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Accurately predicting key engineering properties, such as compressive and
tensile strength, remains a significant challenge in high-performance concrete
(HPC) due to its complex and heterogeneous composition. Early selection
of optimal components and the development of reliable machine learning
(ML) models can significantly reduce the time and cost associated with
extensive experimentation. This study introduces four explainable Automated
Machine Learning (AutoML) models that integrate Optuna for hyperparameter
optimization, SHapley Additive exPlanations (SHAP) for interpretability, and
ensemble learning algorithms such as Random Forest (RF), Extreme Gradient
Boosting (XGB), Light Gradient Boosting Machine (LGB), and Categorical
Gradient Boosting (CB). The resulting interpretable AutoML models O-RF, O-
XGB, O-LGB, and O-CB are applied to predict the compressive and tensile
strengths of HPC. Compared to a baseline model from the literature, O-LGB
achieved significant improvements in predictive performance. For compressive
strength, it reduced the Mean Absolute Error (MAE) by 87.69% and the Root
Mean Squared Error (RMSE) by 71.93%. For tensile strength, it achieved a 99.41%
improvement inMAE and a 96.67% reduction in RMSE, alongwith increases in R2.
Furthermore, SHAP analysis identified critical factors influencing strength, such
as cement content, water, and age for compressive strength, and curing age,
water-binder ratio, and water-cement ratio for tensile strength. This approach
provides civil engineers with a robust and interpretable tool for optimizing
HPC properties, reducing experimentation costs, and supporting enhanced
decision-making in structural design, risk assessment, and other applications.
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high performance concrete, machine learning, ensemble learning algorithm, SHAP,
Optuna, compressive strength, split tensile strength

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2025.1542655
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2025.1542655&domain=pdf&date_stamp=2025-01-17
mailto:adeel@tongji.edu.cn
mailto:adeel@tongji.edu.cn
mailto:ahmadm@uniten.edu.my
mailto:ahmadm@uniten.edu.my
https://doi.org/10.3389/fmats.2025.1542655
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2025.1542655/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1542655/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1542655/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1542655/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1542655/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Khan et al. 10.3389/fmats.2025.1542655

1 Introduction

Concrete is one of the most extensively used materials in
building and civil engineering structures due to its numerous
beneficial engineering characteristics. When reinforced, it offers
exceptional strength, and its ability to be molded into various
shapes while curing at room temperature makes it an ideal
choice for constructing key structural components in apartments
and high-rise buildings. Furthermore, concrete’s resistance to
high temperatures and water exposure makes it particularly
suitable for structures exposed to harsh environmental conditions,
such as tunnels, bridges, dams, and reservoirs. The economic
efficiency of concrete also plays a major role in its popularity.
Conventional concrete is composed of relatively low-cost, readily
available materials, including coarse aggregate (such as rocks),
fine aggregate (such as sand), cement as the binding material,
and water. This offers significant cost advantages compared
to materials like steel, which require specialized processing in
industrial facilities. Additionally, incorporating supplementary
materials such as fly ash and blast furnace slag into the concrete
mix can enhance its performance (Neville and Aïtcin, 1998; Leung,
2001). These additives, often industrial by-products, not only
improve the material’s sustainability by reducing its environmental
impact but also maintain or even strengthen structural integrity
(Nguyen et al., 2021; Bouchelil et al., 2025).

Globally, around 3 billion tons of rawmaterials are used annually
for concrete production (Ozturan et al., 2008; Liu et al., 2024a).
Despite this, determining the optimal mix for desired strength
remains a challenge for manufacturers. Traditional methods, such
as 28-day compression tests, are labor-intensive, time-consuming,
and prone to experimental errors, often requiring the entire
process to be repeated if results are unsatisfactory (Neville,
2012; Yang et al., 2024). Assessing the compressive, flexural, and
tensile strengths of concrete is a time-consuming process that
requires specific equipment and skilled personnel.These properties,
particularly compressive strength, are critical for engineers and
concrete manufacturers on-site, as they define concrete grades
(Ziolkowski and Niedostatkiewicz, 2019; Aloisio et al., 2022;
Khan et al., 2023). In recent years, machine learning (ML) has
emerged as a powerful tool for predicting compressive strength
based on mix design inputs (Chou et al., 2014; Abuodeh et al.,
2020; Ben Chaabene et al., 2020). The advantage of ML is its
non-destructive nature, offering accurate predictions without the
need for laboratory tests, provided sufficient historical data is
available, thus enhancing efficiency and reducing the dependency
on traditional methods (Gamil, 2023; Zhou et al., 2020).

The use of machine learning for predicting concrete strength
was first introduced in 1998, where linear regression combined
with artificial neural networks (ANN) was utilized to estimate the
strength of HPC based on historical data (Yeh, 1998; Nunez and
Nehdi, 2021; Khan et al., 2025). In recent years, advancements
in artificial intelligence have enabled the development of various
machine learning (ML) regression models, which have been widely
applied to studying material properties (Mintarya et al., 2023;
Eyo and Abbey, 2021). For instance, models such as support
vector machines (SVM) (Safarzadegan Gilan et al., 2012; Lyu et al.,
2021), decision trees (Erdal, 2013), random forests (RF) (Li et al.,
2022; Pengcheng et al., 2020; Yasniy et al., 2024), and K-nearest

neighbors (KNN) (Ghunimat et al., 2023) have been utilized
for predicting the compressive strength of concrete. Advanced
methods, such as deep learning, have also been employed using
water-to-cement ratios, aggregates, and fly ash to predict recycled
concrete’s compressive strength with high accuracy (Deng et al.,
2018; Lu et al., 2019;Niu et al., 2024; Yao et al., 2022).Multi-objective
genetic programming (MOGP) has also been utilized to predict
long-term compressive strength and creep (Ghasemzadeh et al.,
2016; Wang et al., 2025; Wang et al., 2024a). Neural networks
have been effectively applied for strength prediction in recycled
aggregate and demolition waste concrete (Duan et al., 2013;
Dantas et al., 2013; (Liu et al., 2024b). Additionally, decision trees
and random forests have been used to predict bridge load capacity
from inventory data, while probabilistic axial capacity models
have been applied to estimate load eccentricity and debonding
(Mohamad Alipour et al., 2017; Contento et al., 2022;Wu et al., 2024;
Guo et al., 2022). A review emphasized ML’s potential to accurately
predict concrete mechanical properties when based on precise data
(Ben Chaabene et al., 2020; Wang et al., 2024b; Long et al., 2024;
Chen et al., 2024). Furthermore,ML and image processing have been
employed to estimate concrete surface roughness, achieving over
93% accuracy (Alireza et al., 2021).

