almost the same as
for µ0 = 0.25, Q/P = 0.15 (shown in Figure 3B). This fact
indicates that the distribution of maximum tangential stresses
is not almost affected by the distribution of tangential tractions
in the contact area, but only the main vector of tractions
is significant.

Touch of Higher Order
Consider the Cattaneo–Mindlin problem for non-circular
cylinders, if their prior contact along the common generatrix
has higher order. In this case, we set surfaces of bodies near the
contact area by equations y = B1|x|n, y = −B2|x|n (B1 > 0,
B2 > 0; n = 2, 3, ...). If n = 2, then we have the classic
Cattaneo–Mindlin problem for circular cylinders.

Further, we use singular integral relations (Johnson, 1985):

∂u
(1,2)
x
∂x

∣

∣

y=0 = −(1− 2ν)p(x)± 2(1− ν) 1
π

a
∫

−a

q(s)
s−xds,

∂u
(1,2)
y

∂x

∣

∣

y=0 = (1− 2ν)q(x)± 2(1− ν) 1
π

a
∫

−a

p(s)
s−xds,

(25)

where functions p(x) and q(x) are determined by Equations (2)
and (7), respectively, while −a ≤ x ≤ a and equal to zero
at |x| > a.

The boundary conditions for the first stage of normal loading
are set in Equation (1), except the first condition, which should
be written as follows:

(

u
(2)
y − u

(1)
y

)

∣

∣

y=0 = B|x|n,−a ≤ x ≤ a,B = B1 + B2. (26)

Satisfying differentiated condition (26) by the second relation
(25) with q(x) ≡ 0, we obtain a singular integral equation

1
π

a
∫

−a

p(s)
s−xds = − nBsgnx

4(1−ν)
|x|n−1,−a < x < a. (27)

With the solution of Equation (27), bounded at the edges of
interval−a < x < a, we find in the form (Gakhov, 1963)

p(x) = nB
4(1−ν)π

√
a2 − x2In(x), In(x) =

a
∫

−a

|s|n−1sgns√
a2−s2

ds
s−x . (28)

The recurrent relation holds for an integral in Equation (28),

In (x) = x2In−2 (x) + 2Jn−2, n = 3, 4, ... ,

Jn =
a
∫

0

sn
√
a2 − s2

ds =
n− 1

n
a2Jn−2 = anJ′n,

J′2m = (2m− 1)!!

(2m)!!

π

2
, J′2m−1 =

(2m− 2)!!

(2m− 1)!!
,m = 1, 2, ... , (29)

with initial values

I1 (x) =
2

√
a2 − x2

1n
a+

√
a2 − x2

|x|
, I2 (x) = π .

Applying a recurrent formula (29) several times, we find

I2m (x) = 2
(

J2m−2 + J2m−4x
2 + ...+ J2x

n−4
)

+ I2 (x) x2(m−1),

I2m−1 (x) = 2
(

J2m−3 + J2m−5x
2 + ...+ J1x

2m−4
)

+ I1 (x) x2(m−1).

Therefore, on the basis of Equation (28), we obtain the
distribution of contact pressure

p (x) = P
2πa2G

p̃ (x, a) ,

p̃ (x, a) = 1−(−1)n

2
n!!

(n−1)!!
xn−1

an−2 1n
a+

√
a2−x2

|x|

+
√
a2 − x2

[n/2]
∑

k=1

[n/2]k
[(n−1)/2] k

(

x
a

)2k−2
,−a ≤ x ≤ a,

(30)

where [n/2] is an entire part of n/2, [n]k = n(n− 1)...(n− k+ 1).
Dependence of half-width a of the contact area on the force P

a = n

√

(1−ν)P
nJ′nBG

(31)

is found from an equilibrium condition (5).
In the case of even n, formulas (30) and (31) have been

obtained by Shtayerman (1949).
Figure 5 shows the dimensionless contact pressure p̄(x) =

(2Ga/P)p(x) distribution on half-width of contact area (0 ≤ x ≤
a) for different values of indicator n. It can be noticed that with
increase in n, the contact pressure decreases inside the contact
area but increases at its edge.

