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multi-dimensional self-assembly
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School of Polyer Science and Engineering, Qingdao University of Science and Technology, Qingdao,
Shandong, China

Introduction: In recent years the design and optimization of smart materials
have gained considerable attention due to their potential applications across
diverse fields, from biomedical engineering to adaptive structural systems.
Traditional approaches for optimizing these materials often rely on deterministic
models ortrial-and-error processes, which tend to be limited by computational
expense and lack of adaptability in dynamic environments. These methods
generally fail to address the complexities of multi-dimensional self-assembly
processes where materials need to respond autonomously to environmental
stimuli in real time.

Methods: To address these limitations, this research explores the application
of reinforcement learning (RL) as an advanced optimization framework to
enhance the autonomous self-assembly of smart materials. We propose a
novel reinforcement learning-based model that integrates adaptive control
mechanisms within multi-dimensional self-assembly, allowing materials to
optimize their configuration and properties according to external stimuli. In our
approach, agents learn optimal assembly policies through iterative interactions
with simulated environments, enabling the smart material to evolve and respond
to complex and multi-factorial inputs.

Results and discussion: Experimental results demonstrate the model’s efficacy,
revealing significant improvements in adaptability, efficiency, and material
performance under varied environmental conditions. The work not only
advances the theoretical understanding of self-assembly in smart materials
but also paves the way for the development of autonomous, self-optimizing
materials that can be deployed in real-world applications requiring dynamic
adaptation and robustness.

KEYWORDS

smart materials, reinforcement learning, multi-dimensional self-assembly, autonomous
optimization, adaptive control

1 Introduction

Smart materials, with their adaptive capabilities in response to environmental stimuli,
have gained significant attention due to their broad applications in fields such as robotics,
biomedical devices, and flexible electronics (Ali and Albakri, 2024). The optimization
of smart materials in multi-dimensional self-assembly processes poses unique challenges
due to the complexity and high dimensionality of the design space (Bányai, 2021).
Traditional optimization methods struggle to effectively navigate this space, resulting
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in suboptimal material properties and limited adaptability.
Reinforcement learning (RL), as an advanced machine learning
technique, offers a promising approach to overcome these
challenges (yu Liang et al., 2022). By enabling dynamic learning
and self-improvement, reinforcement learning (RL) not only
facilitates efficient optimization across diverse parameters but also
enhances the adaptability and functionality of smart materials in
complex, multi-dimensional environments. Therefore, exploring
reinforcement learning (RL) for smart material optimization in
multi-dimensional self-assembly is both necessary and impactful,
promising to unlock new potentials in material science and
engineering (Yang et al., 2022).

To address the limitations of early optimization approaches,
researchers initially relied on symbolic AI methods that leveraged
rule-based algorithms and knowledge representation. These
traditional methods focused on defining explicit rules and
heuristics to guide the self-assembly process, aiming to control
material properties through logical sequences and structured
frameworks (Kang and James, 2021). While these approaches
allowed for certain degrees of customization and control, they
were fundamentally limited in scalability and adaptability due to
their reliance on manually defined rules, which could not capture
the complexity of real-world, high-dimensional environments.
Moreover, symbolic AI methods often required extensive expert
knowledge and were unable to autonomously improve or adapt
to new conditions. As a result, these techniques provided a
foundational understanding of smart material optimization
but proved inadequate for the demands of multi-dimensional
self-assembly.