As ML continues to evolve, researchers are striving to
enhance the effectiveness of ML algorithms, but deploying high-
performance models presents challenges such as selecting the right
model type, preparing datasets, and optimizing hyperparameters.
Hyperparameter optimization, which involves identifying optimal
values to control model behavior, is particularly crucial as it directly
affects performance (Sun et al., 2023; Wojciuk et al., 2024; Lu et al.,
2023). To address these challenges, automated machine learning
(AutoML) has emerged, automating tasks like model selection and
hyperparameter tuning to improve efficiency and reduce the need
for manual intervention. Despite its advantages, the application of
AutoML in civil engineering remains limited, particularly in the
domain of high-performance concrete (HPC). This is a significant
gap, as accurate prediction of key engineering properties, such
as compressive and tensile strength, is essential for optimizing
HPC design and reducing the costs associated with extensive
experimentation.

Concrete’s heterogeneous nature, with its diverse constituents,
makes its behavior complex and difficult to model. Developing
accurate and reliable predictive models early in the design process
is crucial for minimizing costs and improving efficiency. While
AutoML models often achieve high accuracy, their complexity
can make it difficult to interpret how individual input variables
influence the outcomes. This lack of interpretability is a critical
limitation in fields like civil engineering, where transparency and
understanding of the factors driving predictions are essential (Liu
and Sun, 2023; Huang et al., 2021; Ghasemi et al., 2023). To address
this, SHapley Additive exPlanations (SHAP) has been developed
as a tool to explain the contribution of each input variable to
the model’s predictions, making the results more interpretable and
enhancing their practical application (Zhao et al., 2023; Zhao et al.,
2024). However, the integration of Machine learning models with
advanced hyperparameter optimization techniques, such asOptuna,
and interpretability tools like SHAP, remains underexplored in civil
engineering applications.
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This study aims to address these gaps by introducing next-
generation explainable AutoML models that combine Optuna-
based hyperparameter optimization, SHAP interpretability, and
ensemble learning algorithms such as Random Forest (RF),
Extreme Gradient Boosting (XGB), Light Gradient Boosting
Machine (LGB), and Categorical Gradient Boosting (CB). The
resulting models O-RF, O-XGB, O-LGB, and O-CB are applied
to predict the compressive and splitting tensile strengths of HPC.
Optuna, a state-of-the-art hyperparameter optimization framework,
is particularly novel in this context, as its application in civil
engineering and HPC modeling has been limited or unexplored. By
leveraging Optuna’s advanced optimization capabilities, this study
demonstrates how hyperparameter tuning can significantly enhance
model performance and efficiency.The performance of thesemodels
is compared to a baselinemodel from the literature, which represents
the best-reported model for predicting HPC properties. Among
the proposed models, O-LGB emerged as the best performer,
achieving training accuracies of 99.6% for compressive strength
prediction and 100% for splitting tensile strength prediction.
Compared to the baseline model, O-LGB achieved significant
improvements in compressive strength prediction, reducing the
Mean Absolute Error (MAE) by 87.69% and the RootMean Squared
Error (RMSE) by 71.93%. Additionally, O-LGB demonstrated a
slight improvement in R2 (2.68%), reflecting its strong ability
to explain the variance in compressive strength predictions. For
tensile strength, O-LGB excelled with a 99.41% improvement
in MAE, a 96.67% reduction in RMSE, and a 2.04% increase
in R2, further showcasing its superior performance. To enhance
interpretability, SHAP analysis was employed to identify the key
factors influencing the predictions. For compressive strength,
critical factors included age, cement content, water, and blast
furnace slag (BFS), while for tensile strength, the most influential
factors were compressive strength (fcu), water/binder ratio (w/b),
curing age, and water/cement ratio (w/c). These insights provide
valuable guidance for optimizing HPC mix designs and improving
material performance.

2 High performance concrete data
collection and evaluation criteria

2.1 Dataset 1: concrete compressive
strength

The first Dataset, consisting of 1,133 samples of concrete
compressive strength, was obtained from theUCIMachine Learning
Repository (Nguyen et al., 2021; Cheng, 2024; Cheng, 2008). The
statistical information, which is directly extracted and calculated
from the data, as shown in Table 1. Notably, all data points were
complete, so no missing data handling was necessary.

To explore the relationships between the input and output
variables in the dataset, the correlations among the features is
analyzed. Correlation is a statistical tool that helps describe how one
feature is related to another. Insights gained from this analysis can
assist in selecting the most suitable predictive model for optimizing
the prediction results. Pearson’s method is chosen for calculating the

correlation coefficient, as shown in Equation 1.

ρ =
∑(xi − ̂x)(yi − ̂y)

√∑(xi − ̂x)
2∑(yi − ̂y)

2
=
E[(X− μx)(Y− μy)]

σxσy
(1)

In this formula, ρ is the Pearson correlation coefficient, with X
andY representing the two features. x̂ and ŷ are themean values ofX
and Y, μX and μY represent the expected values ofX and Y, while the
subscript i represents the ith observation. E refers to the expectation,
whereas, σX and σY represent the standard deviations of X and Y.

The equation ensures that the Pearson coefficient falls within the
range of −1 to 1. A value of 0 implies no correlation, meaning there
is no direct relationship between the two features. A coefficient of 1
indicates a perfect positive correlation, while −1 indicates a perfect
negative correlation. In other words, an increase in one feature is
accompanied by an increase (for a positive correlation) or a decrease
(for a negative correlation) in the other. A value closer to 1 or -1
suggests a stronger association, while a value nearer to 0 indicates a
weaker relationship.

A perfect positive correlation, for example, occurs when a
quantity is correlated with itself, resulting in a coefficient of 1.
However, in Pearson correlation, it is important to note that a near-
zero correlation does not necessarily imply independence. Evenwith
a strong underlying relationship, the correlation coefficient may still
be small in some cases.

