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With the significant advancements in nuclear technology, countries have
invested considerable research into radiation shielding and protectionmaterials.
Neutrons and gamma photons have strong penetrating abilities, which can
directly jeopardize human health or lead to the failure of electronic components.
Therefore, developing high-performance materials for neutron and gamma
photon radiation shielding has become a critical priority. Gadolinium (Gd), a
rare earth element with the largest neutron absorption cross-section among
natural elements, performs excellently as a neutron absorber. Gd-containing
radiation composite shielding materials are typically classified into four main
categories based on their matrix: metal-based, glass-based, ceramic-based, and
polymer-based. This paper reviews the current research status of these four
types of radiation shielding materials. It provides a comprehensive summary
and evaluation of each material’s preparation processes, microstructures,
mechanical properties, and shielding performance. Additionally, the paper
discusses the role of Gd in each type ofmatrixmaterial and addresses the current
challenges in the field.
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1 Introduction

Nuclear technology, with its significant advantages, is now widely implemented
across various sectors, including industry, healthcare, environmental conservation, and
agriculture. Its applications range from clean nuclear energy production and neutron
capture for cancer therapy to neutron irradiation for material modification and radiation
detection (Hu et al., 2020; Rehm, 2022; Shruti and Gurmeet, 2022; Rehm, 2023).
However, despite the benefits of nuclear energy, it also poses risks, including damage
to electronic components and threats to human life and health. The primary concern
stems from the formidable penetrating power of neutrons and gamma rays, which can
easily pass through clothing and the outer layers of human skin, causing severe damage
to cells, tissues, and even genetic material (Glass, 1957). Studies show that high levels
of gamma radiation raise the risk of cancer and leukemia (Do et al., 2019; Boice et al.,
2022). Additionally, prolonged radiation exposure can cause irreparable damage to
electronic equipment and instruments. Therefore, the development of effective radiation
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shielding materials to mitigate the hazards of nuclear radiation has
become a crucial and urgent task.

In 1954, the Soviet Union established the world’s first
commercial nuclear power plant at the Institute of Physics and
Power Engineering (IPPE) in Obninsk, catalyzing the development
of large-scale nuclear power and technology (Rachkov et al., 2014).
As nuclear technology continues to expand, traditional shielding
materials are increasingly inadequate for the growing range of
applications. For example, lead, one of the earliest protective
materials, has high density, good ductility, and effective attenuation
of X-rays and gamma rays (Jayakumar et al., 2023). However,
its toxicity limits its use. Concrete, commonly used as structural
shielding material, is cost-effective and has a larger mass but
lacks mobility, making it suitable only for large-scale load-bearing
equipment (Onaizi et al., 2024). Boron has a relatively large neutron
absorption cross-section, with good neutron absorption, but its
high brittleness is expensive and unfavorable for processing. Other
protective materials, such as water, graphite, iron, etc., only in a
single radiation scenario with a certain degree of protection, can
only be in environmentally restricted conditions to play a specific
role. As a result, research is focused on developing lightweight, high-
strength radiation protection materials. Consequently, significant
financial and scientific resources have been allocated to this area.

Rare earth elements (REEs) constitute a series of 17 metal
element families (La-Lu) consisting of group III (Sc, Y) and
lanthanides (Hu et al., 2006; Schelter, 2019). Rare earth elements
possess distinctive 4f valence electron orbitals. The combination of
domain fixation and incomplete filling of the 4f electrons, coupled
with their high valence, large radius, and strong polarization force,
makes rare earth elements an invaluable resource in the preparation
of magnetic materials, luminescent materials, catalysts, radiation
shielding, and other applications (Anishur Rahman et al., 2010; Al-
Buriahi et al., 2019; Schelter, 2019; Alharshan et al., 2022; An et al.,
2023; Peng et al., 2023). Among the entire range of rare earth
materials, gadolinium (Gd) is distinguished by the fact that its outer
electrons are only partially filled,making it the atomwith the greatest
number of unpaired electrons in the entire group. Its electronic
configuration (4f75d16s2) contributes to an enlarged atomic radius
and facilitates the formation of vacancy defects in its crystalline
lattice (Dorenbos, 2013). These structural characteristics enhance
inelastic scattering interactions with neutrons, which serve to
moderate neutron energy and increase the probability of subsequent
neutron-nucleus interactions. Furthermore, Gd demonstrates the
highest neutron absorption cross-section within the rare earth
family (Wang et al., 2023). Natural Gd is typically found in
the form of Gd2O3. A number of its nuclides, including 157Gd,
exhibit the largest neutron absorption cross-section of 255,000 b,
while 155Gd displays a thermal neutron absorption cross-section of
62,540 barns, outperforming conventional boron-based absorbers
by several orders of magnitude (other isotopes such as 158Gd
contribute relatively little to neutron capture) (Hidaka et al., 2000).
Furthermore, its n and γ reaction cross-sections for thermal
neutrons are observed to be tens of times higher than those
observed for boron. The total content is as high as 30 wt%
(Kregl et al., 2017; Wang et al., 2022). With an atomic number (Z
= 64) second only to high-Z elements such as lead, Gd achieves
superior gamma-ray attenuation through multiple mechanisms,
including photoelectric absorption and Compton scattering.

Compared to hydrogen-rich materials, Gd-based systems
uniquely enable simultaneous attenuation of both primary neutrons
and secondary gamma rays generated during neutron capture
events.When contrasted with boron-containingmaterials, Gd offers
enhanced shielding efficiency across broader energy spectra while
circumventing performance degradation caused by hydration issues
inherent to boric acid-based compounds. Therefore, Gd represents
one of the most significant components employed as a shielding and
fluxing device in the field of nuclear power (Yousefi et al., 2015),
exhibiting exceptional neutron absorption capabilities.

With the rapid advancement of nuclear technology, there has
been an increasing interest in the research and development of
shielding and protection materials. However, the research progress
with Gd as a shielding material has been relatively underdeveloped.
This paper aims to highlight the advantages of Gd as an
effective neutron shielding material. It will examine the interaction
mechanisms between neutrons, gamma rays, andGd, and review the
current state of research onGd in various substratematerials. Finally,
we evaluate the prospective applications of Gd-based neutron
shielding materials in the context of existing challenges, including
dynamic radiation environments and multifunctional performance
requirements.

1.1 Neutron interactions with the rare earth
element Gd

Neutrons are generally electrically neutral, and their interaction
with electrons in matter is minimal. It can be observed that the
energy loss of these particles is not primarily due to ionization
and excitation of atoms. Instead, their energy is lost predominantly
through collisions with atomic nuclei (Soltan, 1938). Neutrons
can be classified into three principal categories according to their
energies: fast neutrons (E > 0.1 MeV), medium-energy neutrons
(1 keV < E < 100 keV), and slow neutrons (E < 1 keV). Additionally,
neutrons with an energy of 0.0253 eV are commonly designated as
“thermal neutrons.”

Neutron interactions with matter can generally be categorized
into two types: scattering and absorption. The former encompasses
both elastic and inelastic scattering. The lowest excitation energy
level of medium and heavy nuclei is low, and their first excitation
energy level is generally around 0.1∼1 MeV. Fast neutrons have a
higher energy level than the lowest excitation energy level of the
target nucleus. Accordingly, high-energy fast neutrons will initially
undergo inelastic collisions with medium and heavy nuclei, thereby
decreasing their kinetic energy following the interaction with target
nuclei and reducing them to fast neutrons. Afterward, following the
law of conservation of kinetic energy, fast neutrons will undergo
elastic collisions with light nuclear elements, resulting in a rapid
reduction in neutron energy. Ultimately, these neutrons will have a
high neutron capture cross-section in the material capture reaction,
which can be absorbed by γ light. This process can also be observed
in heavy nuclear elements.

