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In order to improve bearing capacity and service life of marine structure
using marine UHPC with coarse aggregate (UHPC-CA), it is necessary to
reasonably predict the performance of UHPC-CA. The performance of UHPC-
CA was predicted in this paper based on five prediction models: multiple
linear regression, multiple nonlinear regression, traditional neural network (T-
BP), principal component approach neural network (PCA-BP), and improved
neural network based on genetic algorithm (GA-BP). Seven influencing factors
were taken as input, such as coarse aggregate type, coarse aggregate content,
steel fiber type, steel fiber content, water-binder ratio, rubber particle sand
replacement rate and curing system. Mechanical and long-term performance
of UHPC-CA were taken as outputs. The results show that artificial neural
network can be applied to predict performance of UHPC-CA with multi-
parameter input and multi-index output. In terms of the prediction accuracy
of mechanical properties and long-term performance of UHPC-CA, the order
is GA-BP > PCA-BP > T-BP > multiple nonlinear regression > multiple linear
regression. The GA-BP neural network has the highest goodness of fit for the
prediction of mechanical properties and long-term performance of UHPC-
CA, which is 93.87%, 37.34%, 5.13% and 3.21% averagely higher than that of
multiple linear regression, multiple nonlinear regression, T-BP and PCA-BP,
respectively. Furthermore, GA-BP neural network has the lowest error index
for each performance prediction. MAE, MSE and RMSE are 18.13%, 77.26% and
52.31% lower than PCA-BP on average.

KEYWORDS

ultra-high performance concrete with coarse aggregate (UHPC-CA), neural network,
prediction model, mechanical properties, long-term durability

1 Introduction

Due to the harsh service environment and serious corrosion, marine structures often
fail to reach the expected service life (Li et al., 2020; Alexander and Beushausen, 2019;
ASTM C1856/C1856M-17.2017, 2024; Martin-Perez et al., 2000; Yi et al., 2020; Zhang,
2024). Since the advent of UHPC-CA, it has partially replaced traditional concrete as
the building material for marine structures with its high strength, high performance
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and excellent durability (Du et al., 2021; Bajaber and Hakeem, 2020;
Huang et al., 2024; Shafieifar et al., 2017; Zhang, 2022). With the
objective to application of UHPC-CA in marine structures, it is
extremely important to realize the efficient and accurate prediction
of the performance of UHPC-CA.

The performance prediction of cement-based materials such
as UHPC has always been a hot topic. The most commonly used
methods for UHPC performance prediction are mainly empirical
formulas or simulation models by means of indoor experiments,
numerical analysis, etc. Ou et al. (2021) established the semi-
empirical equations considering the effect of water-cement ratio
and aggregate content on the compressive strength of UHPC by
referring to the semi-empirical formulas of others. Xue et al.
(2018) predicted and analyzed the sevice life of UHPC by using
mathematical formulas based on specific test data. Liu et al.
(2021) established the empirical formula of shrinkage and creep
of UHPC based on the test results of shrinkage and creep of
UHPC 1080 days. Wu and Huang (2024) optimized the dynamic
Catboost regression formula and established the prediction model
of UHPC compressive and flexural strength. Liu et al. (2022)
established relationship between the volume content of steel fiber
and polypropylene fiber and the strength of UHPC, and proposed
a prediction model by nonlinear formula. However, the application
range of the formula predictionmethod is limited, and its prediction
accuracy is relatively low. Furthermore, prediction methods above
stated cannot achieve multi-parameter input and multi-index
output. It is necessary to further establish an accurate and reliable
prediction model.

Artificial neural networks has been extensively used to predict
the properties of materials with its powerful learning, adaptation,
generalization and fault-tolerance capabilities. Arriagada et al.
(2002) trained a neural network model to learn the performance
parameters in a planar SOFC, and found that the neural network
model showed a good congruence with the physical model. Yang
(2003) used the maximum particle size of gravel, cement grade,
slump, water, cement, sand and stone as the input parameters
of the model, and established a multi-parameter input BP
network prediction model for 28 days strength of concrete. Es-
Samlali et al. (2024) developed high-performance neural network
model to accurately predict the ultimate properties of asphalt
mixes incorporating steel slag. However, it has been less applied
in the field of UHPC. Chen et al. (2020) established a neural
network training model by combining the existing test data,
which can be applied to predict the compressive strength of
UHPC. Xu et al. (2023) constructed a deep neural network
model based on the uniaxial compression test results of 144
specimens, which can be used to predict the full residual stress-
strain response of UHPC. Lee et al. (2023) employed an artificial
neural network to predict the compression strength of UHPC with
lateral restraint limit states. Farouk and Jinsong (2022) predicted the
bond strength of UHPC-NSC interface by two kinds of methods,
such as artificial neural network and multiple linear regression.
The reliability of the artificial neural network prediction model
is proved. Zhang et al. (2017) examined the influence law of the
dosing of cementitious materials such as fly ash and silica fume
on the mechanical properties of UHPC using artificial neural
network model. Artificial neural network models have been proved

to exhibit excellent stability and prediction ability after sufficient
data training.