The correlation matrix for dataset 1 shown in Figure 1 reveals
important insights into the relationships between various concrete
mixture components and compressive strength. Cement shows
the highest positive correlation with compressive strength (0.489),
indicating that increasing cement content tends to enhance the
strength of the concrete. Superplasticizer (SP) and age also show
positive correlations with compressive strength, at 0.356 and 0.324
respectively, suggesting that the inclusion of SP and longer curing
times improve the concrete’s load-bearing capacity. Conversely,
water content displays a negative correlation of −0.278 with
compressive strength, aligning with the well-established principle
that excessive water weakens concrete. Other components, like
coarse aggregate (CAG) and fly ash (FA), show weaker correlations
with compressive strength (−0.155 and −0.064 respectively),
indicating a lesser but still significant influence on overall concrete
performance. The matrix further shows that certain variables, such
as SP and water, are negatively correlated with each other (−0.588),
demonstrating the balance required when adjusting mixture
proportions.These findings emphasize the importance of optimizing
material proportions to achieve the desired concrete strength.

2.2 Dataset 2: concrete tensile strength

Dataset 2, comprising 714 samples that record both input and
output data related to tensile strength, is taken from Zhao et al.
(2017). A statistical summary of this dataset is presented in Table 1.
In their study, Zhao et al. conducted exploratory data analysis (EDA)
to manage the issue of missing data, employing an imputation
strategy to ensure the use of all features. The missing values were
addressed using the mean imputation method, a widely adopted
approach that replaces missing entries with the average value of the
respective feature (Brown, 1994; Kang, 2013; He et al., 2024).
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TABLE 1 Statistical analysis of datasets.

Attribute Abbreviation Unit Mean Standard deviation

Dataset 1: HPC compressive strength (1,133 samples)

Cement Cement kg/m3 276.5 103.47

Blast furnace slag BFS kg/m3 74.27 84.25

Fly ash FA kg/m3 62.81 71.58

Water Water kg/m3 182.98 21.71

Superplasticizer SP kg/m3 6.42 5.8

Coarse aggregate CAG kg/m3 964.83 82.79

Fine aggregate FAG kg/m3 770.49 79.37

Age Age day 44.06 60.44

Compressive strength Fc MPa 35.84 16.1

Cement’s compressive strength Fce MPa 50.35 6.8

Dataset 2: HPC tensile strength (714 samples)

Cement’s tensile strength fct MPa 8.31 0.66

Curing age curing age day 56.73 76.28

Dmax of crushed stone dmax mm 43.87 26.24

Stone powder content in sand spc in sand % 10.8 5.56

Fineness modulus of sand fm of sand — 2.93 0.27

W/B w/b — 0.45 0.12

Water to cement ratio w/c ratio — 0.59 0.24

Water water kg/m3 148.25 33.35

Sand ratio sand ratio % 36.3 6.09

Slump slump Mm 80.27 66.48

Compressive strength fcu MPa 42.87 22.14

Tensile strength fst MPa 3 1.36

Following the same approach as outlined for Dataset 1, a
correlation matrix for the input features of Dataset 2 (after imputing
missing values) is illustrated in Figure 2.

Figure 2, highlights the relationships between key variables
influencing the tensile strength (fst) of HPC. fst shows a strong
positive correlation with compressive strength (fcu) (0.943),
indicating that higher compressive strength leads to improved
tensile strength. It also has a moderate positive correlation with
slump (0.506), suggesting a link between workability and strength.
Negative correlations are observed with w/c ratio (−0.690), w/b
(−0.635), and dmax (−0.505). Other factors, like curing age,
positively correlate with compressive strength (0.446), while fine
aggregate properties (e.g., FM of sand and sand ratio) exhibit weaker

relationships. Curing age shows a moderate positive relationship
with compressive strength (0.446), suggesting that longer curing
improves strength properties over time. Fine aggregate properties,
such as the fm of sand and sand ratio, show weaker correlations
with tensile strength but still play a role in mix design, particularly
through their influence on water demand and workability.

2.3 Performance evaluation criteria

To assess the performance of prediction algorithms, fourmetrics
are typically employed: the coefficient of determination (R2), root
mean squared error (RMSE), mean absolute percentage error
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FIGURE 1
Pearson correlation plot of features in dataset 1.

FIGURE 2
Pearson correlation plot of features in dataset 2.

(MAPE), and mean absolute error (MAE). The R2 value, as given
by Equation 2, measures the linear correlation between predicted
and actual values, ranging from 0 to 1, with higher values indicating
better model performance. RMSE, as shown in Equation 3, is the
square root of the average squared differences between predicted
and actual values, representing the model’s prediction accuracy.
MAE, detailed in Equation 4, calculates the average of absolute
differences between predicted and observed values, offering a
measure of prediction precision. MAPE, shown in Equation 5,

assesses prediction accuracy by calculating the average of the
absolute percentage errors. Lower values for both RMSE and MAE
signify improved model performance.

R2 = 1−

n

∑
i=1
(yi − ŷ)

2

n

∑
i=1
(yi − y)

2
(2)
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RMSE =
√

n

∑
i=1
(yi − ŷi)

2

n
(3)

MAE = 1
n

n

∑
i=1
|yi − ŷ| (4)

MAPE = 1
n

n

∑
i=1
|
yi − ŷi
yi
| × 100 (5)

where, yi and ŷ represent the actual value and predicted value,
respectively; y represents the mean actual value; n represents the
sample numbers.

3 Machine learning algorithms and
hyperparameter search space

3.1 Ensemble learning algorithms

This study utilizes ensemble learning techniques to predict
both compressive and splitting tensile strength, focusing on
two primary methods: bagging and boosting. Bagging works by
splitting the dataset into several subsets, training models on each
subset simultaneously, and then averaging the results for the
final prediction. A well-known example is Random Forest (RF),
introduced by Breiman (Breiman, 2001), which builds multiple
decision trees from randomly selected features as shown in Figure 3.
The parallel training of these trees enhances the model’s robustness
and helps prevent overfitting. In regression tasks, the output is
averaged across all trees, while in classification, the final prediction
is based on majority voting.