As shown in Table 1, the thermal neutron absorption cross-
sections for several common elements are illustrated, with Gd
being the rare earth element possessing the largest neutron
absorption cross-section. For neutrons, Gd with natural isotopic
abundance (containing 15.7% 157Gd and 14.8% 155Gd) exhibits
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TABLE 1 Thermal neutron absorption cross-sections of several elements.

Element A Neutron capture cross-section (barn) Abundance (wt%)

B 10 3,837 19.9

Gd

155 62,540 14.8

156 1.71 20.4

157 255,000 15.65

Sm 149 40,000 13.8

Eu 153 4,500 52.2

an exceptionally high macroscopic absorption cross-section (Σa
≈ 1.42 cm-1) at thermal neutron energies (0.025 eV) (Ho et al.,
2022). Furthermore, its key isotopes, 155Gd and 157Gd, demonstrate
strong resonance absorption in the epithermal neutron range
(G. Leinweber et al., 2006). However, the neutron absorption
efficiency of Gd significantly declines for fast neutrons (>1 MeV,
Σa < 0.5 cm−1), necessitating the use of moderating materials (e.g.,
polyethylene, water) to enhance shielding performance (Li X. et al.,
2024). Gd can combine with light elements, utilizing elastic and
inelastic scattering to slow down high-energy neutrons. Ultimately,
it absorbs lower-energy neutrons and the resulting secondary
gamma photons, achieving optimal shielding.

1.2 Interaction of gamma photons with the
rare earth element Gd

Gamma rays (γ-rays) were first discovered by the French
scientist Villars in 1900 (Gerward, 1999). γ-rays are high-energy
photons that are massless and uncharged, which allows them to
easily penetrate materials. They can be generated naturally through
the radioactive decay of radionuclides (e.g., 238U and 232Th series)
or artificially in nuclear reactors (Eman et al., 2021). γ-rays interact
with matter primarily through three mechanisms: photoelectric
effect, Compton scattering effect, and electron pair effect.

The photoelectric effect occurs when an incident photon
interacts with an atom, transferring all its energy to an electron.
This energy causes the electron to overcome the binding forces of
the atom and be ejected from the atom. The ejected electron is
called a photoelectron, and the photon ceases to exist. As the atom
returns to its ground state through de-excitation, it may emit an
Auger electron or an X-ray, as shown in Figure 1a. The likelihood of
the photoelectric effect occurring is quantified by the photoelectric
cross-section (σph), which is positively correlated with the fifth
power of the atomic number (Z) and negatively correlated with the
photon energy (hυ). Therefore, high-Z materials are more efficient
at absorbing low-energy photons through this mechanism.

As shown in Figure 1b, Compton scattering involves an inelastic
collision between an incident photon and an outer electron, resulting
in the transfer of some energy to the electron, which causes it to be
ejected from the atom as a recoil electron. The photon, now with
reduced energy, is scattered at a different angle. Compton scattering

is the dominant mechanism through which matter interacts with
neutral energy. Similar to the photoelectric effect, the probability of
Compton scattering is described by the Compton scattering cross-
section (σC), which is proportional to the atomic number (Z).

The electron pair effect, as illustrated in Figure 1c, occurs when
an incident photon passes near the nucleus of an atom and is
converted into a positron and an electron due to the Coulomb field
of the nucleus. The positron and electron subsequently interact with
nearby atoms, losing energy and slowing down due to Coulomb
forces. Eventually, the positron annihilates with an electron in the
material, producing two gamma photons, each with an energy of
0.511 MeV. The electron pair cross-section (σp) is proportional
to the square of the atomic number (Z2). High-energy photons
interacting with elements or compounds of high atomic number
are more likely to result in pair production, leading to enhanced
radiative attenuation (Zhang Q.-P. et al., 2020). Figure 2 illustrates
the correlation between these three effects, photon energy, and
atomic number. It is evident that elements with higher atomic
numbers demonstrate superior γ-ray shielding capabilities.

There are various mechanisms by which photons interact with
matter, mainly dominated by the photoelectric effect, the Compton
scattering effect, and the electron pair effect (Kaur et al., 2016). σt
denotes the cross-section of the ray-matter interaction, then

σt = σph + σc + σp

Figure 2 represents the relationship between the three effects and
the atomic number of the photon energy. When the material has a
large atomic number, the photoelectric effect dominates when the
incident photon energy is low, and the electron pair effect dominates
when the incident electron energy is high.When the atomic number
of the material is low, Compton scattering dominates.

2 Research progress of Gd-based
composite shielding materials

In recent years, rare earth elements have exhibited good
radiation protection properties and have become a research hotspot
in radiation composite shielding materials. Gd-based composite
shielding materials can be classified by substrate (Figure 3).
metal-based composite shielding materials, glass-based composite

Frontiers in Materials 03 frontiersin.org

https://doi.org/10.3389/fmats.2025.1561198
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Chen et al. 10.3389/fmats.2025.1561198

FIGURE 1
Three types of interactions between Gamma rays and matter: (a) Photoelectric effect, (b) Compton scattering, and (c) Electron pair effect.

FIGURE 2
The relationship between the three interaction mechanisms, photon
energy, and atomic number.

shielding materials, ceramic-based composite shielding materials,
and polymer-based composite shielding materials.

2.1 Gd-containing metal matrix composite
shielding materials

For stationary power reactors such as nuclear power plants,
shielding materials must balance three key parameters: shielding
performance, total weight, and volume, to comply with design
specifications. Cost-effectiveness is also a crucial consideration.
Metal-based composite shielding materials offer superior
mechanical properties, corrosion resistance, and workability,
though their higher production costs can be advantageous in
space-constrained nuclear installations. However, their cost-
effectiveness remains relatively low, which presents challenges in
certain nuclear facilities with limited space (Gupta, 2020; Gan et al.,
2021). Currently, metal-based composite shielding materials can
be classified into iron-based, aluminum-based, stainless steel-
based, and other metal-based composites. Among these, Gd-
containing metal-based composites are primarily aluminum-based
and stainless steel-based, as shown in Table 2.

FIGURE 3
Classification of Gd-containing composite radiation shielding
materials.

Aluminum, due to its low density, ease of processing, and
relatively low cost, is an excellent choice as a matrix material for
mass-produced metal-based shielding. The high thermal neutron
absorption cross-section of 10B enables the effective absorption of
thermal neutrons via the 10B (n, α) 7Li transmutation reaction
(Zhang et al., 2008; Xu et al., 2016a). Moreover, the use of 10B
as a reinforcing filler, such as in boron steel or boron carbide
(B4C)/Al metal composites, has been widely applied for the storage
and transportation of spent nuclear fuel. However, the shielding
capacity of boron steel for thermal neutrons is negligible when
the concentration of 10B is low, and excessive concentration
can lead to a deterioration in the mechanical properties of the
composites. Increasing the content of boron carbide (B4C) raises
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TABLE 2 Some Gd-containing metal matrix composite shielding materials and their performance parameters.