The above researches have an essential role in promoting the
application of artificial neural network in the field of UHPC.
However, there is still a lack of intelligent performance prediction
methods that can realize multi-parameter input and multi-
index output of UHPC-CA. This makes it difficult to realize
efficient and accurate prediction of the performance of UHPC-
CA.

To address the above problems, this paper compared and
analyzed the prediction results of five prediction models: multiple
linear regression, multiple nonlinear regression, T-BP, PCA-BP
and GA-BP. An optimal prediction model for the performance
prediction of UHPC-CA was established, which can realize
multi-parameter input and multi-index output of UHPC-CA. It
provides a basis for the application of UHPC-CA in marine
structures.

2 Predictive modeling

In this paper, the univariate linear equation and quadratic
model were used to establish the multivariate linear model and
multivariate nonlinear model, respectively. The artificial neural
network method was used to establish the T-BP neural network
model, the PCA-BP neural network model, and the GA-BP neural
network model.

The data of this survey were based on the measured data of
related performance tests of UHPC-CA, which were sorted out
as the original samples (show in Supplementary Appendix). The
compressive strength, flexural strength and split tensile strength
were tested by a 3,000 kN electro-hydraulic servo universal testing
machine produced by MTS Co., Ltd. The specifications used
are “Fundamental characteristics and test methods of ultra-high
performance concrete (T/CBMF 37-2018)” and “Specification for
reactive powder concrete (GB/T 31387-2015)” in China. The
abrasion resistance test was carried out by underwater steel ball
method. The specification used is “Test code for hydraulic concrete
(DL/T 5150-2001)”. The chloride ion diffusion test was carried out
by using the chloride ion penetration resistance three-in-one tester
produced by Beijing Nelder Company. The specification used is
“Standard for test methods of long-term performance and durability
of ordinary concrete (GBT50082-2009)” in China. The input
parameters of the prediction model include seven, such as coarse
aggregate type, coarse aggregate content, steel fiber type, steel fiber
content, water-binder ratio, rubber particle sand replacement rate,
and curing system (shown in Schedule 1). The output indicators of
the prediction model are three mechanical performance indicators
(compressive strength, splitting tensile strength, flexural strength)
and two long-term performance indicators (abrasion resistance,
chloride ion erosion resistance). The particle size of aggregates
is 5–10 mm, and the appearance and geometry of aggregates is
irregular spherical particles. Due to the particularity of the anti-
chloride ion erosion test, in which electroconductive steel fiber
would cause failure of anti-chloride ion erosion test. Therefore,
the input parameters of the chloride ion diffusion coefficient
prediction model do not include steel fiber content or steel
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FIGURE 1
T-BP neural network prediction model algorithm flow.

fiber type (Han et al., 2018; Han, 2007; Wang et al., 2021;
Zhang L. Z. et al., 2023; Song and Hwang, 2004).

In this paper, themixture ratio ofUHPC is obtained according to
the Modified Andreasen and Andersen model, the specific formula
is as follows (Equation 1):

P(D) =
Dq −Dq

max

Dq
max −D

q
min

(1)

P (D) is the percentage of particleswith particle size less thanD in the
mixed particles;D is particle size,mm;Dmax is themaximumparticle
size in the mixed particles, mm; Dmin is the minimum particle size
in the mixed particles, mm; q is the distribution modulus, and q is
0.23 in this paper.

According to the above mix design theory, the mass
ratio of cement: silica fume: fly ash in UHPC matrix is
determined to be 7:2:1, the basic cement-sand ratio is

1.0, and the mass of water reducing agent is 2% of the
cementitious material.

2.1 T-BP neural network modeling

The T-BP neural network is mainly composed of input layer,
hidden layer and output layer (Krogh, 2008; Haykin, 1998; Ryu et al.,
2011). After several predictions, the key parameters such as hidden
layer number, neuron number, activation function and training
parameters were determined. To prevent the risk of over-fitting,
the regularization parameter of the layer was set in the TensorFlow
deep learning framework. We added a Dropout layer to the layer
of the neural network and set the dropping rate to prevent the co-
adaptability between neurons, which can improve the generalization
ability of neural network models. The algorithm flow chart of T-BP
neural network is shown in Figure 1.
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FIGURE 2
PCA-BP neural network prediction model algorithm flow.