Boosting, on the other hand, sequentially trains weak learners,
with each iteration focusing on correcting errors from the previous
one (Schapire, 1999). Adaptive Boosting (AB), initially developed
by Freund and Schapire (Freund and Schapire, 1996), was a
pioneering method in this category. Subsequent algorithms, such
as Gradient Boosting Machine (GB) (Friedman, 2001), Extreme
Gradient Boosting (XGB) (Chen and Guestrin, 2016), and Light
Gradient Boosting Machine (LGB) (Ke et al., 2017), further
enhanced accuracy and efficiency. LGB, known for its speed, uses
techniques like gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB) to improve performance. Similarly,
Categorical Gradient Boosting (CB) (Prokhorenkova et al., 2018)
optimizes boosting for datasetswith categorical variables, employing
minimal variance sampling (MVS) to enhance split accuracy and
performance across diverse data types.

3.2 Explainable AutoML models

Hyperparameter tuning is essential for enhancing the
performance of machine learning models. Unlike model
parameters, hyperparameters are not learned from the training
data, necessitating a distinct optimization process. Traditionally,
researchers have relied on manual tuning, which is time-intensive
and heavily reliant on the expertise of the researcher. This
manual approach often requires days or even weeks to achieve
optimal results, underscoring the increasing demand for AutoML

methods (Hertel et al., 2020). Optuna is an innovative, open-
source optimization framework that employs the Tree-structured
Parzen Estimator (TPE), a sequential model-based algorithm
specifically designed for hyperparameter optimization. TPE
constructs probabilistic models to sample hyperparameters more
efficiently than conventional Bayesian optimization approaches
(Xiao et al., 2024). In Optuna, hyperparameter tuning is framed as
the optimization of an objective function, with hyperparameters
being adaptively generated throughout each trial (Akiba et al.,
2019).This approach integrates seamlessly with SHAP and ensemble
learning models like RF, XGB, LGB, and CB, leading to explainable
AutoML models such as O-RF, O-XGB, O-LGB, and O-CB. These
models enhance both performance and interpretability, offering
a robust AutoML solution. However, the use of Optuna in civil
engineering applications remains relatively underexplored.

SHAP introduced by Lundberg and Lee (2017). in 2017,
is a widely used tool for model interpretation, as it explains
predictions by assessing the importance of individual features, their
interactions, dependencies, and contributions to specific outcomes.
SHAP improves the interpretability of AutoMLmodels, particularly
in predicting damage states, by providing a quantitative measure
of each feature’s influence. The SHAP framework is based on
an additive attribution approach, where the model’s output is
represented as a linear combination of feature values, with each
feature’s contribution calculated using Shapley values, as outlined in
Equation 6.

f(x) = ϕο +
N

∑
i=1

ϕixi (6)

where N represents the number of input features, øo denotes the
base value, and øi is the Shapley value corresponding to the ith
feature.Themodel’s output is derived by summing the contributions
of all feature characteristics. This approach, rooted in game theory,
aims to interpret the marginal contribution of each feature to the
model’s output, providing insights from both a local (individual
prediction) and global (entire dataset) perspective. Locally, SHAP
offers precise details on how individual features influence specific
predictions, while globally, it reveals broader trends in feature
importance. This dual focus is particularly useful for interpreting
complex machine learning models, as it clarifies the impact of
each feature (Hadzima-Nyarko et al., 2020; Zhao et al., 2023).
Shapley values are used to compute the contribution of each feature,
ensuring a fair and accurate evaluation of feature importance, as
represented in Equation 7.

ϕi( f,x) = ∑
δ⊆N{ i}

|δ|!(N− |δ| − 1)!
N!

[ f(δ∪ {i}) − f(δ)] (7)

where øi represents the Shapley value for feature i, ᵹ refers to a subset
of features, f denotes the black-boxmodel, andN is the total number
of features. This formulation ensures a fair and precise assessment
of each feature’s contribution, offering valuable insights into the
model’s decision-making process.

3.3 Hyperparameters search space
configuration for optuna

For hyperparameter optimization using Optuna,
different models were tuned with specific parameter ranges
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FIGURE 3
Flow chart of random forest.

as shown in Table 2. These ranges were selected to capture the
variability in model performance while ensuring a comprehensive
search space.The hyperparameters for O-XGB, O-RF, O-CB, andO-
LGB are essential for fine-tuning model performance. For O-XGB,
the n_estimator parameter controls the number of boosting rounds,
balancing accuracy and computation, while max_depth manages
tree complexity, preventing overfitting by limiting how deep trees
can grow.The learning_rate determines the step size during training.
Subsample introduces randomness by selecting a fraction of data for
each tree, and gamma prevents unnecessary splits by enforcing a
minimum loss reduction threshold. O-RF hyperparameters include
n_estimator, which dictates the number of trees to enhance model
robustness, and max_depth to limit how deep the trees grow. The
min_samples_split and min_samples_leaf parameters control the
minimum number of samples required to split a node and form a
leaf. Additionally, max_features determines how many features are
considered at each split, sqrt or log2 adding randomness to improve
diversity among trees.

O-CB optimizes performance through iterations, which sets
the number of boosting rounds, and depth, limiting tree size
to balance accuracy and speed. The learning_rate fine-tunes the
contribution of each tree, while l2_leaf_reg applies L2 regularization
to prevent overfitting by penalizing large leaf values. Border_count
defines the number of splits for numerical features, controlling
how finely patterns are captured. Whereas, O-LGB shares many
similarities with XGBoost but offers unique hyperparameters like
num_leaves, which defines the maximum number of leaves per

tree, allowing for more complex decision boundaries. Min_child_
samples ensures a minimum number of data points in leaves,
reducing overfitting in small data splits. Additionally, colsample_
bytree controls the fraction of features considered at each split,
and subsample determines the fraction of data used for training,
promoting diversity among trees.

3.4 Conceptual framework of research

The conceptual framework of this research as shown in Figure 4
involves a structured approach starting from data collection,
where two datasets comprising 1,133 and 714 samples. Feature
analysis follows, incorporating both Pearson Correlation Matrix
and Statistical Analysis, which includes computing minimum,
maximum, mean, and standard deviation values for deeper insights
into the data. In the model development phase, the study proposes
using explainable models like O-XGB, O-RF, O-CB, and O-LGB,
compared against a base model from literature (Nguyen et al.,
2021). Performance evaluation is conducted usingmetrics likeMAE,
RMSE, MAPE, and R2. Model ranking analysis then identifies the
best-performingmodel, followed by an improvement of eachmetric
relative to base model and final interpretation using SHAP analysis
for feature significance, ensuring the model’s interpretability.