Year Composition Mechanical
properties

Shielding
performance

References

2016 (15%B4C+1%Gd)/Al Elongation 9% Neutron capture rate∼99%
(Thickness 3 mm),
Transmission cross-section Σ
= 21.3 cm−1

Xu et al. (2016b)

2024 15% Gd2O3/Al — Thermal neutron macroscopic
cross-section Σ = 71.0 cm−1

Kursun et al. (2024)

2019 10wt% Gd2O3/6061Al Ultimate tensile strength
240 Mpa, Elongation 16%

Neutron capture rate 99.6261% Zhang and Bai (2019)

2019 (15%B4C+1%Gd)/6061Al Tensile strength ∼340 Mpa,
Elongation ∼9%

— Xu et al., (2019)

2023 15wt.%SiC/5wt%
Gd2O3/6061Al

Tensile strength 196 Mpa,
Elongation percentage 11%

Neutron capture rate 99.8%
(Thickness 1 mm)

Lian et al. (2023)

2022 TiB2/Al-Mg-Gd Tensile strength 464 ± 6 Mpa,
Elongation 15.6% ± 0.4%

Neutron capture rate ∼99%
(Thickness 8 mm)

Chen et al., (2022)

2023 2wt.%Gd/Alloy (Austenitic
304, 316, and duplex stainless
steel 5A)

304-Gd: Tensile strength 572.2
± 67.3 Mpa, Elongation 38.3%
± 3.3%
316-Gd: Tensile strength 504.0
± 15.6Mp, Elongation 49.4% ±
4.6%
5A-Gd: Tensile strength 776.5
± 24.3 Mpa, Elongation 15.9%
± 5.1%

Neutron capture rate∼99%
(Thickness 0.5 mm)

Oh et al. (2023)

2024 4.8wt.%Gd/Boronized
stainless steel

— Neutron absorption
cross-section Σ = 45.1 cm−1

Ji et al. (2024)

the hardness of the material, which in turn limits its processability
and moldability (Oh et al., 2023; Sun et al., 2023). Studies
have shown that 157Gd possesses a thermal neutron absorption
capacity four times greater than that of 10B, while also offering
a cost advantage of approximately one-twelfth to one-fifth of
that of 10B (Xu et al., 2016b). Additionally, Gd can effectively
reduce the formation of helium bubbles during the neutron
absorption process, thereby extending the lifetime of neutron-
absorbing and shielding materials (Cong et al., 2020; Jung et al.,
2020). Thus, replacing B with Gd offers a solution to the content-
performance dilemma.

Through the strategic partial substitution of Gd for B4C in
B4C/Al composites, Xu et al. (2016a) successfully alleviated the
constraints induced by tensile brittleness, which hindered the
development of shielding composites. This modification resulted
in an improvement in the plasticity of the composites. As shown
in Figure 4, the (15%B4C + 1%Gd)/Al composites prepared by
hot-pressing were compared with the conventional 30%B4C/Al
composites. The (15%B4C + 1%Gd)/Al composite exhibited
slightly better neutron shielding performance than the 30%B4C/Al
composite, with the elongation at break increasing from 4% to 9%.
This research highlights an optimal combination of high neutron
absorption and good ductility, making it a promising candidate for
future neutron shielding applications. Kursun et al. (2024) employed

a powder processingmechanical millingmethod to synthesizemetal
nanocomposites. Mechanical ball milling resulted in reduced grain
size and refinement, facilitating the uniform fusion of aluminum,
Gd, and oxygen elements. Similarly, it was found that lower
concentrations of Gd2O3 were sufficient to produce thermal neutron
attenuation efficiencies comparable to those of standard Al/B4C
composites. To address a wider range of application scenarios for
shielding materials and meet more diverse protection requirements,
researchers have focused on developing non-homogeneous
structures, including layered and shell-core structures. Gaylan
and Avar (2024) investigated the structure, mechanical properties,
and neutron shielding characteristics of Al-20%B4C-x%Gd2O3
(x = 1, 3, 5) composites through high-energy ball milling. The
MCNP6.2 simulation results indicated that the Al-20%B4C-
5%Gd2O3 composite exhibited the highest fast neutron absorption
rate, while the Al-20%B4C-5%Gd composite demonstrated the
highest thermal neutron absorption rate. Zhang P. et al. (2020)
prepared a Gd2O3@W/Al composite by coating a layer of tungsten
on the surface of Gd2O3 particles. When Gd absorbs neutrons, it
excites secondary gamma rays, which are blocked by the tungsten
shell, achieving simultaneous shielding against neutrons and
secondary gamma rays. This approach is particularly promising
for applications such as spent fuel storage and transportation, or for
mobile nuclear reactors.
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FIGURE 4
(15%B4C-1%Gd)/Al and 30%B4C/Al Composite Materials: (a) Neutron Transmission Rate and (b) Tensile Curve (Xu et al., 2016b).

Spent nuclear fuel (SNF) generated from nuclear reactors has
an inherent spontaneous fission capability that releases intense
neutrons and gamma rays, which are extremely hazardous to the
environment and human beings and require careful and appropriate
disposal (Wang et al., 2018; Fu et al., 2021; Qi et al., 2022). Boron-
aluminum alloys have low melting points and mechanical strengths,
making it difficult to meet the requirements of spent fuel storage
racks and spent fuel transportation. Iron-based composite shielding
materials are mainly based on stainless steel, which has excellent
durability, corrosion resistance, and high strength. Combining it
with boron can develop composite materials with neutron-shielding
properties. However, boron has a very low solubility in stainless
steel, making it extremely difficult to produce alloys with high
shielding efficiency (Choi et al., 2013). Among the various types
of stainless steels, duplex stainless steels with austenitic and ferrite
phases have higher strength and better corrosion resistance than
single-phase austenitic stainless steels at a lower cost (Yang et al.,
2020; Qi et al., 2023; Silva et al., 2023). Choi et al. (2013) devised
and manufactured a duplex stainless steel sheet with a Gd content of
1 wt% through a process involving melting, casting hot rolling, and
solution treatment. The alloy consists of 31% ferrite phase and 69%
austenite phase, and the main elements are chromium (Cr), nickel
(Ni), and Gd. Gd-rich precipitates can be found inside the grains
and at grain boundaries under microscopic conditions. Its ultimate
tensile strength was 700.2 MPa, yield strength was 552.3 MPa,
and elongation was 38.08%. Subsequently, this research team
investigated the neutron-absorbing element Gd on the organization
development characteristics andmechanical and corrosion behavior
of duplex stainless steel in 2015 (Choi et al., 2016).

Oh et al. (2023) prepared alloys by adding 2 wt% of Gd to
austenitic stainless steels 304 and 316 and duplex stainless steel 5A.
The chemical composition of the alloys used in the experiments
is presented in Table 3. It was determined that Gd was distributed
uniformly in the alloy as an intermetallic compound, exhibiting
no segregation or clustering. The mechanical properties were then
compared with those of boronized stainless steel according to

the ASTM A887 standard. The addition of Gd can increase the
ultimate tensile and yield strength of the alloy by 11%. Despite
a 48% reduction in elongation, the alloy exhibited significantly
higher impact properties than boron-containing stainless steels.
Kinetic potential polarization tests were carried out on the alloy,
and the corrosion resistance of the alloy decreased with the
addition of Gd, but its neutron absorption showed excellent
performance. Baoting Ji et al. (2024) designed and prepared a
new Gd-doped iron-based amorphous metal coating (Gd-AMC)
using thermal spraying. The thermal neutron absorption cross-
section of the coating containing 4.8 wt% Gd was observed to
be 14.7 times higher than that of the borated stainless steel
(BSS) substrate. Moreover, the authors propose a novel “dissolution
passivation” process to rapidly form a protective passivation film on
the amorphous substrate, resulting in localized corrosion resistance
of the Gd-AMCs significantly better than that of the BSS substrate.