According to Li et al. (2012), Cui and Jing (2019), this paper
built a T-BP neural network prediction model of UHPC-CA. After
several times of fittings, the number of nodes in the hidden layer
of the model for the mechanical properties was 15. The number of
nodes in the hidden layer of the chloride ion diffusion coefficient
was 12. The construction of mechanical properties and abrasion
resistance model needed 90 sets of test results from the original
sample (shown in Schedule 2), of which 72 sets were set as training
sets and 18 sets were set as test sets. The construction of chloride
ion diffusion coefficient model was based on 105 sets of test results
of the original sample (shown in Schedule 3), of which 84 sets
were set as training sets and 21 sets were set as test sets. The
input parameters of the model were coarse aggregate type, coarse
aggregate content, steel fiber type, steel fiber content, water-binder
ratio, rubber particle replacement rate, and curing system.Therefore,
the number of neurons in the input layer was set to 7. The number
of neurons in the hidden layer was calculated according to the
empirical formula (Parichatprecha and Nimityongskul, 2009). After
calculation, the number of hidden layer neurons was 15. The output
parameters of this prediction model were compressive strength,
splitting tensile strength, flexural strength, abrasion resistance and

chloride ion erosion resistance. Therefore, the number of neurons
in the output layer was 5. This model transfer function used
tansig function which transferring data from input layer to the
implicit layer. Another transfer function used purelin function
which transferring data from implicit layer to the output layer. The
learning rate of the model was set to 0.01. The number of training
times was 5,000. The minimum error of the target was 10−6. The
maximum number of confirmed failures was designed to 5. The
number of steps displayed at intervals was 10.

2.2 PCA-BP neural network modeling

The crucial of PCA-BP neural network modeling is the
determination of the number of principal components. The
algorithm flow is shown in Figure 2.

According to the calculation method of literature (Zhang et al.,
2019; Xiaofeng et al., 2017; Zou et al., 2009; Song andKwon, 2009), the
histogram of the contribution rate of each principal component was
obtained. The UHPC mechanical properties and abrasion resistance
performance indexesoriginallyhad7principal components.Referring
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FIGURE 3
GA-BP neural network prediction model algorithm flow.

to the previous experience (Huang, 2009), the first 5 principal
components of the cumulative contribution rate were selected as the
principal component variables of the PCA-BP model. The chloride
ion erosion resistance originally had 5 principal components. The
first 4 principal components of the contribution rate were selected as
the principal component variables. The data set after dimensionality
reductionwas divided into training set and test set. Among them, 80%
are training sets and 20% are test sets.We added the L1 regularization
term and Dropout layer to the layer of the neural network and set the
dropping rate to prevent the risk of over-fitting.

2.3 GA-BP neural network modeling

The establishment of GA-BP neural network model includes
three steps: BP neural network structure determination,
genetic algorithm optimization and neural network prediction
(Zhang L. et al., 2023; Khan, 2012; Jin et al., 2019; Wang et al.,
2016). We added the L1 regularization term and Dropout layer to
the layer of the neural network and set the dropping rate to prevent
the risk of over-fitting. The algorithm flow is shown in Figure 3.

The determination of neural network structure was the same
as the T-BP model. The data initialization coding adopted real
coding.The calculation formula of fitness function adopted empirical
formula (Nachaoui et al., 2021).The selection, crossover andmutation
operations were based on the literature (Yu, 2011). The genetic
algorithmtrainingparameter populationnumber,maximumiteration

number, crossover probability andmutation probability of the GA-BP
neural network model were 30, 50, 0.8 and 0.2, respectively.

3 Evaluation of model prediction
results

Theestablishedmodels formechanical properties and long-term
performance of UHPC-CA were trained by 72–84 sets of data from
the original samples and were verified by 18–21 sets of data from
the original samples. The prediction accuracy of five models was
assessed in terms of discreteness of model prediction results, error
fitting between expected and actual values and statistical indexes
of prediction model. Mean absolute error (MAE), mean square
error (MSE), root mean square error (RMSE) and fitting correlation
(R2) were selected as the statistical indexes of prediction models
(Zhang et al., 2016; Taskinen and Yliruusi, 2003).

3.1 Analysis of prediction results of
multiple linear and multiple nonlinear
regression prediction models

3.1.1 Mechanical properties and abrasion
resistance

The compressive strength, flexural strength, splitting tensile
strength and abrasion resistance data of the data set were
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FIGURE 4
Multivariate linear fitting results of mechanical properties and abrasion resistance.

subjected to multiple linear and multiple nonlinear regression.
The multiple linear prediction equation and multiple nonlinear
regression parameter vector of the prediction model for mechanical
properties and abrasion resistance were obtained, as shown in
Schedule 4. The multivariate nonlinear regression modulus refers
to the matrix composed of the coefficients of all independent
variables in the quadratic model. The multiple linear and
multiple nonlinear regression fitting curves of mechanical
properties and abrasion resistance of UHPC-CA are shown in
Figures 4, 5.

As can be seen in Figures 4, 5: The scatter points of the
predicted value and the true value of the linear regression model
are roughly distributed on both sides of the straight line with a
slope of 1, but the discreteness is large. The predicted value and
the true scatter distribution of the nonlinear regression model are
more concentrated. The discreteness of the nonlinear regression
model is significantly smaller than that of the linear regression
prediction model.