This structured flow ensures a thorough evaluation and
comparison of various machine learning models, focusing on
explainability, performance metrics, and feature importance,
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TABLE 2 Hyperparameters ranges for Optuna.

Model Hyperparameters Range

O-XGB

n_estimator 10–1,200

max_depth 1–1,000

learning_rate 0.001–0.3

subsample 0.5–1.0

gamma 0–5

O-RF

n_estimator 10–1,200

max_depth 1–1,000

min_samples_split 2–20

min_samples_leaf 1–20

max_features [None, “sqrt”, “log2”]

O-CB

iterations 10–200

depth 1–16

learning_rate 0.001–0.3

l2_leaf_reg 0.001–100

border_count 1–155

O-LGB

n_estimator 10–1,200

max_depth 1–1,000

learning_rate 0.001–0.3

subsample 0.5–1.0

colsample_bytree 0.5–1.0

num_leaves 20–300

min_child_samples 5–100

helping in the selection of the optimal model for predicting
compressive strength and splitting tensile strength of HPC.

4 Results and discussion

4.1 AutoML model performance
comparison

The results of predicting the compressive strength and splitting
tensile strength of HPC using Optuna integrated with SHAP and
different ML algorithms (XGB, RF, CB, and LGB) highlight some
key differences in performance across models. These results are
evaluated based on common metrics such as MAE, RMSE, MAPE,
and R2, which indicate the accuracy and efficiency of each model.

For compressive strength as shown in Table 3, O-XGB shows
relatively good performance, especially in training where it achieves
an MAE of 0.661, RMSE of 1.234 and MAPE of 2.42, along with a
strong R2 of 0.994, indicating a nearly perfect fit during training.
However, when tested on unseen data, the MAE increases to 2.929,
RMSE to 3.979, MAPE of 10.08 and the R2 drops slightly to 0.939.
This drop suggests that while the model fits the training data well,
there is a noticeable decline in performance during testing, likely
due to overfitting or lack of generalization. O-RF, on the other
hand, performs worse thanO-XGB, with an even larger gap between
training and testing performance. During training, the MAE is
1.281, RMSE is 1.972, MAPE of 4.49, with a high R2 of 0.985.
However, in testing, the model struggles, with a much higher MAE
of 3.777, RMSE of 5.246, MAPE of 12.23, and the R2 drops to 0.894,
suggesting it does not generalize well to new data. Whereas, O-CB
strikes a good balance between training and testing. In training,
it shows decent results with an MAE of 1.205, RMSE of 1.788
and MAPE of 4.23, along with an R2 of 0.988. During testing, its
MAE improves to 2.642, RMSE to 3.759 and MAPE of 8.95, with
a respectable R2 of 0.945. This suggests that CB maintains strong
generalization, handling the testing data more efficiently compared
to the other models. Finally, O-LGB delivers the best training
performance for compressive strength prediction, with an incredibly
low MAE of 0.304 and RMSE of 1.061, MAPE of 1.02 and a near-
perfect R2 of 0.996. During testing, although its MAE and RMSE
increase to 2.651 and 3.813, respectively, it still maintains a high R2

of 0.944, indicating that this model is highly reliable and consistent
across both training and testing phases. Overall, O-LGB emerges as
the bestmodel for compressive strength prediction due to its balance
of excellent training results and strong testing performance.

For splitting tensile strength (fst) as shown in Table 3, O-XGB
demonstrates outstanding training performance with an MAE of
0.034, RMSE of 0.043, MAPE of 1.50 and an R2 of 0.999, showing
near-perfect predictions. However, when tested, the MAE increases
to 0.167, RMSE to 0.241, and MAPE of 5.90, with an R2 of
0.972, showing a slight decline in performance but still achieving
impressive results overall. O-RF again performs worse in testing
compared to training, with an MAE of 0.068, RMSE of 0.104, and
MAPE of 2.80 during training, and an R2 of 0.994. In testing,
however, the MAE rises to 0.191, RMSE to 0.299, MAPE of 6.37 and
R2 drops to 0.957, indicating that this model may have difficulties
generalizing on unseen data. Whereas, O-CB performs similarly to
O-XGB, with training results showing an MAE of 0.094, RMSE of
0.125, MAPE of 3.92 and an R2 of 0.991. During testing, the MAE
improves slightly to 0.170, the RMSE remains at 0.240, andMAPE of
5.94, with an R2 of 0.972, suggesting that CB performs equally well
for both training and testing, making it a robust model for splitting
tensile strength predictions. O-LGB, however, stands out with an
almost perfect fit during training, showing an MAE of 0.001, RMSE
of 0.009,MAPE of 0.06, and an R2 of 1.000. During testing, theMAE
increases slightly to 0.165, with anRMSEof 0.242,MAPEof 5.78, but
it still maintains a high R2 of 0.972, making it the top-performing
model for tensile strength predictions as well.

When compared to the base model, where XGB was identified
as the best-performing model (Nguyen et al., 2021), the models
in this analysis significantly outperform it as depicted in Table 3.
The base model reported an MAE of 2.47, RMSE of 3.78, and
MAPE of 8.64 on training datasets for compressive strength, both
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FIGURE 4
Conceptual framework of research.

of which are considerably higher than the values achieved in this
study, particularly by O-LGB. Similarly, for tensile strength, the
base model’s MAE of 0.17, RMSE of 0.27 and MAPE of 6.59 are
slightly worse than the results from Optuna models, with O-LGB
and O-XGB delivering superior performance.

Figures 5, 6 present regression plots comparing the actual and
predicted values from four AutoMLmodels during both the training
and testing phases, along with a best-fit line.These plots also display
the R2 scores. In Figure 6, O-LGB stands out, achieving R2 scores of
0.944 for the testing set and 0.996 for the training set, showcasing
excellent performance. O-XGB follows closely, with R2 scores of
0.939 for testing and 0.994 for training, indicating a similarly strong
fit. Both models effectively handle outliers, as seen in Figure 5.
Likewise, Figure 6 highlights the regression plots for splitting tensile
strength predictions. O-LGB once again achieves the highest R2

scores of 0.972 for testing and 1.000 for training, reinforcing its
leading performance. O-XGBperforms nearly as well, with R2 scores
close to O-LGB, demonstrating robust predictive ability.