On the second stage, elastic bodies are loaded by tangential
forces Q. Contact area −a ≤ x ≤ a divides into the adhesion
zone −c ≤ x ≤ c and the slip zones −a ≤ x < −c, c <

x ≤ a. In boundary condition (6), the third condition should

be replaced by Equation (26) and the normal stress σ
(1)
y |y=0 in

the contact area should take the form of Equations (2) and (30).
Satisfying differentiated first condition (6) by the first relation
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FIGURE 5 | Distribution of contact pressure p̄(x) for different n.

(25), we obtain an integral equation with respect to the function
of tangential contact tractions q(x) in the adhesion zone

a
∫

−a

q(s)
s−xds = 0,−c < x < c. (32)

Because the normal and tangential tractions in slip zones are
connected by equality

q (x) = µ0p (x) , c < |x| ≤ a, (33)

Equation (32) is written as follows:

c
∫

−c

q(s)
s−xds = −µ0

(

a
∫

c
+

−c
∫

−a

)

p(s)
s−xds,−c < x < c. (34)

The substitution of unknown function

q0 (x) = q (x) − µ0p (x) ,−c < x < c (35)

yields the following equation:

c
∫

−c

q0(s)
s−x ds = −µ0

a
∫

−a

p(s)
s−xds,−c < x < c. (36)

Taking into account (Equation 27), integral Equation (36) takes
the form

1
π

c
∫

−c

q0(s)
s−x ds = µ0

nBsgnx
4(1−ν)

|x|n−1,−c < x < c (37)

and differs from the integral Equation (27) in both an integration
interval (a is replaced by c) and the multiplier −µ0 at the right
part. Therefore, with respect to Equation (30), we obtain its
bounded solution in the form

q0(x) = −
µ0P

2πa2G

( c

a

)n−2
p̃(x, c). (38)

With the use of Equations (35) and (38), the function of
tangential contact tractions is found in the adhesion zone

q (x) = q0 (x) + µ0p (x) = µ0P
2πa2G

[

p̃ (x, a) −
(

c
a

)n−2
p̃ (x, c)

]

.(39)

With the use of an equilibrium condition (10), the relative size of
adhesion zone is determined

c
a = n

√

1− Q
µ0P

. (40)

Stresses in half-plane y ≥ 0 are found with use of formula (11),
in which the potential density 8(z) from Equation (12) is given
as follows:

p(s)−iq(s)= P
2πa2G







(1− iµ0)p̃(s, a)

+iµ0

(

c
a

)n−2
p̃(s, c), −c ≤ s ≤ c,

(1− iµ0)p̃(s, a), −a ≤ s < −c, c < s ≤ a.

(41)

Taking into account (Equation 41), the function 8(z) from
Equation (12) is presented as

8(z) = P
2πa2G

[

(1− iµ0)8̃(z, a)+ iµ0

(

c
a

)n−2
8̃(z, c)

]

,

8̃(z, a) = 1
2π i

a
∫

−a

p̃(s,a)
s−z ds.

(42)

Further, to find the function 8̃(z, a) in Equation (42), we
consider two cases.

1. The case of even n. Using the second formula of Equation (30),
we have that

8̃(z, a) = 1
2π i

(

n
n−1U0(z)+ n(n−2)

(n−1)(n−3)
U1(z)
a2

+ ...+ n!!
(n−1)!!

Un/2−1(z)

an−2

)

,

Uk(z) =
a
∫

−a

s2k
√
a2−s2

s−z ds, k = 0, 1, ... .

(43)

The following recurrent formula is true for integral Uk(z) in
Equation (43):
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Uk(z) = z2Uk−1(z)+ 2zVk−1, k = 1, 2, ...,

Vk =
a
∫

0

s2k
√
a2 − s2 ds = J2k+2

2k+1
, k = 0, 1, ... .

(44)

According to Equation (15), the integral U0(z) in Equation (43),
which is an initial value for formula (44), can be presented as

U0(z) = π

(√
z2 − a2 − z

)

. (45)

Consistently applying recurrent formula (44) and taking into
account Equation (45), we find

Uk(z) = πz
[

(2k−3)!!
(2k)!!

a2k + (2k−5)!!
(2k−2)!!

a2k−2z2

+...+ (−1)!!
2!! a2z2k−2 + z2k−1

(√
z2 − a2 − z

)]

, k = 0, 1, ... .
(46)

Substituting Uk(z) (k = 0, 1, .. . , n/2-1) from Equation (46)
into the first formula of Equation (43), after transformations,
we get

8̃(z, a) = − i
2

n\2
∑

k=1

(

ank
√
z2 − a2 + cnkz

)

(

z
a

)2k−2
,

ank = [n/2]k
[(n−1)/2]k

, cnk =
n/2
∑

m=k

(2m−2k−3)!!
(2m−2k)!!

anm,

(47)

assuming that (−)!! = 1, (−3)!! = −1, and

8̃′
z(z, a) = i

2

n/2
∑

k=1

(

bnk
z√

z2−a2
− (2k− 1)cnk

)

(

z
a

)2k−2
,

bnk = [n/2]k
[(n−3)/2k

, n = 2, 4, ...; k = 1, 2, ... , n/2.