The linear and nonlinear statistical indexes of
mechanical properties and abrasion resistance of UHPC-CA
are shown in Table 1. The goodness of fit and significance level
of the linear regression prediction model for the mechanical
properties and abrasion resistance of UHPC-CA are at a low level.
R2 value is less than 0.80, and F values are 45.6, 31.7, 26 and 19.5.
Compared with the multiple linear regression prediction model:
①The goodness of fit of the nonlinear regression prediction model
for each performance index is significantly improved. The R2 of
each performance index is increased by 16.08%, 31.48%, 28.42% and
27.10%, respectively. However, the significance level of compressive
strength and abrasion resistance is reduced, and the reduction range

is low. ②Each error index is remarkably reduced. The MAE, MSE,
and RMSE of compressive strength are reduced by 45%, 56.06%,
and 33.76%, respectively. In general, the prediction accuracy of
the multivariate nonlinear model in predicting the mechanical
properties and abrasion resistance of UHPC-CA is better than that
of the multivariate linear model.

3.1.2 Chloride ion erosion resistance
The chloride ion diffusion coefficient data of the data set were

subjected to multiple linear and multiple nonlinear regression.
The multiple linear regression equation and the multiple nonlinear
regression parameter vector of the prediction model were obtained
as shown in Schedule 4.

The multiple linear and nonlinear regression fitting
results of chloride ion diffusion coefficient of UHPC-CA
are shown in Figure 6. The discreteness of sample points in the
multivariate linear and nonlinear regression prediction models of
chloride ion diffusion coefficient of UHPC-CA is relatively large.
Most of themare irregularly distributed on the left side of the straight
line with a slope of 1, and fewer sample points fall on the other side.

The statistical indexes of linear and nonlinear regression
models for chloride ion corrosion resistance of UHPC-CA
are shown in Table 2.①The goodness of fit and significance level of
the linear regression prediction model are at a very low level. The
F value and R2 are 6.13 and 0.2363, respectively.②The goodness of
fit of the nonlinear regression prediction model is 67.92% higher
than that of the linear model, and the significance level is 24.96%
lower than that of the linear model. The F value and R2 value are
4.6 and 0.3968, respectively. Therefore both linear and nonlinear
regression prediction models have poor accuracy in predicting
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FIGURE 5
Multivariate nonlinear fitting results of mechanical properties and abrasion resistance. (A) Compressive strength. (B) Flexural strength. (C) Splitting
tensile strength. (D) Abrasion resistance.

TABLE 1 Linear and nonlinear regression statistical indexes for mechanical properties and abrasion resistance.

Prediction index MAE MSE RMSE R2 F

Multiple linear

Compressive strength 8.8531 132.7301 11.5209 0.7955 45.6

Flexural strength 2.6647 13.7620 3.7097 0.7304 31.7

Splitting tensile strength 0.8271 1.4572 1.2072 0.6898 26

Abrasion resistance 20.4265 847.5010 29.1119 0.6252 19.5

Multiple nonlinear

Compressive strength 4.8155 58.2285 7.6308 0.9234 44.4

Flexural strength 1.0585 2.3679 1.5388 0.9604 884

Splitting tensile strength 0.5071 0.6280 0.7924 0.8859 28.6

Abrasion resistance 15.0668 544.1578 23.3272 0.7946 14.3

chloride diffusion coefficients of UHPC-CA and the prediction
results are not referential.

3.2 Analysis of prediction results of T-BP
neural network

3.2.1 Mechanical properties and abrasion
resistance

The prediction results of T-BP neural network model
for mechanical properties and abrasion resistance of UHPC-
CA are shown in Figure 7. The T-BP neural network model

can make a reasonable prediction for mechanical properties
and abrasion resistance of UHPC-CA. However, there are
still some results with large errors in the prediction process.
It indicates that there is a certain lack of stability and
generalization ability of the T-BP neural network prediction
model for the mechanical properties and abrasion resistance
of UHPC-CA.

The regression fitting diagram of the true value and the model
prediction value of the sample data of the mechanical properties
and abrasion resistance of UHPC-CA is shown in Figure 8.
The sample points of the T-BP neural network model for the
mechanical properties and abrasion resistance of UHPC-CA are
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FIGURE 6
Multivariate linear and nonlinear fitting results of chloride ion erosion resistance. (A) Linear fitting results. (B) Nonlinear fitting results.

TABLE 2 Linear and nonlinear regression statistical indexes for chloride ion erosion resistance.

Prediction index MAE MSE RMSE R2 F

Multiple linear 5,567.8415 126,053,365.8 11,227.3490 0.2363 6.13

Multiple nonlinear 5,704.0454 108,314,905.3 10,407.4447 0.3968 4.6

FIGURE 7
Prediction results of T-BP neural network model for performance of UHPC-CA.
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FIGURE 8
Regression fitting diagram of T-BP neural network model for performance of UHPC-CA. (A) Compressive strength. (B) Flexural strength. (C) Splitting
tensile strength. (D) Abrasion resistance.

TABLE 3 Statistical indexes of T-BP neural network model for
performance of UHPC-CA.