4.2 Model improvement (%)

To compare the performance of different models (O-XGB, O-
RF, O-CB, O-LGB) with a base model, improvements are calculated
for key metrics: MAE and RMSE on a training dataset. The formula
used is the percentage improvement of the model metric relative

to the base model, with higher reductions in MAE and RMSE
indicating better performance. The improvements are aggregated
across these metrics, and models are ranked based on their overall
performance, with the model showing the highest improvement
across all metrics ranked the highest. This process can be repeated
for both compressive strength and tensile strength predictions,
allowing easy interpretation of model improvement relative to the
base model.

For compressive strength as shown in Figure 7, O-XGB shows
substantial improvement with a 73.24% reduction in MAE and a
67.35% reduction in RMSE, reflecting a significant boost in accuracy
and error minimization. O-RF offers moderate improvements,
with a 48.14% reduction in MAE and 47.83% in RMSE, O-CB,
similarly, achieves a 51.21% improvement in MAE and 52.70%
in RMSE, showing that it handles errors moderately well, though
less effectively than O-XGB. O-LGB stands out with the highest
improvements for compressive strength, reducing MAE by 87.69%
and RMSE by 71.93%. Overall, O-LGB is the most accurate model
for compressive strength prediction of HPC, closely followed by O-
XGB, with both outperforming the other models in terms of error
reduction.

For tensile strength as shown in Figure 8, O-XGB delivers
significant accuracy gains, with an 80% reduction in MAE and an
84.07% reduction in RMSE. O-RF follows with a 60% improvement
in MAE and 61.48% in RMSE, showing decent error reduction. O-
CB provides the lowest gains for tensile strength, with a 44.71%
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TABLE 3 Model performance comparison.

Dataset Models Testing and
training results

Mean absolute
error (MAE)

Root mean
squared error

(RMSE)

Mean absolute
percentage
error (MAPE)

R-Squared (R2)

Compression

O-XGB
Training 0.661 1.234 2.422 0.994

Testing 2.929 3.979 10.079 0.939

O-RF
Training 1.281 1.972 4.488 0.985

Testing 3.777 5.246 12.226 0.894

O-CB
Training 1.205 1.788 4.229 0.988

Testing 2.642 3.759 8.946 0.945

O-LGB
Training 0.304 1.061 1.022 0.996

Testing 2.651 3.813 9.274 0.944

(Nguyen et al., 2021).
Model (Compression)

XGB Training 2.47 3.78 8.64 0.97

Tensile

O-XGB
Training 0.034 0.043 1.499 0.999

Testing 0.167 0.241 5.902 0.972

O-RF
Training 0.068 0.104 2.794 0.994

Testing 0.191 0.299 6.373 0.957

O-CB
Training 0.094 0.125 3.916 0.991

Testing 0.170 0.240 5.937 0.972

O-LGB
Training 0.001 0.009 0.062 1.000

Testing 0.165 0.242 5.782 0.972

(Hoang et. al., 2021).
(Nguyen et al., 2021)
Model (Tension)

XGB Training 0.17 0.27 6.59 0.98

improvement in MAE and a 53.70% reduction in RMSE. O-LGB
emerges as the top performer for tensile strength, with a near-perfect
99.41% improvement in MAE and a 96.67% reduction in RMSE,
far exceeding the other models. O-LGB consistently provides the
most significant improvements across all metrics for tensile strength
prediction of HPC, making it the most accurate model, with O-XGB
performing well but still falling behind O-LGB in this task.

4.3 Model score analysis

The score analysis reveals that the O-LGB model consistently
outperformed all other models in predicting both compressive
and splitting tensile strength as shown in Table 4. For compressive
strength, O-LGB achieved the highest total score of 28, with 16
points in the training phase and 12 points in the testing phase,
ranking first across all metrics (MAE, RMSE, MAPE, and R2).
Similarly, for splitting tensile strength, O-LGB ranked first again,

earning a total score of 30, with 16 points during training and 14
during testing. In this scoring analysis, a score of 4 indicates the best
performance for each metric, while 1 represents the lowest. These
results highlight that O-LGB consistently outperformed O-XGB,
O-RF, and O-CB in both strength prediction tasks.

5 Global feature interpretation

Among the four AutoML models, O-XGB, O-RF, O-CB,
and O-LGB, O-LGB is the best-performing model after model
score analysis. The optimized hyperparameter for predicting the
compressive strength and tensile strength of HPC using O-LGB
are shown in Table 5. Additionally, SHAP analysis is performed
using the best-performingmodel to determine the individual feature
contributions to compressive and tensile strength predictions.

SHAP visualizations provide a comprehensive understanding of
how various features influence a ML model’s prediction. The SHAP
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FIGURE 5
Actual vs. predicted values of compressive strength of HPC on testing and training dataset. (A) O-XGB prediction on testing data. (B) O-XGB prediction
on training data. (C) O-RF prediction on testing data. (D) O-RF prediction on training data. (E) O-CB prediction on testing data. (F) O-CB prediction on
training data. (G) O-LGB prediction on testing data. (H) O-LGB prediction on training data.
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FIGURE 6
Actual vs. predicted values of splitting tensile strength of HPC on testing and training dataset. (A) O-XGB prediction on testing data. (B) O-XGB
prediction on training data. (C) O-RF prediction on Testing data. (D) O-RF prediction on training data. (E) O-CB prediction on testing data. (F) O-CB
prediction on training data. (G) O-LGB prediction on testing data (H) O-LGB prediction on training data.
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FIGURE 7
Performance improvement for compressive strength of HPC relative to base model.