2.2 Gd-containing glass-based composite
shielding materials

Glass is a distinctive material system, characterized by its
inherent transparency (Kurtulus, 2024). This quality is particularly
advantageous in contexts where optical clarity is paramount, such as
control room windows, glass doors, protective panels for inspection
systems, and radiation shielding sites, including those used for
material testing and radiotherapy (Sayyed et al., 2019; Kawa and
Kaky, 2024). Glass materials doped with rare-earth particles are
extremely useful for the improvement of optical devices such as
lasers, light propagators, optical fibers, amplifiers (Alalawi et al.,
2022). Currently, glass systems used for radiation shielding are
mainly classified as borates (Al-Buriahi et al., 2022), silicates
(Albarzan et al., 2021), germinates (Sayyed et al., 2019), phosphates
(Saudi et al., 2020), and tellurates (Kurtulus, 2024).

Borate-based glasses are the most extensively studied glass
systems, known for their excellent metal oxide solvent properties.
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TABLE 3 Chemical composition (wt%) of alloys used in the
experiment (Oh et al., 2023).

Alloys Fe Cr Ni Mo Mn Si N Gd

304
(Amied)

Bal 18 10 — 1.3 0.8 0.1 2

304 Bal 18.4 9.21 — 1.01 0.45 0.13 —

304-Gd Bal 18.1 9.44 — 1.13 0.62 0.12 1.76

316
(Amied)

Bal 18 12 2.4 1.3 0.8 0.1 2

316 Bal 19.3 11.6 1.9 1.4 0.91 0.12 —

316-Gd Bal 18.3 10.9 2.12 1.19 0.77 0.14 2.13

5A (Amied) Bal 25 7 4.5 1.3 0.8 0.3 2

5A Bal 25.4 7.17 4.23 1.16 0.65 0.25 —

5A-Gd Bal 25.8 7.63 4.34 1.22 0.78 0.28 1.96

This is due to the ability of their glass network to form tetrahedral
units of BO4 and triangular units of BO3, which affords them the
advantage of requiring a low processing temperature (Abou Hussein
and Madbouly, 2024; Biradar et al., 2024). Yorulmaz et al.
(2024) investigated the effect of different ratios of Gd2O3 on the
structural, optical, radiation shielding, and mechanical properties
of B2O3-Al2O3-Na2O-Gd2O3 glasses. The radiation shielding
parameters were determined at energies of 1,173 keV and 1,333 keV,
respectively. The results demonstrated that the shielding was
more effective at 1,173 keV than at 1,333 keV. Young’s modulus
of 104.211 GPa, fracture toughness of 1.215 MPa m1/2, band gap
energy of 2.89 eV, and LAC value of 0.1488 ± 0.0074 cm−1 were
found to have optimum radiative and mechanical properties when
the contribution of Gd2O3 was 3%. The disadvantage of B2O3 glass
is the high phonon energy, which can be reduced by increasing
the density of the glass. The density can be increased by adding
heavy WO2 and Gd2O3 components to the glass network. In
2021, Kaewnuam et al. (2022) prepared WO3-Gd2O3-B2O3 glass
by melt quenching. The high-density material has tremendous
photon interaction and high radiation resistance, and theWGB glass
increases with the concentration of Gd2O3. As shown in Figure 5,
WGB glass appears a pale-yellow color that can be seen by humans
and can be used as a radiation-shielding window. At 662 keV photon
energy, the HVL of WGB glass is compared with that of commercial
window glass and some standard shielding materials, and the HVL
of the prepared WGB glass is in the range of 1.331 ∼ 1.412 cm, and
its Radiation shielding performance is superior to that of standard
materials, among which the Gd17.5 glass has the best radiation
shielding performance, and it is a promising shielding material of
γ-rays at room temperature and high temperature. It is a promising
shielding material for room temperature and high-temperature
γ-rays. Alamosa et al. (Almousa et al., 2024) explored the role of
mixtures of silicon (Si) and Gd rare earths in oxide glass matrices,
which led to a new field of B2O3-SiO2-Gd2O3 glass composites. The
radiation shielding parameters were evaluated using the MCNPX

code and the Phy-X software. The PSD tool revealed that the GL-
3 sample was the most effective gamma photon attenuator, with
half-value layer (HVL) values ranging from 0.002 to 3.706 cm. In
addition, the Makishima and Mackenzie modeling was used to
evaluate themechanical and acoustic properties of these glasses, and
the results of this study showed that the GL-3 glass samples exhibit
excellent performance in terms of gamma photon attenuation,
mechanical robustness, and acoustic properties.

Silicate glass is commonly used in commercial eyewear due
to its ease of fabrication and good visibility (Albarzan et al.,
2021). However, its processing temperature is high, and relatively
few studies have been conducted on Gd-containing silicate glass-
based radiation protectionmaterials. A promising approach involves
combining boron oxide (B2O3) and silicon dioxide (SiO2), with B-
O and Si-O bonds forming a stable non-uniform network, making
the borosilicate glass system superior to both borate and soda-lime
glasses. Mhareb (2023) synthesized four borosilicate glass samples
using the melt-cooling method, transforming them into glass
ceramics under heat treatment.The radiation shielding properties of
these samples were evaluated, and it was found that replacing B2O3
with Gd2O3 improved both the neutron and radiation shielding
properties. For instance, the FNRCS (Fast Neutron Removal Cross-
Section) of BSTSGd0.5, BSTSGd1, BSTSGd1.5, BSTSGd1.5, and
BSTSGd2 were 0.103, 0.105, 0.105, and 0.105 cm−1, respectively.
However, the addition of Gd2O3 was found to reduce the shielding
performance for charged particles, indicating that the contribution
of heavy elements to charged particle shielding is limited. Bawazeer
and Sadeq (2023) doped the borosilicate glass system with Gd
oxide (Gd2O3), sodium oxide (Na2O), and iron oxide (Fe2O3). The
study showed that the glass system’s transparency increased with the
addition of Gd2O3, and the final morphology is shown in Figure 6a.
As illustrated in Figures 6b, c, with the increasing addition ofGd2O3,
the density and optical bandgap of the glass sample increased. This
resulted in a decrease in both the linear and nonlinear refractive
indices, improved transparency, and a significant enhancement in
radiation shielding performance. Consequently, this glass sample
is a suitable candidate for high-transparency radiation shielding
applications.

Compared to the extensive research on borate and silicate glass
systems, there are relatively few studies on radiation shielding
materials based on rare earth element Gd-doped phosphate,
tellurite, and germanate glass systems. Phosphates, as conventional
glasses, typically exhibit relatively poor chemical durability and
require improvements through the addition of different oxides
to enhance their service life (Saudi et al., 2020; Alalawi et al.,
2022). In 2018, Tao Yu (2018) prepared a series of x Gd2O3-(50-
x)BaO-50P2O5 (0 ≤ x ≤ 7 mol%) glass samples using the melt
quenching method and irradiated them with a60Co irradiation
source. The results revealed the formation of brown phosphorus-
oxygen hole centers (class I color centers) under γ-ray irradiation.
The number of color centers decreased with increasing Gd2O3
content in the glass, indicating that Gd2O3 enhances the resistance
to γ-irradiation in barium phosphate glass without introducing new
structural units into the microscopic network.

The tellurite glass system has a lower processing temperature
than silicates. However, the high dispersion coefficient and weak
mechanical properties of tellurites limit their development in the
optical field. Furthermore, tellurium is toxic, posing long-term
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FIGURE 5
Photographic image of WGB glass sample (Kaewnuam et al., 2022).