(48)

In particular, for the case of n = 4 we have

a41 = 4
3 , a42 =

8
3 , b42 = 4, b41 = −8, c41 = 0, c42 = − 8

3 ,

8̃(z, a) = − 2i
3

[(

1+ 2 z2

a2

)√
z2 − a2 − 2 z3

a2

]

.
(49)

On the basis of Equations (42), (47), and (48), we find the stresses
with use of formula (11).

1. The case of odd n. Similar to the case of even n , we obtain

TABLE 3 | Points with values of τ * for different n.

n 2 3 4 5 6 8 10

τ* 0.300 0.268 0.277 0.294 0.311 0.347 0.380

x0 0 0.762 0.894 0.928 0.945 0.962 0.970

y0 0.786 0.513 0.284 0.201 0.156 0.110 0.085

8̃(z, a) = − ia
2

[

n!!
(n−1)!!

(

1
π

n−1
∑

k=1

J′′
n−k−1

n−k

(

z
a

)k−1

+ i
(

z
a

)n−1
ln ia+

√
z2−a2

z

)

+ 1
a

√
z2 − a2

(n−1)/2
∑

k=1

(

ank + c′
nk

z
a

) (

z
a

)2k−2

]

, c′
nk

=
(n−1)/2
∑

m=k

(2m−2k−3)!!
(2m−2k)!!

anm,

8̃′
z(z, a) = − i

2

[

n!!
(n−1)!!

1
π

n−1
∑

k=2

k−1
n−k

J′′
n−k−1

(

z
a

)k−2

− a√
z2−a2

(n−3)/2
∑

k=1

bnk
(

z
a

)2k−1

+ n!!
(n−3)!!

(

i ln ia+
√
z2−a2

z + a√
z2−a2

)

(

z
a

)n−2

+
(n−1)/2
∑

k=1

(2k− 1) c′
nk

(

z
a

)2k−2

]

,

J′′
2k

= 2J′
2k
, J′′

2k−1
= 0.

(50)

values τ∗ = πa
2P max τmax = πa

2P max τ1 calculated for ν = 0.3 in
the case of smooth contact (Q/P = 0) are given in Table 3 as well
as relative coordinates ±x0 = ±x0/a , y0 = y0/a of points, in
which these values are reached. With increase in n, these points
approach the edges of contact area.

The distribution of maximum tangential stress τmax in the
case n = 4, ν = 0.3 is given in Figure 6. Figure 6A refers
to a smooth contact (Q/P = 0), Figure 6B to a contact
with slip and adhesion (µ0 = 0.25, Q/P = 0.15), and
Figure 6C to a sliding contact (µ0 = Q/P = 0.25).
As in Contact of Circular Cylinders, solid lines correspond
to τmax and dashed ones to τ1, if τ1 < τmax = τ2. By
comparing with a second order touch (n = 2, Figure 3),
the stress concentration is observed closer to the edges of
contact area.

Periodic Case
Assume that surfaces of elastic cylindrical bodies are l-periodic
along the axis Ox and touch previously through the lines
x = kl (k = 0, ±1, ±2, ...). Surfaces are set mathematically
by equations y = −B1(cos

2πx
l

− 1), y = B2(cos
2πx
l

− 1)

(B1 > 0 , B2 > 0) . In this variant of the Cattaneo–Mindlin
problem, the bodies are compressed at infinity by the normal
forces of intensity p∞, creating the contact areas −a + kl ≤ x ≤
a+ kl. After this, the tangential forces of intensity q∞ are applied
at infinity and contact areas divide into adhesion −c + kl ≤ x ≤
c+ kl and slip c+ kl < |x| ≤ a+ kl (k = 0, ±1, ±2, ...) zones.
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FIGURE 6 | Distribution of maximum tangential stress τmax in the cases of (A)

smooth contact (µ0 = 0, Q/P = 0), (B) contact with slip and adhesion

(µ0 = 0.25, Q/P = 0.15), and (C) sliding contact (µ0 = Q/P = 0.25) for

n = 4.