Prediction index MAE MSE RMSE R2

Compressive strength 3.4913 39.4393 6.2801 0.9333

Flexural strength 0.8660 1.5887 1.2604 0.9658

Splitting tensile strength 0.3004 0.3959 0.6292 0.9075

Abrasion resistance 10.7865 234.2929 15.3066 0.8863

mostly regularly distributed on both sides of the straight line. The
predictive model straight line for compressive strength has a high
degree of coincidence with the ideal model straight line. However,
the predictive model straight lines for the other three strengths
do not overlap with the ideal model straight line. Compared
with the multivariate linear and multivariate nonlinear fitting
results, the fitting accuracy of the T-BP neural network model is
significantly improved.

The statistical indexes of T-BP neural network model for
mechanical properties and abrasion resistance of UHPC-CA
are shown in Table 3. ①The goodness of fit of the model is
significantly higher than that of the linear and nonlinear prediction
models. The R2 values of compressive strength, flexural strength,

splitting tensile strength and abrasion resistance are 17.32%, 32.22%,
31.56% and 34.56% higher than the linear prediction model, and
1.07%, 5.6%, 2.43% and 11.54% higher than the R2 values of
the nonlinear prediction model. ②The MAE, MSE and RMSE
are significantly smaller than the relevant statistical indexes of
the linear and nonlinear regression prediction models. In the
prediction of compressive strength, the error index is reduced
by 60.56%, 70.29%,45.49% respectively compared with the linear
model, and 27.50%, 32.27% and 17.70% respectively compared with
the nonlinear model. Therefore, the T-BP neural network model
is more suitable for the prediction of mechanical properties and
abrasion resistance of UHPC-CA than linear and nonlinearmodels.

3.2.2 Chloride ion erosion resistance
The prediction results of T-BP neural network model for

chloride diffusion coefficient of UHPC-CA are shown in Figure 10.
Analysis shows: The prediction of the model is not good enough in
predicting the chloride diffusion coefficients of UHPC-CA. There
is a serious over-prediction phenomenon in the prediction results,
which will cause the predicted value to be much smaller than the
normal value range. Because the neural network algorithm has
a local optimal problem, it cannot achieve global optimization.
The initial weights and thresholds value of BP algorithm based on
MATLABprogram are randomly generated. Different initial weights
may lead to non-convergence or overfitting of the network.
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FIGURE 9
Prediction results and regression fitting diagram of T-BP neural network model for chloride diffusion coefficient. (A) Prediction results. (B) Regression
fitting diagram.

FIGURE 10
Prediction results of PCA-BP neural network model for performance of UHPC-CA.

TABLE 4 Statistical indexes of T-BP neural network model for chloride
diffusion coefficient of UHPC-CA.

Prediction index MAE MSE RMSE R2

Chloride diffusion
coefficient

1,431.6729 9,972,531.7 3,157.9315 0.9359

Theregression fitting diagramof the true value and the predicted
value of the sample data of the T-BP neural network model for
chloride diffusion coefficient of UHPC-CA are shown in Figure 9.
Although the fitting curve of the prediction model can basically
coincide with the fitting line of the ideal model, most of the sample
points are deviated from the straight line. The fitting effect of the
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FIGURE 11
Regression fitting diagram of PCA-BP neural network model for performance of UHPC-CA. (A) Compressive strength. (B) Flexural strength. (C) Splitting
tensile strength. (D) Abrasion resistance.

TABLE 5 Statistical indexes of PCA-BP neural network model for
performance of UHPC-CA.

Prediction index MAE MSE RMSE R2

Compressive strength 3.6313 29.5904 5.4397 0.9500

Flexural strength 0.8246 1.3791 1.1744 0.9704

Splitting tensile strength 0.3498 0.3777 0.6146 0.9117

Abrasion resistance 6.3148 175.9789 13.2657 0.9146

T-BP neural network model for chloride diffusion coefficient of
UHPC-CA is not optimal.

The statistical indexes of T-BP neural network model for
chloride ion corrosion resistance ofUHPC-CA are shown in Table 4.
①The goodness of fit of the model is effectively improved compared
with the linear and nonlinear prediction models. Its R2 is 3.96 times
and 2.35 times of the linear and nonlinear prediction model R2,
respectively.②The values of MAE, MSE and RMSE are 1,431.6729,
9,972,531.7 and 3,157.9315, respectively, which are significantly
lower than those of linear and nonlinear models. The MAE, MSE,
and RMSE are 74.29%, 92.09%, and 71.89% lower than the linear
model, and are 74.9%, 90.79%, and 69.66% lower than the nonlinear
model.Therefore, the prediction accuracy for chloride ion corrosion
resistance of T-BP neural network model is higher than that of

linear and nonlinear models. However, the prediction stability and
generalization need to be improved.