FIGURE 6
(a) Photographic image of the prepared GdFeNaBS glass sample, (b) dependence of GdFeNaBS glass sample on Gd2O3 Content (at room temperature),
(c) absorbance of the prepared glass sample in the 200–1,100 nm UV-Visible-NIR range as a function of wavelength (Bawazeer and Sadeq, 2023).

health hazards to humans (Floressy Juhim et al., 2022; Mhareb et al.,
2024). Al-Hadeethi and Agar (2020) employed software to assess
the photon attenuation of the TeO2-ZnO-Nb2O5-Gd2O3 glass
system. The addition of ZnO as a network modifier improved
the medium’s opacity, fusion properties, chemical durability, and
nonlinear refractive index. Incorporating niobate (Nb2O5) into the

glass matrix stabilizes the network and may enhance the dual
properties of the glass, serving both as a modifier and a network-
forming agent. Gd2O3-doped glass matrices are highly efficient
scintillator materials due to the efficient energy transfer from Gd3+

ions to activators. This makes them suitable for radiation detection
and high-energy particle applications. The results showed that the
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FIGURE 7
(a) Mass attenuation coefficient of TeO2-ZnO-Nb2O5-Gd2O3 glass in the energy range of 0.015–10 MeV, (b) Effective atomic number of
TeO2-ZnO-Nb2O5-Gd2O3 glass (Al-Hadeethi and Agar, 2020).

attenuation capacity of ionized photons increased with the sample’s
density, indicating that high-density samples are needed for superior
attenuation. As shown in Figure 7, the mass attenuation coefficient
and effective atomic number of the tellurite glass were higher than
those of the other samples when the Gd2O3 content was 2.5 mol%.
Germanate glass offers good thermal stability, transparency, and
a low melting point. However, germanium is a rare metal with
limited availability, making germanate glass expensive to produce.
As a result, it is generally used for specific optical components and
lasers (Sayyed et al., 2019). Kawa and Kaky (2024) investigated
photon energies ranging from 0.015 to 10 MeV in the B2O3-GeO2-
Eu2O3-R2O3 (where R = Y, La, and Gd) germanate glass system
for its shielding capabilities. The results showed that the addition
of elements with high atomic numbers (Z) effectively enhanced the
photon attenuation of germanate glass.

2.3 Gd-containing ceramic-based
composite shielding materials

Ceramic materials are a class of non-metallic inorganic
compounds, typically prepared through high-temperature sintering
or melting processes. These materials are known for their
exceptional thermal stability and low conductivity, making them
promising candidates for thermal insulation applications in reactors
(Lo et al., 2015; Zhang andBai, 2019; Zhang, 2021).Thedevelopment
of ceramic-based materials with neutron-shielding properties
has become a significant area of research. Over recent decades,
scholars specializing in nuclear materials have increasingly focused
on ceramic-based systems due to their advantages, including
high-temperature resistance, mechanical robustness, and tunable
compositions (Oto et al., 2019).

Aluminum oxide ceramics (Al2O3) are widely used as carriers
for electronic components because of their high hardness, high-
temperature resistance, and high electrical insulation (Ghasemi-
Kahrizsangi et al., 2017; Wu et al., 2024). However, its high sintering

temperature andpoor thermal conductivity limit the development of
his application (Wu and Yu, 1988). Many researchers have reduced
the sintering temperature by adding additives such as MgO and
SiO2 to Al2O3 ceramics to induce liquid-phase sintering (Wu and
Yu, 1988; Lee et al., 2015; Zeng et al., 2022). Gradually, it has
been found that the addition of rare earth elements can effectively
reduce the sintering temperature and improve the mechanical
properties of ceramic materials while preventing radiation damage
to components (Ge et al., 2016). Ge et al. (2016) prepared
Gd2O3/Al2O3 ceramic composites with different Gd2O3 contents by
pressureless sintering methods using MgO and SiO2 as additives.
It was found that the addition of a small amount of Gd2O3 could
promote the generation of spinel and olivine from MgO, SiO2, and
Al2O3, which greatly improved the properties of the ceramics, and
the flexural strength and thermal conductivity of Gd2O3/Al2O3
ceramic composites added with 5 wt% Gd2O3 increased by 38.03
MPa and 8.95 W/(m⋅K). Tests using a highly active Co-60 source
with a dose rate of 1.5 kGy/h revealed that the shielding rate of
the composites against Co-60 γ-ray radiation increased with the
addition ofGd2O3, and they also exhibited goodmechanical stability
under continuous γ-ray irradiation.

Boron-based ceramics can be synthesized at relatively low
temperatures and are well-suited for radiation shielding applications
due to the neutron absorption capacity of B. Dong et al. (2021)
reported the development of GdBO3 ceramics, which exhibit
effective neutron shielding properties and low thermal conductivity,
making them ideal multifunctional insulating materials. These bulk
GdBO3 ceramics were prepared for the first time via a simple solid-
phase method. As the sintering temperature and boric acid content
increased, the apparent porosity decreased, while the average
pore size increased. The thermal conductivity of the ceramics
ranged from 0.12 to 0.68 W/(m·K). The addition of boric acid
improved the mechanical properties of the samples over various
temperature ranges. The neutron shielding permeability of the
samples with varying thicknesses was also evaluated, revealing
that the neutron transmittance decreased with increased sample
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thickness. The macroscopic cross-section of the material was found
to be at least 0.641 cm−1, which is promising for use in nuclear
reactors. Aluminum borate (Al18B4O33) is a binary compound
that exhibits optimal refractory properties within the Al2O3-B2O3
phase diagram. It is considered a promising reinforcing agent and
high-temperature structural material, particularly for its exceptional
neutron shielding properties (Yu et al., 2016;Hernández et al., 2023).
Li et al. (2021) synthesized Gd2BO3-Al18B4O33 (GACCs) composite
ceramics using 2Al2O3⋅B2O3 and α-Al2O3 as raw materials and
Gd2O3 as a neutron shielding agent via pressureless sintering. To
further explore the effects of the in-situ formation of GdBO3 on the
microstructure and mechanical properties of GACCs, the authors
conducted experiments, including crystal morphology observation
and thermal shock testing. As shown in the SEM images in Figure 8,
the samples without added Gd2O3 showed no distinct areas,
indicating that the etching treatment effectively removed the
sintering agent Bi2O3. At higher magnification, numerous rod-like
particles with a three-dimensional interlocking network structure
were observed. As the Gd2O3 content increased, the distribution
area of the bright regions expanded, and the directionality of the
interlocking network became more pronounced. The formation
of excess GdBO3 led to intergranular microcracks, which could
negatively impact the structural stability of the GACC. However,
the thermal shock test revealed that a moderate amount of Gd2O3
did not adversely affect the structural stability of the composite,
enhancing its mechanical and thermal properties. The lowest
porosity observed for the composite was 1.8%, and the highest
neutron shielding efficiency of 82.8% was achieved for the G12
probe sample.

In 2015, the efficacy of entropy stabilization in oxide mixtures
was demonstrated (Oses et al., 2020b). Inspired by high-entropy
alloys, high-entropy disordered ceramics emerged, with ongoing
research stimulating the incorporation of additional components to
achieve a diverse range of physical and chemical properties. These
materials are now used in various applications, including thermal
barrier coatings, thermoelectrics, catalysts, batteries, and wear- and
corrosion-resistant coatings (Oses et al., 2020a; Toher et al., 2022;
Li Y. et al., 2024; Ward et al., 2024). To develop a material capable
of absorbing both neutrons and gamma rays, Zhang et al. (2021)
prepared a novel single-phase (La0.2Ce0.2Gd0.2Er0.2Tm0.2)2(WO4)3
ceramic. The synthesis of this phase-pure rare-earth tungstate-
based high-entropy ceramic (HEC) powder, based on tungstates
known for their enhanced neutron absorption capacity, and its phase
stability enhanced by the high-entropy effect, renders the powder
less susceptible to failure under radiation. The ceramic powder was
then uniformly mixed with epoxy resin (EP). In terms of thermal
neutron shielding, the composite with the highest HEC content
(EP/W3) exhibited a shielding efficiency of nearly 100%, compared
to approximately 50% for pure EP. For γ-ray shielding, the composite
demonstrated a lead equivalent value at 65 keV that exceeded that of
EP, indicating its effectiveness in shielding γ-rays in both low- and
medium-energy regions.