In response to the limitations of symbolic AI, data-driven
methods such as machine learning (ML) (Aissa et al., 2015)
emerged as promising approaches to optimize smart materials
by leveraging large datasets and statistical modeling (Song and
Ni, 2021). ML techniques, including supervised and unsupervised
learning, offered increased flexibility and adaptability in analyzing
material behaviors (Wang et al., 2022). Despite their advantages,
these methods often struggled with high-dimensional parameter
spaces and the need for extensive labeled data, limiting their
applicability in dynamic assembly processes (Liu Q. et al., 2020).
Moreover, the static nature of many ML models after training posed
challenges for continuous adaptation in real-time environments
(Choi, 2014). While impactful, these approaches underscored the
need for more dynamic optimization frameworks to address the
complexity of smart material design (Balasubramaniyan et al.,
2022). The development of deep learning and pre-trained models
further enhanced smart material optimization by introducing more
sophisticated neural architectures capable of handling complex,
high-dimensional data (Kim et al., 2020). Deep learning techniques,
particularly with reinforcement learning frameworks, enabled the
optimization process to be both dynamic and adaptive, allowing
models to learn from iterative interactionswithinmulti-dimensional
assembly environments. Pre-trained models, such as those
leveraging transfer learning, provided a means to apply previously
learned knowledge to new scenarios, significantly improving
efficiency and reducing training requirements (Deng et al.,
2023). Despite these advancements, deep learning models can
be computationally expensive and may require fine-tuning to
avoid issues such as overfitting in high-dimensional assembly

processes. Consequently, while deep learning and pre-trained
models offered unprecedented potential in material optimization,
their scalability and computational demands posed practical
limitations (Alwabli et al., 2020).

To overcome the constraints of previous approaches, our
research proposes a novel reinforcement learning-based method
tailored for smart material optimization in multi-dimensional
self-assembly. By integrating reinforcement learning (RL)’s
dynamic learning capabilities with advanced neural architectures,
our approach aims to achieve scalable, efficient, and adaptive
optimization in complex design spaces.

We summarize our contributions as follows:

• The proposed method introduces a novel multi-agent
reinforcement learning (RL) framework specifically designed
for multi-dimensional self-assembly, allowing enhanced
adaptability and scalability.
• It leverages a modular architecture, enabling high efficiency

and versatility across different smart material types and
assembly scenarios.
• Experimental results demonstrate significant improvements

in material performance and assembly precision, showcasing
the method’s potential for broad application in smart material
engineering.

2 Related work

2.1 Reinforcement learning in material
design

Reinforcement learning (RL) has become a powerful tool in
material design, offering solutions for optimizing complex, non-
linear systems through adaptive learning and feedback (Ke et al.,
2020). Its ability to explore vast parameter spaces and refine
optimal policies iteratively has made it particularly valuable for
designing materials that meet diverse functional requirements,
such as thermal stability and flexibility (Athinarayanarao et al.,
2023). Key applications of reinforcement learning (RL) include
coupling with predictive models like Monte Carlo simulations
and molecular dynamics to optimize material behaviors at
atomic or molecular levels (Zhang, 2023). This integration
has enabled the design of polymers, alloys, and composite
materials with targeted properties. Advanced reinforcement
learning (RL) methods, such as deep Q-networks (DQNs)
and proximal policy optimization (PPO), enhance convergence
speed and stability in high-dimensional state-action spaces, a
common challenge in material optimization (Ishfaq et al., 2023).
Techniques like transfer learning and meta-learning further
accelerate reinforcement learning (RL) processes, leveraging
knowledge from simpler tasks to tackle complex material design
problems efficiently (Dat et al., 2023). These methods, combined
with adaptive exploration-exploitation strategies, improve the
discovery of novel configurations while optimizing known
solutions, ensuring effective convergence to high-performance
material properties.
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2.2 Self-assembly mechanisms in smart
materials

Self-assembly underpins the design of smart materials by
enabling spontaneous organization into complex structures across
multiple scales, driven by forces like electrostatic interactions
and hydrogen bonding (Cuartas and Aguilar, 2022). Advances
in this field have extended beyond two-dimensional patterns to
include three-dimensional and hierarchical architectures, vital
for functionalities like environmental responsiveness and self-
healing (Zhang, 2022). Recent research focuses on leveraging
external stimuli—such as temperature, pH, and magnetic
fields—to dynamically control structures and properties. For
instance, thermally responsive polymers adapt configurations with
temperature changes, while magnetically guided nanoparticles form
predefined structures under magnetic fields (Gillani et al., 2022).
Hierarchical self-assembly has further enriched material versatility,
facilitating designs with layered properties optimized for complex
functionalities. The integration of reinforcement learning (RL)
into self-assembly optimization has introduced new possibilities
by enabling simulations in high-dimensional spaces (Fawaz et al.,
2024). Reinforcement learning (RL) models iteratively refine
assembly parameters, guiding materials to optimal configurations
even in scenarios with numerous variables. This is particularly
effective for creating multi-functional materials, where optimizing
properties like strength and flexibility simultaneously is critical
(Zhang et al., 2022).