Singular integral relation (25) in the periodic case takes
the form

∂u
(1,2)
x
∂x

∣

∣

∣

∣

y=0

= −(1− 2v)p(x)± 2(1− v) 1
l

a
∫

−a

q(s) cot π
l
(s− x)ds,

∂u
(1,2)
y

∂x

∣

∣

∣

∣

y=0

= −(1− 2v)q(x)± 2(1− v) 1
l

a
∫

−a

p(s) cot π
l
(s− x)ds,

(51)

where functions p(x), q(x) are l-periodic and defined by equalities
(2) and (7).

On the first stage of normal loading, boundary conditions are
as follows:

(

u
(2)
y − u

(1)
y

)∣

∣

∣

y=0
= B

(

cos 2πx
l

+ 1
)

, σ
(1)
y

∣

∣

∣

y=0
= σ

(2)
y

∣

∣

∣

y=0
,

−a+ kl ≤ x ≤ a+ kl,

σ
(1)
y

∣

∣

∣

y=0
= σ

(2)
y

∣

∣

∣

y=0
= 0, a+ kl < x < l− a+ kl,

τ
(1)
xy

∣

∣

∣

y=0
= τ

(2)
xy

∣

∣

∣

y=0
= 0, −∞ < x < ∞, B

= B1 + B2, k = 0,± 1, ± 2, ... .

(52)

Satisfying differentiated first condition (52) by the second
relation (51) with q(x) ≡ 0, we obtain a singular
integral equation.

a
∫

−a

p(s) cot π
l
(s− x)ds = − πB

1−v sin
2πx
l
, −a < x < a. (53)

The solution of Equation (53), bounded at the ends of interval
−a < x < a, has the form (Shtayerman, 1949)

p(x) =
2πB

(1− v)l
cos

πx

l
.

√

sin
π

l
(a− x) sin

π

l
(a+ x),

− a ≤ x ≤ a. (54)

With the use of an equilibrium condition,

a
∫

−a

p(x)dx = p∞l
2G , (55)

a half-width of each contact area is determined

a = l
π
arcsin

√

(1−v)p∞l
πBG . (56)

The boundary conditions on the second stage of tangential
loading are as follows:

(

u(2)x − u(1)x

)∣

∣

∣

y=0
=0, −c+ kl ≤ x ≤ c+ kl, τ (1)xy

∣

∣

∣

y=0

=µ0 σ (1)
y

∣

∣

∣

y=0
, c+ kl < |x| ≤ a+ kl,

(

u(2)y − u(1)y

)
∣

∣

∣

y=0
=B

(

cos
2πx

l
+ 1

)

, σ (1)
y

∣

∣

∣

y=0

=σ (2)
y

∣

∣

∣

y=0
, τ (1)xy

∣

∣

∣

y=0
= τ (2)xy

∣

∣

∣

y=0
,

−a+ kl ≤ x ≤ a+ kl,

σ (1)
y

∣

∣

∣

y=0
=σ (2)

y

∣

∣

∣

y=0
= τ (1)xy

∣

∣

∣

y=0
= τ (2)xy

∣

∣

∣

y=0
= 0, a

+kl < x < l− a+ kl, k = 0, ±1, ±2, ... .
(57)

Here, the normal stress σ
(1)
y |y=0 is known and presented by

formulas (2) and (54).
Using the first boundary condition (57) and the first relation

(51), in similar way to Touch of Higher Order, we obtain the
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integral equation with respect to l-periodic function q0(x) from
Equation (35)

c
∫

−c

q0(s) cot
π
l
(s− x)ds = µ0

πB
1−v sin

2πx
l
, −c < x < c. (58)

The last one is similar to Equation (53). Its bounded solution has
the form

q0(x) = −µ0
2πB

(1− v)l
cos

πx

l
.

√

sin
π

l
(c− x) sin

π

l
(c+ x),

− c ≤ x ≤ c. (59)

From Equations (35) and (59), we find l-periodic function of
tangential contact tractions

q(x) = µ0p(x), c < |x| ≤ a,

q(x) = −µ0
2πB
(1−v)l

cos πx
l
.
(√

sin π
l
(c− x) sin π

l
(c+ x)

−
√

sin π
l
(a− x) sin π

l
(a+ x)

)

,

−c ≤ x ≤ c.