3.3 Analysis of PCA-BP neural network
prediction results

3.3.1 Mechanical properties and abrasion
resistance

The prediction results of PCA-BP neural network model
for mechanical properties and abrasion resistance of UHPC-CA
are shown in Figure 10. It can be seen from the figure that the
PCA-BP neural network model has better prediction results for the
compressive strength, flexural strength, splitting tensile strength and
abrasion resistance. Most of the true values are very close to the
predicted values.The calculation efficiency and accuracy of the PCA-
BP neural network model are also higher than those of the T-BP
neural network model.

The regression fitting diagram of the true value and the
predicted value of the PCA-BPneural networkmodel formechanical
properties and abrasion resistance of UHPC-CA after normalization
is shown in Figure 11. As can be seen in the figure: The PCA-BP
prediction model curve of flexural strength and abrasion resistance
is in good agreement with the ideal model curve. The prediction
model curve of compressive strength and splitting tensile strength
is poorly fitted with the ideal model curve, with a few sample values
disperse outside the two straight lines.Therefore, the PCA-BPneural
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FIGURE 12
Prediction results and regression fitting diagram of PCA-BP neural network model for chloride diffusion coefficient. (A) Prediction results. (B)
Regression fitting diagram.

FIGURE 13
Prediction results of GA-BP neural network model for performance of UHPC-CA.

network model predicts the flexural strength and abrasion strength
of UHPC-CA better. However, the accuracy of the prediction of the
compressive strength and splitting tensile strength of UHPC-CA
needs to be enhanced.

The statistical indexes of PCA-BP neural network model
for mechanical properties and abrasion resistance of UHPC-CA
are shown in Table 5. ①The goodness of fit of the model for
compressive strength, flexural strength, splitting tensile strength and

abrasion resistance is greater than 0.90, which is 1.79%, 0.48%,
0.46% and 3.19% higher than that of T-BP, respectively.②Compared
with the T-BP neural network model, the average error of the
compressive strength and splitting tensile strength of the model
is slightly higher. Errors of the other performance parameters are
significantly reduced. The MAE, MSE and RMSE of the abrasion
resistance are only 58.54%, 75.11% and 86.33% of the T-BP neural
network model, respectively. In summary, the prediction accuracy
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TABLE 6 Statistical indexes of PCA-BP neural network model for
chloride ion erosion resistance of UHPC-CA.

Prediction index MAE MSE RMSE R2

Chloride diffusion
coefficient

810.8747 5,220,356.2 2,284.8099 0.9665

for mechanical properties and abrasion resistance of PCA-BPmodel
is higher than that of T-BP model.

3.3.2 Chloride ion erosion resistance
The prediction results of PCA-BP neural network model for

chloride diffusion coefficient of UHPC-CA are shown in Figure 13.
It can be seen from the figure that the PCA-BP neural network
model has poor prediction results for the chloride ion diffusion
coefficient of UHPC-CA. Several predicted values are out of the
normal chloride ion diffusion coefficient range.

The regression fitting diagramof the true value and the predicted
value of the PCA-BP neural network model for chloride diffusion
coefficient of UHPC-CA after normalization are shown in Figure 12.
As can be seen from the figure, the predictive model curves fit well
with the ideal model curves, although there are several sample data
with a large degree of deviation.

The statistical indexes of PCA-BP neural network model for
chloride ion corrosion resistance ofUHPC-CA are shown in Table 6.
①The goodness of fit R2 of the model is 0.9665, which is 3.27%
higher than that of the T-BP model for chloride ion corrosion
resistance of UHPC-CA.②TheMAE,MSE and RMSE are 810.8747,
5,220,356.2 and 2,284.8099, respectively, whichwere 43.36%, 47.65%
and 27.65% lower than those of the T-BP neural network prediction
model. Therefore, the prediction effect of PCA-BP neural network
on chloride diffusion coefficient is better than that of T-BP
neural network.

3.4 Analysis of GA-BP neural network
prediction results

3.4.1 Mechanical properties and abrasion
resistance

The prediction results of GA-BP neural network model for
mechanical properties and abrasion resistance of UHPC-CA
are shown in Figure 13. As can be seen from the figure, the GA-
BP neural network model has excellent prediction effect for the
compressive strength, flexural strength, splitting tensile strength and
abrasion resistance of UHPC-CA. Compared with the prediction
results of T-BP and PCA-BP models, the prediction accuracy is
significantly improved.

Figure 14 is the regression fitting diagram of the true value
and the predicted value of the GA-BP neural network model for
mechanical properties and abrasion resistance of UHPC-CA after
normalization. Analysis of Figure 14 shows that the predictedmodel
curves of each performance indicators fit well with the ideal model
curves. The sample points are regularly distributed on both sides
of the two straight lines, and most of the sample values fall on
the fitted straight line. It demonstrates that the GA-BP model after

genetic algorithm has excellent prediction ability on the mechanical
properties and abrasion resistance of UHPC-CA.

