
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Mater.
Sec. Structural Materials
Volume 12 - 2025 | doi: 10.3389/fmats.2025.1598601
This article is part of the Research Topic Sustainable and Green Materials in Geotechnical Engineering View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The application of novel materials that enhance soil engineering properties while maintaining vegetation growth represents an innovative strategy for ecological protection engineering of expansive soil slopes. Laboratory tests, including wetting and drying cycle tests, direct shear tests, unconfined swelling ratio tests, and vegetation growth tests, were conducted to analyze the effects of xanthan gum on both engineering and vegetation-related properties of expansive soil. The feasibility of xanthan gum for soil improvement was systematically evaluated. The interaction mechanism between xanthan gum and expansive soil was elucidated through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. Results demonstrated that xanthan gum effectively inhibited crack development and strength loss. With increasing xanthan gum content, the crack area ratio decreased logarithmically by up to 58.62%, while cohesion increased by 82.96%. The unconfined swelling ratio exhibited a linear reduction, with a maximum decrease of 43.58%. Notably, xanthan gum accelerated seed germination rate but did not significantly affect long-term vegetation growth.Mechanistically, xanthan gum improved soil properties via two pathways: (1) forming bridging structures between soil particles to enhance cohesion and tensile strength; (2) filling soil voids and generating a polymer film to inhibit water-clay mineral interactions, thereby reducing hydration membrane thickness. These findings offer both theoretical insights and practical guidelines for applying xanthan gum in ecological protection engineering of expansive soil slopes.
Keywords: expansive soil, Xanthan gum, Wetting-drying cycles, Mechanical Properties, microstructure
Received: 23 Mar 2025; Accepted: 01 Apr 2025.
Copyright: © 2025 OUYANG, Zhang, Wang, Youjun and Song. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Hongri Zhang, Guangxi Transportation Science and Technology Group Co., Ltd., Guanxi, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.