(60)

From an equilibrium condition,

a
∫

−a

q(x) = q∞l
2G (61)

the relative width of adhesion zones is determined as

c
a = 1

π
arcsin

(√

1− Q
µ0P

sin πa
l

)

. (62)

The stresses in half-plane y ≥ 0 are found with use of formula
(11), where the potential 8(z) has the form

8(z) = 1
2il

a
∫

−a

[

p(s)− iq(s)
]

cot π
l
(s− z)ds ,

p(s)− iq(s) =
{

(1− iµ0)p(s)− iq0(s), −c ≤ s ≤ c,
(1− iµ0)p(s), −a ≤ s < −c, c < s ≤ a,

(63)

or

8(z) = 1−iµ0
2il

a
∫

−a

p(s) cot π
l
(s− z)ds− 1

2l

c
∫

−c

q0(s) cot
π
l
(s− z) ds .

(64)

Calculating the integral

a
∫

−a

cos πs
l
.
√

sin π
l
(a− s) sin π

l
(a+ s) cot π

l
(s− z) ds

= l cos πz
l
.
(√

sin π
l
(z − a) sin π

l
(z + a)− sin πz

l

)

(65)

FIGURE 7 | Distribution of maximum tangential stress τmax in the periodic

case (l/a = 8) for (A) µ0 = 0.25, Q/P = 0.15 and (B) µ0 = 0.5, Q/P = 0.3.

and taking into account (Equation 56), we obtain

8(z) = − ip∞ cos (πz/l)

Gsin2(πa/l)

[

(1− iµ0)
√

sin π
l
(z − a) sin π

l
(z + a)

+iµ0

√

sin π
l
(z − c) sin π

l
(z + c)− sin πz

l

]

,

8̄(z)+ 8(z) = − 2µ0p∞ cos (πz/l)

Gsin2(πa/l)

(√

sin π
l
(z − a) sin π

l
(z + a)

−
√

sin π
l
(z − c) sin π

l
(z + c)

)

,

8′(z) = − iπp∞ cos (πz/l)

Glsin2(πa/l)

[

(1− iµ0)
[cos (2πz/l)+sin2(πa/l)] sin(πz/l)√

sin[(π/l)(z−a)] sin[(π/l)(z+a)]

+ iµ0
[cos (2πz/l)+sin2(πc/l)] sin(πz/l)√

sin[(π/l)(z−c)] sin[(π/l)(z+c)]

]

.

(66)

Substituting expressions from Equation (66) into Equation (11),
the stresses are determined.

In Figure 7, the distribution of maximum tangential stress
τmax (ν = 0.3, l/a = 8) is shown in cases (A) µ0 = 0.25,Q/P =
0.15; (B) µ0 = 0.5, Q/P = 0.3. The solid lines correspond
to τmax, and the dashed and dash-dotted lines correspond to τ1,
if τ1 < τmax = τ2 and τ1 < τmax = τ3, respectively. The
maximum tangential stress τmax = τ1 reaches the largest value
within a half-plane [case (A)] or at half-plane boundary in points
x ± c [c/a = 0.623 case (B)]. In the last case, the maximum
tangential stress slightly decreases (within 0.6%) along the slip
zones. The presented distribution differs a little from the stress
distribution in the corresponding cases for a single contact area
(l/a = ∞, Contact of Circular Cylinders, Figures 3B, 4A) and
coincides with them at l/a ≥ 20.
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CONCLUSIONS

With the use of numerical analysis of obtained stress distributions
in the Cattaneo–Mindlin problem, it is established that the point,
in which maximum tangential stress reaches its largest value,
is located inside each of contacting elastic bodies for a friction
coefficient µ < 0.25. With increase in a friction coefficient and a
shear loading, this point moves gradually to the boundary of the
body (in the contact area). In the case of a touch of higher order,
this point moves closer to the far edge (x = a) of contact area.
At the same time, the local increase of stress occurs near the edge
x = −a. Comparing with the case of a single contact area, in the
periodic problem, the distribution of maximum tangential stress

is almost unchanged, if a contact area does not exceed a quarter
of period (l/a ≥ 8).
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