FIGURE 8
Performance Improvement for Splitting tensile strength of HPC relative to Base model.

heatmap illustrates the impact of input features on the predicted
compressive and splitting tensile strength of HPC, where each row
represents a feature, and each column corresponds to a dataset
instance. The color scale reflects the magnitude of the SHAP values,
with red indicating a positive contribution and blue a negative
one. The black curve at the top demonstrates the variation in
predictions across instances, while the heatmap below shows how
each feature contributes to these predictions. Additionally, a bar plot
ranks features by their global importance. The SHAP decision plot
complements this by visualizing the contribution of each feature
to the model’s predictions across multiple instances. Furthermore,
the SHAP dependency plot reveals interactions between features,

showing how they affect each other and the overall model output,
offering a deeper insight into feature dependencies.0.

5.1 Impact of features on compressive
strength of HPC

The SHAP heatmap as shown in Figure 9A and decision plot
as shown in Figure 9B together provide a detailed understanding of
how different features influence the predicted compressive strength
of HPC. From the decision plot, it is evident that Age and Cement
are the most influential features, contributing significantly to higher

Frontiers in Materials 13 frontiersin.org

https://doi.org/10.3389/fmats.2025.1542655
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Khan et al. 10.3389/fmats.2025.1542655

TABLE 4 Model score analysis.

Dataset AutoML
models

Testing
and

training
results

Mean
absolute
error
(MAE)

Root
mean

squared
error
(RMSE)

Mean
absolute
percentage

error
(MAPE)

R-square
(R2)

Total
(testing +
training)

Total
score

Compression

O-XGB
Training 3 3 2 3 11

19
Testing 2 2 2 2 8

O-RF
Training 1 1 1 1 4

8
Testing 1 1 1 1 4

O-CB
Training 2 2 3 2 9

25
Testing 4 4 4 4 16

O-LGB
Training 4 4 4 4 16

28
Testing 3 3 3 3 12

Tensile

O-XGB
Training 3 3 3 3 12

25
Testing 3 3 3 4 13

O-RF
Training 2 2 2 2 8

13
Testing 1 1 1 2 5

O-CB
Training 1 1 1 1 4

16
Testing 2 4 2 4 12

O-LGB
Training 4 4 4 4 16

30
Testing 4 2 4 4 14

predictions of compressive strength. In the decision plot, the red
lines for Age and Cement indicate their strong positive impact,
especially in instanceswhere both features are high.This relationship
is further supported by the heatmap, where Age and Cement show
consistently strong contributions, with red areas indicating a positive
effect across many instances. Age, in particular, plays a dominant
role in pushing predictions upward, which is aligned with the
established understanding that concrete strength increases with age.

Water shows a more complex interaction in both the decision
plot and heatmap. In the heatmap (Figure 9A), the alternating bands
of blue and red for water show that its effect is not uniform. In some
instances (red zones), water has a positive impact, slightly increasing
compressive strength, while in others (blue zones), it has a negative
impact, reducing the strength. This variation indicates that water’s
contribution is highly dependent on the accompanying feature
values, such as Cement, BFS, and FA. For example, when combined
with higher cement content or balanced supplementary materials,
water might assist in hydration and improve strength, but when
in excess or combined with specific material ratios, it dilutes the
paste and reduces strength.The heatmap capturesmixed behavior of
water through its gradient of colors. In the decision plot (Figure 9B),
this interplay is further clarified. The blue lines show instances

where water negatively impacts the predicted compressive strength,
especially at higher levels, consistent with the understanding that
excess water weakens the concrete by diluting the paste. However,
some pink and red lines indicate that in specific scenarios, water can
positively contribute to compressive strength.These variations in the
slope and direction of the lines reflect howwater interacts differently
depending on the values of other features. For instance, a steep blue
line suggests a strong negative influence of water in those instances,
possibly due to an imbalance with Cement or BFS, while a red line
suggests a positive influence, likely due to improved hydration or
workability when paired with other optimal material proportions.

Other features, such as BFS (Blast Furnace Slag), FAG (Fine
Aggregate), and SP, play secondary roles, as seen in both plots.
These features contribute positively or negatively depending on
the instance, with their influence more dependent on the specific
mix composition. The decision plot shows variability in their
contributions, indicating that their impact is less consistent
compared to Age and Cement. The heatmap further confirms this
variability, showing that while these features are important, their
influence is context-dependent and oftenmoderated by other factors
in themix, such as water content and the proportion of cementitious
materials. Together, the decision plot and heatmap emphasize
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TABLE 5 Optimized selected hyperparameters of O-LGB.

O-LGB model Hyperparameter Value

Compressive strength prediction

n_estimator 941

max_depth 918

learning_rate 0.1168

subsample 0.7959

colsample_bytree 0.8656

num_leaves 260

min_child_samples 23

Tensile strength prediction

n_estimator 764

max_depth 68

learning_rate 0.2074

subsample 0.7971

colsample_bytree 0.5205

num_leaves 82

min_child_samples 8

the critical role of Age, Cement, and Water in determining
compressive strength, with other features contributing in more
complex, instance-specific ways.

Similarly, The SHAP dependency graph as shown in Figure 10
reveals complex interdependencies among input features affecting
the predicted compressive strength of concrete. Cement has a strong,
consistent positive impact, with its increasing content significantly
boosting strength, while water shows a more intricate relationship,
lower levels enhance strength, but excess water reduces it, although
this negative effect can be mitigated by higher cement levels. BFS
and FA positively contribute up to a certain limit, beyond which
their effects stabilize. SP interacts minimally with BFS, showing
diminishing returns as its concentration increases. FAG reduce
compressive strength, while CAG offer a slight positive influence.
Aging of the concrete strongly enhances strength up to 100 days,
particularly when paired with higher cement content. Overall,
cement, age, and a balanced water-to-cement ratio are the most
critical factors, while BFS, FA, SP, and aggregates havemore complex
and secondary effects.

5.2 Impact of features on splitting tensile
strength of HPC

The SHAP heatmap (Figure 11A) and decision plot (Figure 11B)
offer a clear view of how each feature contributes to the
predicted splitting tensile strength of HPC. Starting with the
most influential feature, fcu plays a dominant role in determining
splitting tensile strength. In both the heatmap and decision

plot, fcu generally shows a strong positive impact, where higher
values of fcu significantly increase the predicted splitting tensile
strength. This is reflected by the predominantly red SHAP values
in the heatmap and the sharp upward shifts in the decision plot,
indicating that as compressive strength increases, the splitting
tensile strength also tends to increase. However, the heatmap also
shows instances with blue SHAP values, indicating that fcu can
have a negative impact in certain cases, particularly when its
value is lower.