Despite the rapid development of ceramic matrix composites
for nuclear radiation shielding, the fabrication of ceramic materials
presents challenges, including the need for high-temperature
sintering, which complicates their production. Additionally, the
brittleness of ceramics imposes limitations on the design of micro-
mechanisms and compositions for practical applications. As the

FIGURE 8
Crystal morphology of GACCs treated for 3 hours
at 1,400°C (Li et al., 2021).

range of potential applications for shielding materials continues
to grow, the fabrication requirements are becoming increasingly
complex. The advent of 3D printing (3DP) technology provides new
possibilities for the customized fabrication of intricate structures. As
shown in Figure 9, Wang et al. (2022) employed DLP 3D printing to
prepare Gd2O3 ceramics. The phase transition of Gd2O3 from cubic
to monoclinic enhances the densification of sintered specimens,
improving their mechanical properties. The authors fabricated
lattices comprising numerous lattice elements and sintered them
at various temperatures. The bending stress and bending elastic
modulus of the sintered specimens at 1,600°C were found to be as
high as 40 MPa and 20.219 GPa, respectively.These findings support
the practical application of the material for neutron absorption and
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FIGURE 9
(a) schematic diagram of the Gd2O3 ceramic DLP-3DP process, (b) preparation of a 10 cm long lattice body and its
cross-sectional image (Wang et al., 2022).

shielding, addressing the issue of constrained ceramic structures
in confined environments. This research provides a foundation for
future studies in this practical area.

2.4 Gd-containing polymer-based
composite shielding materials

Metal matrix composites are characterized by high density,
high cost, and processing challenges. Additionally, they are prone
to corrosion under high-intensity irradiation, which can lead to
the formation of cracks, cavities, and other defects, making them
unsuitable for use in protective devices or miniaturized nuclear
power plant applications. Glass-based composite materials, known
for their high light transmission, are mainly utilized for visualizing
operating equipment. Ceramic-based composite shieldingmaterials,
while offering high performance, exhibit brittleness and are difficult
to process, significantly limiting their applicability under specific
dynamic loading conditions.

Polymer-based radiation shielding materials are composed
of polymers with high hydrogen content as the base material
and substances with high and medium absorption cross-
sections as additives. These additives, such as B and Gd, are
particularly effective at absorbing thermal neutrons. Effective
neutron shielding is achieved through three primary mechanisms:
slowing down high-energy neutrons by hydrogen, scattering, and
absorption by specific elements. Polymer-based materials offer
excellent thermal stability, electrical insulation, and mechanical
properties, along with advantages such as light weight and ease
of processing. These characteristics make them ideal for use
in confined or motorized environments and allow for a wide
range of potential applications across multiple fields (Kim, 2023;
Zhang et al., 2023; Alkarrani et al., 2024).

Polyethylene (PE) is known for its good chemical resistance,
stability, lightweight nature, small size, and low processing cost.
Additionally, PE contains many hydrogen atoms, which can
effectively slow down neutrons and reduce their energy during
collisions. However, its shielding effect on high-energy neutrons
(fast neutrons) is relatively weak. To improve the shielding and

mechanical properties of polyethylene, inorganic functional fillers
with a high neutron-absorbing cross-section, such as Gd, are
added to the polyethylene matrix. İrim et al. (2018) first used a
fusion composite method to prepare new multifunctional neutron
shielding materials based on high-density polyethylene (HDPE),
incorporating nano-h-BN and nano-Gd2O3 as hybridized particles.
The neutron and γ-ray transmittance of h-BN/Gd2O3/HDPE
nanocomposites were compared with varying nanoparticle content.
The results showed that Gd, a heavy element, exhibits a dual
shielding effect on both gamma rays and neutrons. The neutron
and γ-ray transmittance decreasedwith increasing h-BN andGd2O3
concentrations, and some samples achieved shielding rates of
around 80%–90% at low thicknesses. However, inorganic fillers
tend to agglomerate and have poor interfacial compatibility in
the polymer matrix, which can reduce the mechanical properties
and impact the overall shielding performance of the composites
(Hsieh et al., 2016; Shah et al., 2016). Surface modification of
the fillers is an effective strategy to improve the compatibility of
inorganic-organic interfaces (Wang et al., 2015; Zhong et al., 2020).
Huo et al. (2021) used 3-(trimethoxysilyl)propyl methacrylate as a
coupling agent to modify the surface of micro- and nano-Gd2O3,
and prepared four lead-free composites using the hot pressing
method: micro-Gd2O3/B4C/HDPE, M-micro-Gd2O3/B4C/HDPE,
nano-Gd2O3/B4C/HDPE, and M-nano-Gd2O3/B4C/HDPE. The
results showed that the composite containing 10 wt% M-nano-
Gd2O3/20 wt% B4C/70 wt% HDPE exhibited a higher initial
decomposition temperature (T5%) of 463.5°C and a peak heat
absorption temperature (TP) of 137.2°C. The tensile strength
(19.6 MPa) was also significantly higher than that of pure HDPE
(15.8 MPa). These findings demonstrate that the composite has
excellent thermal stability and mechanical properties. The surface
modification of the filler significantly enhanced the interfacial
compatibility and dispersion of the filler within the polyethylene
matrix, reducing stress concentration and improving themechanical
properties of the composites. Experimental measurements and
Monte Carlo simulations were conducted to investigate the
neutron and γ-ray shielding mechanisms of the composites.
As shown in Figure 10, the composite containing 10 wt% M-nano-
Gd2O3/20 wt% B4C/70 wt% HDPE achieved 90% neutron shielding
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FIGURE 10
(a) Schematic diagram of the neutron radiation shielding experiment setup, (b) Schematic diagram of the gamma radiation shielding experiment setup,
(c) Photograph of the composite materials, (d) Neutron flux attenuation of different composites composed of M-nanoGd2O3, M-microGd2O3,
nanoGd2O3, and microGd2O3, (e) Comparison of neutron transmittance for different composites with thicknesses of 4.5 cm and 15 cm; (f) Gamma flux
attenuation of different composites composed of M-nanoGd2O3, M-microGd2O3, nanoGd2O3, and microGd2O3,(g) Comparison of gamma photon
transmittance for different composites with thicknesses of 4.5 cm and 15 cm (Huo et al., 2021).

at 9.1 cm in a Cf-252 environment and 70% gamma shielding at
13.7 cm in a Cs-137 environment, making it a promising material
for neutron-gamma mixed-field radiation shielding.

Polyimide (PI) is less effective than polyethylene in neutron
deceleration, but it boasts excellent thermal stability, chemical
resistance, and radiation resistance, making it widely used in
aerospace, precision electronic equipment, and high-temperature
applications (Hu Xu et al., 2022; Xu et al., 2022; Li L. et al., 2024).