2.3 Optimization techniques for
high-dimensional systems

Optimization in high-dimensional systems presents unique
challenges due to the exponential increase in complexity as
the number of dimensions grows. This issue is particularly
relevant in multi-dimensional self-assembly for smart materials,
where each additional parameter—whether it pertains to
structural configuration, material composition, or environmental
factors—adds complexity to the optimization process (Tao et al.,
2021). High-dimensional systems require sophisticated algorithms
that can efficiently explore vast parameter spaces without falling
into local optima (Lv et al., 2021). As a result, researchers are
increasingly turning to reinforcement learning (RL) and other
machine learning techniques to address these challenges, as
traditional optimization methods often struggle to cope with the
high dimensionality inherent in smart material design (Yang et al.,
2021). Within the field of high-dimensional optimization, several
RL-based methods have shown promise. Deep reinforcement
learning (DRL), for instance, is particularly suited for navigating
complex landscapes due to its ability to approximate optimal
policies in large state spaces (Maraveas et al., 2021). Techniques
such as policy gradient methods and actor-critic models are
frequently applied to enable the reinforcement learning (RL) agents
to learn optimal actions through trial and error in simulated
environments. These models have demonstrated effectiveness in
finding optimal configurations for high-dimensional systems,
where each dimension represents a specific material parameter or
assembly condition that influences the final structure and properties

of the smart material (Kim et al., 2021). A key area of focus
has been on developing algorithms that balance exploration and
exploitation efficiently, especially in high-dimensional spaces where
exhaustive search is computationally infeasible. Novel methods,
such as hierarchical reinforcement learning (RL) and ensemble
learning, have been implemented to address these requirements
(Rho et al., 2021). Hierarchical reinforcement learning (RL), for
instance, breaks down high-dimensional optimization tasks into
a hierarchy of smaller, manageable sub-tasks, allowing for faster
convergence and more efficient use of computational resources.
Ensemble learning approaches, which combine the outputs of
multiple models, have also been used to improve the reliability
of the reinforcement learning (RL) algorithms by providing a
consensus on the most promising material configurations (Flores-
García et al., 2021). Current research also emphasizes the integration
of hybrid models, which combine reinforcement learning (RL)
with other optimization strategies, such as genetic algorithms or
particle swarm optimization (Liu S. et al., 2020). These hybrid
approaches allow for a more comprehensive exploration of the
parameter space and are particularly effective in circumventing
the local minima problem. Furthermore, adaptive sampling
techniques are being investigated to dynamically adjust the sampling
strategy based on the agent’s learning progress, ensuring that
high-dimensional spaces are explored efficiently (Nardo et al.,
2020). Although challenges remain, particularly regarding the
computational intensity of training reinforcement learning
(RL) models in high-dimensional systems, advances in high-
performance computing and parallel processing are facilitating the
development of more robust and scalable optimization solutions for
smart materials.