The statistical indexes of GA-BP neural network model for
mechanical properties and abrasion resistance of UHPC-CA
are shown in Table 7. ①The goodness of fit of the model for
mechanical properties and abrasion resistance is greater than 0.93,
which is 3.32%, 1.69%, 3.00% and 11.62% higher than that of T-
BP, and 1.51%, 1.16%, 2.53% and 8.17% higher than that of PCA-
BP, respectively.②The prediction error indexes of the model for all
performance parameters are significantly lower than T-BP model
and PCA-BP model. The MAE, MSE and RMSE values of each
performance prediction decreased by 34.25%, 53.29% and 34.81%
on average compared with T-BP neural network, and decreased by
32.73%, 45.18% and 28.94% on average compared with PCA-BP
neural network.

3.4.2 Chloride ion erosion resistance
The prediction results of the GA-BP neural network model for

chloride diffusion coefficients of UHPC-CA are shown in Figure 15.
It can be seen from the figure that the prediction effect of GA-BP
neural network model is better than that of T-BP model and PCA-
BP model, but it still shows instability and relatively higher errors.
The reason for this result, on the one hand, there are many factors
involved in the prediction, and the rationality of the neural network
model lacksmore data to verify. On the other hand is that the current
input parameters might not comprehensively capture all the factors
affecting chloride diffusion, potentially reducing the reliability of the
predictions for this parameter.

The regression fitting diagram of the GA-BP neural network
model for chloride ion diffusion coefficient of UHPC-CA sample
content value and model prediction value after normalization
is shown in Figure 16. It can be seen from the figure that the fitting
degree of the prediction model is very high. The prediction model is
in good agreementwith the idealmodel curve, and the sample values
are almost completely distributed on two straight lines. It shows that
the predicted model successfully captures the characteristics of the
actual data and it has a very good prediction effect for the chloride
diffusion coefficient of UHPC-CA.

Table 8 shows the table of statistical indexes of the GA-BP neural
network modeling for chloride erosion resistance of UHPC-CA.
①The goodness of fit R2 of the model is 0.9924, close to 1, which
is 6.04% and 2.68% higher than that of T-BP and PCA-BP models,
respectively. ②The MAE, MSE and RMSE are 663.87, 1,187,349.7
and 1,089.6558, respectively, which are 18.13%, 77.26% and 52.31%
lower than those of PCA-BP model. Therefore, the GA-BP model
is more suitable for predicting the chloride ion diffusion coefficient
than the T-BP and PCA-BP models.

3.5 Comparative analysis of the five
prediction models

3.5.1 Prediction results of the five models
From the analysis of the prediction results, the neural network

model are better than the statistical regression model. However,
the predictions exhibit instability and errors, even with the GA-BP
model. This indicates that the neural network has limitations in the
performance prediction of UHPC-CA. The limitations of the neural
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FIGURE 14
Regression fitting diagram of GA-BP neural network model for performance of UHPC-CA. (A) Compressive strength. (B) Flexural strength. (C) Splitting
tensile strength. (D) Abrasion resistance.

TABLE 7 Statistical indexes of GA-BP neural network model for
performance of UHPC-CA.

Prediction index MAE MSE RMSE R2

Compressive strength 3.2086 21.1016 4.5936 0.9643

Flexural strength 0.5491 0.8493 0.9216 0.9817

Splitting tensile strength 0.2468 0.2790 0.5282 0.9348

Abrasion resistance 2.7529 22.0506 4.6958 0.9893

network are as follows:①The neural network is a black box method,
which is difficult to make any explanation for the results obtained.
②There is no standard method to determine the structure of neural
network, and it is difficult to establish the most suitable prediction
model.③Neural network prediction needs more data to verify, and
the size of dataset affects the prediction accuracy to a certain extent.
④The neural network algorithm has the risk of overfitting, and
different initial weights will cause the network not to converge or
fall into the local extreme point.⑤The generalization ability across
different datasets needs to be improved.

3.5.2 Statistical indexes of the five models
The goodness of fit and the error index of the five prediction

models are shown in Schedule 5 and Schedule 6. Figure 16 is the
five prediction models error index and goodness of fit comparison

histogram. Analysis shows: The results of the five prediction models
on the prediction of UHPC-CA varies greatly. The prediction
models of UHPC-CA were ranked according to the prediction
accuracy and error value as follows: GA-BP > PCA-BP > T-BP >
Nonlinear regression > Linear regression. The GA-BP prediction
model has the optimal prediction effect, with the minimum MAE,
MSE, RMSE, and the maximum R2. The GA-BP neural network
has the highest goodness of fit for the prediction of mechanical
properties and long-term performance of UHPC-CA, which is
93.87%, 37.34%, 5.13% and 3.21% averagely higher than that of
multiple linear regression, multiple nonlinear regression, T-BP and
PCA-BP, respectively. Furthermore, GA-BP neural network has the
lowest error index for each performance prediction. MAE, MSE
and RMSE are 18.13%, 77.26% and 52.31% lower than PCA-BP on
average. In summary, the GA-BP model with genetic evolution has
stable and high-precision prediction results, which can be used to
effectively predict the performance of UHPC-CA.