Metal-organic frameworks (MOFs) are a class of porous materials
consisting of metal ions or metal clusters linked to organic ligands
by coordination bonds, and they have attracted significant attention
due to their highly tunable pore structures and excellent chemical
properties (García-Sánchez et al., 2017). Therefore, the combination
of MOFs and polyimide (PI) holds great promise for developing
new MOF/PI composites with enhanced mechanical properties and
improved neutron shielding capabilities. Hu et al. (Hu et al., 2021)
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FIGURE 11
(a) Scheme of the process for the preparation of Gd-MOF/PI films, (b) Scheme of PI monomer. Color representation of different elements: o (red), c
(orange), h (grey), n (blue) (Hu et al., 2021).

synthesized a rare-earth metal Gd-based metal-organic framework
(Gd-MOF) from GdCl3 and o-phenylene dimethyl dianhydride
(PDMA) in N,N-dimethylformamide (DMF), as shown in the
preparation process in Figure 11. The porous structure of Gd-MOFs
provides a compatible interface with the PI substrate, facilitating
effective interfacial load transfer. Scanning electron microscope
(SEM) images revealed that the Gd-MOF/PI film containing 3 wt%
filler had a smooth and flat surface without any noticeable matrix
defects, indicating strong interfacial interactions between the filler
and the PI matrix, resulting in excellent mechanical strength.
The authors also performed shielding efficiency simulations
using SuperMC. The results indicated that increasing the Gd-
MOF content from 0 wt% to 20 wt% enhanced thermal neutron
shielding ability but slightly reduced shielding effectiveness for
fast neutrons. This trend is because hydrogen atoms slow down
fast neutrons, and the reduction in hydrogen content diminishes
the neutron-hydrogen atom interaction. Tan et al. (Tan et al.,
2024) successfully synthesizedGd2O(CO3)2@bismuth-basedmetal-
organic frameworks (Bi-MOFs)/graphene nanoplates (GBG)
composite fillers using a two-step hydrothermal method. These
fillers were incorporated into a PMMA matrix at different mass
percentages via a melt-blending and hot-pressing process. The
study revealed that the addition of Gd significantly improved the
gamma-ray shielding capacity of the GBG/PMMA composites,
particularly for low-energy 59.5 keV gamma rays. The mass
attenuation coefficient (MAC) of the GBG/PMMA-50 composite
reached 2.70 cm2/g, nearly 16 times higher than that of pure
PMMA, greatly outperforming state-of-the-art materials in
this category.

Simple physical blending does not allow for the formation of
a dense shielding barrier in the polymer matrix, leading to the
potential escape of neutrons through gaps between nanoparticles.
Furthermore, some single shielding materials are ineffective across
the entire range of neutron or gamma photon energies. To
effectively shield both neutrons and gamma rays, researchers

have designed structures to create dense barriers or achieve
broad absorption. The overlapping of two-dimensional nanosheets
has inspired many researchers. MXene, a new type of two-
dimensional transition metal carbide or nitride with abundant
polyhydroxy and negatively charged surfaces, presents itself as a
promising substrate for grafting other materials (Li, 2023; Malaki
and Varma, 2023). Zhu et al. (2022) successfully synthesized
Gd@MXene nanosheets via a hydrothermal reaction and then
prepared Gd@MXene/poly (vinyl alcohol) (PVA) thin films using a
spin-coating process. The Gd@MXene nanosheets were randomly
aligned to form-oriented, two-dimensional, fish-scale-like barrier
walls in the films. These 2D fish-scale-like Gd@MXene barrier
walls scatter neutron rays multiple times between the nanosheets,
enhancing the neutron absorption efficiency of Gd atoms. This
novel design, incorporating zero-dimensional Gd nanoparticles
(NPs), not only improves neutron shielding performance but also
provides valuable insights for the synthesis of advanced neutron
shielding materials.

Bismuth oxide (Bi2O3) has been extensively studied as a
functional filler due to its excellent γ-ray shielding properties
(Tiamduangtawan et al., 2020a). However, it has weak shielding
capabilities in the 36.4–90.5 keV energy range, limiting its
effectiveness against low-energy gamma rays (Wei et al.,
2023). In 2023, Wei et al. (2023) addressed this limitation
by constructing heterostructures of Gd2O3 and Bi2O3. Using
a simple two-step hydrothermal method, they synthesized
heterostructured Bi2O3-Gd2O(CO3)2∙H2O microscopic flowers,
which were then incorporated into epoxy resin to form
Bi2O3-Gd2O(CO3)2∙H2O/epoxy (EP) composites capable of
shielding gamma rays across a broad energy range. The linear
attenuation coefficients (LAC) of the heterostructured Bi2O3-
Gd2O(CO3)2∙H2O/EP-30 composites at 59.5 keV, 661 keV,
and 1.25 MeV were superior to those of the directly mixed
Bi2O3-Gd2O(CO3)2∙H2O/EP-30 composites. The interaction
of dielectric (661 keV) and high-energy (1.25 MeV) gamma
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FIGURE 12
Mechanism of interaction of γ-rays with Bi2O3-Gd2O (CO3)2∙H2O non-homogeneous materials (Wei et al., 2023).

rays with the materials primarily occurs through Compton
scattering. In contrast to simple co-mingling, new Bi-O
bonds are formed at the heterogeneous interfaces, leading
to electronic rearrangements, an increase in local electron
density, and overlapping of the electron clouds (Figure 12). This
overlap increases the probability of gamma rays colliding with
outermost electrons, greatly enhancing Compton scattering.
The construction of heterogeneous structures could become an
effective method for designing radiation shielding materials.
However, the impact of inhomogeneous interfaces on radiation
shielding performance remains underexplored and requires further
investigation.

As application scenarios evolve, composite components made
from traditional matrices are often inflexible, brittle, and prone
to fracture. As a result, researchers have focused on developing
polymer-based composite shielding materials that meet more
stringent requirements, such as high toughness, high strength,
and the ability to effectively attenuate neutrons. These materials
must also be capable of self-repair to extend their service life
and reduce manufacturing costs. Polyvinyl alcohol (PVA) stands
out due to its high mechanical strength, abrasion resistance,
oxygen barrier properties, solvent/oil/grease resistance, non-
toxicity (biocompatibility), and high hydrogen content, which
aids in neutron modulation and attenuation (Rashad et al., 2020;
Bai et al., 2022; Bijanu et al., 2024). Tiamduangtawan et al.
(Tiamduangtawan et al., 2020b) incorporated fillers (Sm2O3 or
Gd2O3) at concentrations of 0%–3.5%, 7.0%, and 10.5% into
PVA hydrogels. Their study found that the neutron shielding
efficiency of Gd2O3/PVA hydrogels was slightly higher than that
of Sm2O3/PVA hydrogels at the same filler content and thickness.
Furthermore, the overall tensile properties of Gd2O3/PVA hydrogels
were superior to those of Sm2O3/PVA hydrogels. Additionally,
both Sm2O3/PVA and Gd2O3/PVA hydrogels exhibited self-
healing properties at fractured surfaces (Figure 13). The recoverable

strength of the hydrogels increased over time, making them
suitable for use as substitutes for paraffin wax in transportation
drums or as shielding biomaterials in medical diagnosis and
radiotherapy. Poltabtim et al. (Poltabtim et al., 2022) developed
Gd2O3/natural rubber (NR) composites by incorporating reversible
ions into the NR network. These composites demonstrated effective
shielding properties against neutrons and X-rays, as well as
self-healing capabilities. The addition of Gd2O3 resulted in a
decrease in I/I0, half-value layer (HVL), and ten-value layer
(TVL), while increasing the linear attenuation coefficient (µ),
mass attenuation coefficient (µm), and lead equivalent (Pbeq)
of the NR composites. These findings indicate that Gd2O3 is an
effective filler for neutron and X-ray protection. After 60 min of
self-repair, the recoverable strength and recovery values of the
NR composites ranged from 0.30 to 0.4 MPa and 3.7%–9.4%,
respectively. This self-repairing composite material can be used
as a new type of radiation shielding material, which effectively
attenuates neutrons and X-rays, prolonging the service life of
protective materials and enhancing user safety. It also lays the
foundation for the future development of “smart” shielding
materials.