3 Methods

3.1 Overview

The optimization of smart materials has emerged as a key
area of interest, due to its ability to advance technologies
across fields such as robotics, biomedical devices, and sustainable
engineering. This section outlines the structure and methodology
of our approach to smart material optimization. By integrating
multi-objective optimization and reinforcement learning (RL),
our method adapts to the dynamic requirements and constraints
intrinsic tomaterial applications, where conflicting objectives—such
as strength, flexibility, cost, and energy efficiency—must be
optimized simultaneously.Our approach builds on the foundation of
Multi-ObjectiveReinforcement Learning (MORL),which effectively
balances multiple, often competing objectives through Pareto
optimization. Unlike conventional reinforcement learning (RL)
models that seek to maximize a single reward function, our
method formulates the optimization problem as a Multi-Objective
Markov Decision Process (MOMDP). This approach allows for
the exploration of a range of trade-offs and for generating a
continuous Pareto front that provides a set of optimal policies
tailored to varying preferences across objectives. The proposed
method is structured as follows: in Section 3.2, we introduce
the formal definitions and mathematical formulations pertinent
to MOMDPs, including the structure of the reward functions
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and policy representations within the context of multi-objective
optimization. This foundation will be critical to understanding our
subsequent developments in constructing a model that can handle
multiple criteria simultaneously. In Section 3.3, we detail our novel
model—referred to as the Adaptive Pareto Optimization Model
(APOM)—which leverages a gradient-based approach to adapt
policy parameters iteratively. This model ensures that the resulting
policies align closely with the Pareto Frontier, effectively spanning
a wide spectrum of optimal trade-offs across the objective space.
By continuously approximating the Pareto front, APOM enables
high-fidelity control over the optimization trajectory of smart
materials, facilitating fine-grained adjustments to meet specific
application requirements. Finally, in Section 3.4, we introduce our
Predictive Control Strategy (PCS) as a complement toAPOM,which
strategically guides the selection and adjustment of policies based
on real-time feedback from the environment. PCS incorporates
prediction models to forecast the effects of policy adaptations,
allowing for preemptive adjustments that improve convergence
speed and solution accuracy. Together, these components form an
adaptive framework for optimizing smart materials across a range of
applications, while maintaining flexibility to adjust to the dynamic
needs of each use case.

3.2 Preliminaries

To formalize the optimization of smart materials, we define the
problem using the framework of Multi-Objective Markov Decision
Processes (MOMDPs), which provides the foundation formanaging
multiple, often competing objectives within a single reinforcement
learning (RL) environment. In our scenario, a smart material is
represented as an adaptive system that can respond to stimuli
and environmental conditions, making MOMDPs particularly
suited for capturing the complexities and dynamic nature of
these materials.

Formally, aMOMDP is defined as a tuple ⟨S,A,P,R,γ,D⟩, where:

• S represents the state space, capturing all possible states the
material can take in response to various conditions. States
might include physical properties like elasticity, temperature,
and stress thresholds.
• A denotes the action space, representing all feasible

adjustments to the material’s properties, such as altering its
molecular structure or configuration.
• P(s′|s,a) is the state transition probability, specifying the

probability of transitioning to state s′ from state s under action
a. This accounts for the material’s behavior under various
manipulations.
• R = [R1,R2,…,Rq] is a vector of reward functions, each

associated with a different objective (e.g., flexibility, durability,
and conductivity). Each Ri:S×A→ℝ evaluates how well a
particular action contributes to achieving objective i from the
current state.
• γ = [γ1,γ2,…,γq] is a vector of discount factors, with each γi ∈
[0,1) reflecting the degree towhich future rewards for objective
i are considered in policy optimization.

• D represents the initial state distribution, from which the
material begins its adaptive process.

Each policy π in this MOMDP framework is linked to a vector
of expected returns Jπ = [Jπ1 , J

π
2 ,…, J

π
q], where (Formula 1):

Jπi = 𝔼[
∞

∑
t=0

γtiRi (st,at) ∣ s0 ∼ D,at ∼ π(st)] . (1)

This formulation allows us to evaluate policies based on their
ability to optimize each objective in R under the constraints of the
material’s state and action spaces.

Given the multi-objective nature of the problem, we focus on
deriving policies that reside on the Pareto Frontier, which consists
of all non-dominated solutions—policies where no objective can
be improved without compromising another. A policy π is Pareto-
optimal if for another policy π′ (Formula 2):

∀i, Jπi ≥ J
π′
i and ∃i s.t. Jπi > J

π′
i , (2)

where Jπi denotes the expected reward for objective i under policy π.
To approximate the continuous Pareto Frontier in practice,

we use a gradient-based approach inspired by multi-objective
optimization techniques.The gradient of each objective with respect
to the policy parameters θ is given by (Formula 3):

ablaθJi (θ) = 𝔼τ∼πθ [Ri (τ)
∞

∑
t=0

ablaθ logπθ (at|st)] , (3)

where τ represents a trajectory through the state-action space. This
expression provides the gradient for each objective individually,
enabling us to adjust θ to achieve improvements across
all objectives.