4 Discussion

(1) The model studied in this paper requires multi-parameter
input and multi-index output. Seven influencing factors were
taken as input, such as coarse aggregate type, coarse aggregate
content, steel fiber type, steel fiber dosage, water-binder ratio,
rubber particle sand replacement rate and curing system. Five
performance indexes were taken as output, such as compressive
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FIGURE 15
Prediction results and regression fitting diagram of GA-BP neural network model for chloride diffusion coefficient. (A) Prediction results. (B) Regression
fitting diagram.

FIGURE 16
Five prediction models error index and goodness of fit comparison histogram. (A) Compressive strength. (B) Flexural strength. (C) Splitting tensile
strength. (D) Abrasion resistance. (E) Chloride diffusion coefficient. (F) Five prediction models goodness of fit comparison histogram.
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TABLE 8 Statistical indexes of GA-BP neural network model for chloride
diffusion coefficients of UHPC-CA.

Prediction index MAE MSE RMSE R2

Chloride diffusion
coefficient

663.8739 1,187,349.7 1,089.6558 0.9924

strength, flexural strength, splitting tensile strength, abrasion
resistance and chloride diffusion coefficient. For the existing
literature, we did not find a dataset in which these input
parameters and output indexes have been used simultaneously.
In the current literature about UHPC performance prediction,
there are large datasets for any index studied in this paper.
However, these single-index datasets have different sample ratio,
test condition and curing condition.Therefore, the existing large
datasets cannot be applied to the model of multi-parameter
input and multi-index output in this paper. In order to solve the
above problems, we made 90 groups of samples for mechanical
propertiesandabrasionresistancetest,and105groupsofsamples
for chloride ion diffusion coefficient test, and nearly 500 groups
of test data were used for model training and verification. In
future study, we will carry out more experiments to expand the
dataset to verify the accuracy of the model.

(2) In this article, we paymore attention to the prediction accuracy
and error of the five prediction models, and judge the quality
of the prediction results by the goodness of fit R2 and the error
indexes.The neural network is regarded as a black box, and it is
difficult to explain the relationship between input parameters
and output indicators from aspects of physical andmechanical.
For multivariate linear and nonlinear models, it is difficult
to obtain the physical meaning of each coefficient because
there are too many independent variables involved. In general,
the five models in this paper can only provide reference for
predicting the performance of UHPC, and the parameters
involved in the model have no physical and mechanical
interpretation.

5 Conclusion

(1) The traditional multiple linear and nonlinear regression
equation prediction models are not suitable for the prediction
of mechanical properties and long-term performance of
UHPC-CA. It cannot achieve the prediction requirement
of multi-parameter input and multi-index output. It has
significant limitations in terms of low prediction accuracy and
single prediction function.

(2) The T-BP model based on artificial neural network has
higher prediction accuracy for UHPC-CA than linear and
nonlinear regression models. The goodness of fit of T-BP
model is significantly higher than that of linear and nonlinear
models. The R2 value of mechanical properties and long-
term performance are 17.32%, 32.22%, 31.56%, 34.56% and
296.06%higher than linear predictionmodel, and 1.07%, 5.6%,
2.43%, 11.54% and 135.86% higher than nonlinear model,
respectively. The error index of T-BP model is significantly
lower than that of linear and nonlinear models.

(3) The PCA-BP model is more suitable for the performance
prediction of UHPC-CA than the traditional T-BP model. The
R2 value of mechanical properties and long-term performance
is 1.79%, 0.48%, 0.46%, 3.9%, 3.27% and higher than that of
T-BP, respectively. However, the average error of compressive
strength and splitting tensile strength is slightly higher, and the
rest are significantly reduced. For instance, the MAE, MSE and
RMSE of chloride ion erosion resistance are 43.37%, 47.65%
and 27.65% lower than those of T-BP model, respectively.

(4) The GA-BP model performs very well in predicting the
performance of UHPC-CA. It can be seen from the prediction
results that the GA-BP model has high stability and small
variation of the fitting curve. In the model training, the
genetic algorithm optimizes the initial weights and thresholds
of the neural network, and R2 is more stable. The goodness
of fit of the model for mechanical properties and long-term
performance is greater than 0.93, which is 3.32%, 1.69%,
3.00%, 11.62% and 6.04% higher than that of T-BP, and
1.51%, 1.16%, 2.53%, 8.17% and 2.68% higher than that of
PCA-BP, respectively. The error indexes of all performance
parameters are significantly lower than those of T-BP model
and PCA-BP model. The MAE, MSE and RMSE values of
each performance prediction decreased by 34.25%, 53.29% and
34.81% on average compared with T-BP neural network, and
decreased by 32.73%, 45.18% and 28.94%on average compared
with PCA-BP neural network.

(5) According to the prediction accuracy and error value, the
prediction model of UHPC-CA is ranked as follows: GA-BP
> PCA-BP > T-BP > Nonlinear regression > Linear regression.
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