The Gd-containing polymer-based radiation shielding materials
discussed above are summarized in Table 4. Currently, polymer-
based composite shielding materials combine a variety of basic
polymers (e.g., polyethylene, polyurethane, epoxy resin, polyvinyl
alcohol, rubber) with different fillers (e.g., metal powders, hydrogen
source materials) to achieve various shielding effects. Several
innovative preparation methods, such as 3D printing and injection
molding, have been explored, along with filler modification
techniques. Moving forward, the development of polymer-based
composite shieldingmaterials will likely focus onmultifunctionality,
ecological sustainability, intelligence, and the application of
nanotechnology tomeet the increasingly complex demands of future
applications.
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FIGURE 13
Self-healing images of (a) Sm2O3/PVA and (b) Gd2O3/PVA hydrogels stretched (original length of ∼3.5 cm, healing time of 3 h). The red vertical
deformation in the middle of the two samples indicates that the samples were cut and contacted for self-healing (Tiamduangtawan et al., 2020b).

TABLE 4 Gd-containing polymer matrix radiation shielding materials and their properties are discussed above.

Year Composition Gadolinium
content

Shielding
efficiency

Other properties References

2018 h-BN/Gd2O3/HDPE 3wt% Neutron shielding rate
80%–90% (2–5 cm)

h-BN İrim et al. (2018)

2021 M-Gd2O3/B4C/HDPE 10wt% Neutron shielding rate
90% (9.1 cm)
Gamma ray shielding
efficiency 70% (13.7 cm)

Surface modification Huo et al. (2021)

2021 Gd-MOF/PI 3wt% Neutron shielding rate
90% (2 mm)

MOF Hu et al. (2021)

2020 Gd2O3/PVA 3.5wt% μ = 1.69cm−1

HVL = 4.1 mm
TVL = 13.6 mm

Self-healing hydrogel Tiamduangtawan et al.
(2020b)

2022 Gd@MXene/PVA 20wt% Neutron shielding rate
50% (80 μm)

Two-dimensional
fish-scale structure

Zhu et al. (2022)

2023 Bi2O3-Gd2O
(CO3)2∙H2O/EP-30

5wt% HVL = 0.72 cm
LAC = 3.49cm−1

(59.5 keV)

Heterostructure Wei et al. (2023)

2022 Gd2O3/NR 50phr HVL = 2.0 mm Self-healing Poltabtim et al. (2022)

2024 Gd2O(CO3)2@Bi-
MOF/graphene
nanoplatelets
(GBG)-PMMA

— MAC = 2.70 cm2/g 222Rn and gamma-ray
shielding performance

Tan et al. (2024)

3 Conclusion and outlook

Existing research programs have successfully achieved effective
radiation shielding across different radiation sources and doses.
Shielding materials have evolved from traditional options such
as heavy metals, concrete, water, lead, and graphite, and have
gradually transitioned to composite materials known for their
lightweight, high efficiency, and overall excellent performance.
While these traditional materials are still commonly used in fields
like reactor radiation protection due to their low cost and ease of
large-scale production, they come with significant disadvantages,
including high weight, toxicity, and poor stability. As a result,
researchers have focused on improving the shielding performance
of these materials while aiming to reduce their weight and cost.

Composite materials offer notable advantages in neutron shielding,
including their lightweight nature, ease of molding, variety, and
tunable performance. Through thoughtful component design,
composites can effectively absorb and scatter neutrons, reducing
the structural burden compared to traditional heavy metals.
Additionally, composites are flexible and customizable, allowing
for designs tailored to specific needs. Some of these materials
are made from environmentally friendly raw materials, helping to
minimize their environmental impact. These characteristics have
made composites increasingly attractive for applications in nuclear
energy, medicine, and industry.

The rare earth element gadolinium (Gd) stands out due to
its high atomic number, large neutron absorption cross-section,
and low intensity of neutron radiation. Gd effectively compensates
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for the weak absorption of low-energy rays by heavy metals like
lead, thus reducing the biological toxicity associated with lead.
As a result, Gd composites with other materials exhibit excellent
performance in radiation shielding. This paper focuses on Gd-
containing composite shielding materials, which include metal-
based, glass-based, ceramic-based, and polymer-based composites.
Each material type is employed in different fields based on its
unique advantages. Metal matrix composites are known for their
high strength and excellent thermal conductivity, making them
ideal for radiation shielding in high-intensity and high-temperature
environments. Glass matrix composites are lightweight, highly
transparent, and corrosion-resistant, making them suitable for use
in visualization equipment. Ceramic matrix composites, with their
superior radiation, high temperature, and wear resistance, are well-
suited for harsh environments. Polymer matrix composites are
valued for being lightweight, flexible, and cost-effective, making
them ideal for electronic equipment protection, aerospace, medical
devices, and other applications. However, as nuclear energy use
continues to grow and application opportunities diversify, radiation-
shielding composite materials still face several challenges that need
to be addressed:

(1) Lack of universal solutions for filler dispersion in polymer-
based composites. In polymer-based composite shielding
materials, inorganic fillers are prone to agglomeration within
the matrix. Excessive doping can impede the material’s
shielding, thermal, mechanical, and other properties. When
the filler is dispersed uniformly within the matrix, the
probability of composite material collisions with radiation
or particles increases significantly, enhancing shielding
performance. Furthermore, filler agglomeration can also result
in stress concentration, decreased interfacial adhesion with
the matrix, and a reduction in the mechanical strength and
toughness of the composite material. Future studies should
prioritize scalable, matrix-agnostic dispersion techniques (e.g.,
adaptive interfacial design, stimuli-responsive nanoparticle
alignment) while maintaining shielding efficiency and
mechanical stability.

(2) Incomplete mitigation of secondary radiation risks. Gd has
significant advantages in neutron shielding, especially its
isotope Gd-157, which has an extremely high neutron trapping
capacity, enabling it to effectively reduce neutron radiation.
After absorbing neutrons, these elements may be transformed
into other unstable isotopes. These unstable isotopes undergo
secondary radioactive decay to produce gamma rays or
beta particles, which is known as secondary radiation.
Therefore, Gd-containing composite shielding materials must
be prepared in conjunctionwith other elements that can absorb
gamma rays, or appropriate protection and measures must be
taken to ensure safety and effectiveness.

(3) Limited innovation in cost-effective Gd utilization. Gd is a
rare metal with relatively limited resources, and the costs
associated with mining and processing Gd, and its alloys are
relatively high, which has thus far precluded large-scale use.
The key challenges currently facing the development of Gd-
containing composite shielding materials are improvements
to the production process, increased processing efficiency and
utilization rate of Gd, and reductions in production costs.

(4) Incomplete mitigation of secondary radiation risks. Currently,
composite shielding materials can only provide effective
shielding under a single application scenario. As the
complexity of shielding materials continues to increase, the
comprehensive performance requirements of these materials
are also becoming more demanding. Consequently, materials
must be capable of achieving a variety of functionalities to
meet the evolving needs of their applications.

The unique physicochemical properties of gadolinium (Gd) as
an effective radiation absorber provide it with a significant advantage
in shielding applications. With continued advancements in science
and technology, Gd-containing composites are expected to evolve
into more sophisticated products. This will be accomplished by
integrating sensing technology with adaptive properties through the
application of nanotechnology and advanced composite fabrication
techniques. Additionally, the development of lightweight,
temperature-resistant, mechanically robust, and environmentally
friendly composites will promote their widespread use in areas such
as medical imaging, nuclear energy safety, and aerospace, effectively
addressing the increasingly complex demands for radiation
protection.
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