The w/b is another significant feature, as seen in both
visualizations. In the heatmap, a lower w/b ratio results in
positive SHAP values (red), suggesting that a lower ratio positively
influences the splitting tensile strength. Conversely, higher w/b
ratios contribute negatively to the prediction (blue). In the decision
plot, this feature causes substantial shifts inmodel output depending
on the instance. Lower w/b ratios improve the predicted tensile
strength, which aligns with the understanding that less water in the
mix leads to stronger and more durable concrete, thus enhancing
its tensile strength. Curing age also has a notable impact on
splitting tensile strength, contributing positively in most cases. The
heatmap shows predominantly positive SHAP values for this feature,
especially as curing age increases, indicating that longer curing
periods allow the concrete to develop higher tensile strength. The
decision plot confirms this, as the predictions for splitting tensile
strength increase with curing age. This reflects the well-known fact
that longer curing times enhance the strength properties of concrete,
including its tensile strength.

Other features, such as the w/c, dmax, sand ratio, and slump,
show more variability in their effects on splitting tensile strength.
The heatmap illustrates a mix of red and blue SHAP values for
these features, indicating that their contributions vary depending
on the specific instance. For example, a lower w/c ratio generally
increases tensile strength, while higher values reduce it. dmax
shows both positive and negative contributions depending on the
context, suggesting that the optimal aggregate size depends on other
factors in the mix. The decision plot shows diverging lines for these
features, further reflecting their complex and variable contributions
to the model’s predictions. These features are important but
interactmore intricately with other variables,making their influence
on splitting tensile strength less consistent compared to fcu,
w/b, and curing age.

Similarly, Figure 12 highlight the interdependencies between
various input features and their contributions to predicting splitting
tensile strength. Key factors like fcu, curing age, and w/b ratio
have strong positive impacts, with curing age and fcu significantly
enhancing tensile strength, especially at lower w/b ratios. Cement’s
compressive (fce) and tensile strength (fct) also contribute positively,
with stronger effects at higher fcu values. In contrast, higher
water content and slump levels negatively affect tensile strength,
particularly when the water content exceeds optimal levels, which
is exacerbated by larger aggregate sizes (dmax). Stone powder
content in sand (spc) and finenessmodulus (fm) have complex roles,
where finer sand and higher sand ratios generally boost strength,
while high sand ratios interact positively with higher compressive
strength. Overall, curing age, fcu, and a balanced w/b ratio are the
most crucial factors for improving splitting tensile strength, while
excessive water and slump can detract from the strength predictions.
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FIGURE 9
Global impact of features on compressive strength of HPC. (A) SHAP heat map. (B) SHAP decision plot.

FIGURE 10
Feature dependency on compressive strength of HPC.

6 Conclusion

This research focused on predicting essential engineering
properties of high-performance concrete (HPC), specifically
compressive and tensile strength, using explainable AutoML

models. By integrating Optuna for hyperparameter optimization,
SHapley Additive exPlanations (SHAP) for interpretability, and
ensemble learning algorithms such as XGB, RF, CB, and LGB,
the study successfully developed robust and interpretable models
for predicting HPC properties. Among the models, O-LGB
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FIGURE 11
Global impact of features on splitting tensile strength of HPC. (A) SHAP heat map. (B) SHAP decision plot.

FIGURE 12
Feature dependency on splitting tensile strength of HPC.

demonstrated superior performance, significantly outperforming
the baseline model from the literature. For compressive strength,
O-LGB reduced theMean Absolute Error (MAE) by 87.69% and the
Root Mean Squared Error (RMSE) by 71.93%, while also improving

R2 by 2.68%. For tensile strength, the model achieved a 99.41%
reduction in MAE and a 96.67% reduction in RMSE, with a modest
R2 improvement of 2.04%. These results highlight the reliability
and accuracy of O-LGB in both training and testing phases,
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making it a highly effective tool for predicting HPC properties. The
significant reduction in prediction errors demonstrates the potential
of Optuna-based AutoML models to enhance the efficiency and
precision of machine learning applications in civil engineering.

The integration of SHAP analysis added a critical layer of
interpretability to the models, addressing a common limitation
of traditional machine learning approaches. For compressive
strength, age and cement content were identified as the most
critical factors, while water played a complex role, often reducing
strength when present in excess. For tensile strength, the most
influential factors were compressive strength (fcu), water-binder
ratio (w/b), and curing age. SHAP decision plots and heatmaps
revealed the interactions between these features, providing valuable
insights into the relationships between concrete composition and
strength properties. These findings underscore the importance of
maintaining an optimal balance in HPC mix design to achieve
desired strength characteristics. By combining high accuracy with
interpretability, this study bridges the gap between advanced
machine learning models and their practical application in civil
engineering.

This study makes several important scientific contributions.
It demonstrates the effectiveness of applying Optuna-based
hyperparameter optimization in civil engineering, significantly
enhancing model performance and reducing prediction errors.
Additionally, the integration of SHAP analysis with AutoMLmodels
addresses the critical need for interpretability, providing valuable
insights into the factors influencing HPC properties. The study
evaluates multiple AutoML models (O-RF, O-XGB, O-CB, and
O-LGB), highlighting the superior performance of O-LGB in
terms of accuracy, reliability, and interpretability. The proposed
framework offers a practical and efficient approach for optimizing
HPC properties, enabling accurate predictions of compressive
and tensile strength, improving structural design, and guiding the
optimization of HPCmix designs. By reducing reliance on extensive
experimental testing, this approach offers significant time and cost
savings while improving risk assessment and quality control in
construction projects.

Future studies should explore larger and more diverse datasets
to validate the robustness of the models and ensure their
generalizability to different HPC formulations and environmental
conditions. Additionally, the framework could be extended to
predict dynamic properties, such as durability, shrinkage, or
creep, under varying environmental conditions, as well as other
engineering properties of HPC, such as modulus of elasticity or
thermal properties, to create a more comprehensive predictive
framework. Real-time applications could also be developed by
integrating the proposed models into construction workflows,
enabling on-site optimization of HPC mix designs. Finally, the
framework could be applied to other materials or domains, such as
asphalt concrete, geopolymers, or advanced composites, to explore
its broader applicability.
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