In our method, we incorporate a scalarization technique to
prioritize different objectives according to a weight vector ω =
[ω1,…,ωq] such that ∑qi=1ωi = 1. The scalarized objective function
then becomes (Formula 4):

J (θ,ω) =
q

∑
i=1

ωiJi (θ) . (4)

The associated policy gradient for this scalarized
objective is (Formula 5):

ablaθJ (θ,ω) =
q

∑
i=1

ωi ablaθJi (θ) . (5)

This approach enables the model to adjust focus dynamically
across different objectives, balancing between them to trace out the
Pareto Frontier efficiently.

The subsequent sections will further elaborate on our
specific adaptations of these principles for the optimization
of smart materials. Our model is designed to explore various
policy configurations on the Pareto Frontier, thus providing
a range of optimized trade-offs that can be chosen according
to the specific requirements of different applications. Through
continuous adjustment and dynamic optimization, our method
captures the complexity of smart materials and maximizes
their functional adaptability.
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FIGURE 1
The architecture of the Adaptive Policy Optimization Model (APOM) showcasing the dynamic policy manifold representation. The model leverages a
patch embedding module to preprocess input, followed by multiple stages for hierarchical feature extraction, intermediate mapping, and policy
refinement. Each stage refines the representation in a progressively lower-dimensional space, culminating in a multi-objective optimization module
that balances competing objectives. This design enables flexible adaptation across diverse task requirements.

3.3 Adaptive Pareto Optimization Model
(APOM)

In this section, we introduce the Adaptive Pareto Optimization
Model (APOM), an innovative and flexible framework specifically
designed to address the multi-objective optimization challenges
inherent in smart material applications. APOM operates by
continuously approximating the Pareto Frontier, a method that
enables the identification of optimal trade-offs among competing
objectives. To achieve this, APOM constructs a dynamically
adaptable policy manifold, enabling the model to explore and fine-
tune a diverse range of optimal solutions across varying performance
criteria. As real-world applications often require balancing multiple
conflicting objectives, APOM provides a structured yet adaptable
approach that can shift in response to changing design needs
(As shown in Figure 1.

3.3.1 Dynamic policy manifold representation
In the Adaptive Policy Optimization Model (APOM), the

dynamic policy manifold is a pivotal feature that governs the
exploration of the policy space. We define a parametric mapping
function ϕθ:S→ Π, where S ⊂ ℝk represents a reduced-dimensional
space of policy parameters, and θ constitutes the parameters
governing this transformation. This mapping ϕθ allows the model
to navigate a manifold within a high-dimensional policy space Π,
effectively lowering the computational load by concentrating on a
subspace aligned with relevant solution structures. Each point s ∈ S
ismapped to a corresponding policy configuration π = ϕθ(s), leading
to a continuum of policies represented as (Formula 6)

Πθ (S) = {π:π = ϕθ (s) , s ∈ S} . (6)

To further formalize, we decompose the transformation ϕθ into
a sequence of operations (Formula 7):

π = ϕθ (s) = fθ2
(gθ1
(s)) , (7)

where gθ1
:S→ℝm is an intermediate mapping that extracts

meaningful features from S, and fθ2
:ℝm→ Π refines these features

into actionable policy parameters. This hierarchical structure in
ϕθ not only enables efficient dimensionality reduction but also
supports dynamic reconfiguration of policies as objectives change,
allowing APOM to adapt to evolving task requirements. The
manifold, parameterized by θ, acts as a flexible foundation for policy
adaptation, where the parameter set θ = {θ1,θ2} is adjusted during
the learning process to facilitate robust exploration and exploitation
of the solution space.

The continuity of the policy manifold ensures that APOM can
transition smoothly between policies, which is crucial for complex
optimization tasks requiring balanced trade-offs among competing
objectives. This adaptability is encoded within the manifold’s
topology, enabling a finely tuned exploration process. In essence, as
s traces various trajectories within S, the resultant policies π = ϕθ(s)
form a structured, dynamic landscape in Π, thus creating a reservoir
of adaptable policies that APOM can leverage in real-time.

Furthermore, to address the challenges associated with multi-
objective optimization, APOM employs a tailored penalty function
over the manifold Πθ(S). Given an objective vector (Formula 8)

J = [J1 (π) , J2 (π) ,…, Jn (π)] , (8)

where Ji(π) represents the i-th objective evaluated at policy π, we
define a composite objective (Formula 9):

L (θ) =
n

∑
i=1

wiJi (ϕθ (s)) , (9)
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wherewi are theweights reflecting the priority of each objective.This
objective guides the manifold evolution by optimizing θ to balance
objectives effectively. Thus, APOM’s dynamic manifold approach
fosters comprehensive decision-making across diverse objectives,
adapting to new contexts seamlessly.

3.3.2 Gradient-based pareto frontier
approximation

APOM’s objective is to optimize the manifold parameters η
in such a way that the resultant policy manifold Ωη(S) aligns
closely with the desired Pareto Frontier. This alignment process
involves minimizing the difference between the approximated
Pareto Frontier, produced by themodel, and the true Pareto-optimal
Frontier that reflects the best possible trade-offs among competing
objectives.

To achieve this alignment, we define the optimal parameters
η∗as those that minimize the distance between the values
on the approximated and true Pareto frontiers across the
state space S. Mathematically, this optimization problem is
expressed as (Formula 10):

η∗ = argmin
η∈Q
∫
S
‖K (ω) −K∗ (ω)‖ dω, (10)

where K(ω) represents the approximated values for each policy
parameter configuration ω, and K

∗
(ω) represents the true

Pareto-optimal values for the same configurations. The integral
over S quantifies the approximation error by summing the
deviations between the model and true values across the entire
volume of S.

The parameter optimization task, therefore, becomes one of
minimizing this error term through an iterative process, commonly
approached by gradient descent. By adjusting η step-by-step in
the direction that reduces the alignment error, the approximation
improves progressively. Specifically, each iteration updates η based
on the gradient of the loss function with respect to η, which
is given by (Formula 11):

ηt+1 = ηt − α∇η∫
S
‖K (ω) −K∗ (ω)‖ dω, (11)

where α denotes the learning rate, controlling the step size of
each update. The gradient ∇η of the integral term guides the
descent, ensuring that each iteration brings Ωη(S) closer to the true
Pareto Frontier.

The core advantage of this gradient-based approximation lies
in its systematic approach to exploring the policy space. As η is
optimized, the APOM manifold evolves, enhancing its capacity
to represent the true Pareto Frontier’s trade-offs more accurately.
Over time, this process enables the model to offer a refined,
comprehensive depiction of optimal trade-offs, effectively capturing
the range of solutions that balance multiple objectives in a complex,
multi-dimensional space.

To quantify the model’s convergence and accuracy in practice,
one might employ additional evaluation metrics, such as the
approximation error reduction over iterations or the similarity
between the model’s Frontier and empirical Pareto points. As the
optimization progresses, monitoring these metrics ensures that
the alignment between Ωη(S) and the true Pareto Frontier K

∗

remains effective, supporting an ongoing refinement of the APOM
manifold’s accuracy.

3.3.3 Adaptive gradient flow in high-dimensional
spaces

To further support the high-dimensional requirements of smart
material optimization, APOM employs an adaptive gradient flow
mechanism specifically designed to navigate complex objective
spaces in an efficient and computationally feasible manner. The
central idea of this adaptive gradient flow is to leverage gradient-
based optimization while tailoring the computational demands to
the scale and complexity of high-dimensional mappings, a critical
feature for advancedmulti-objective tasks like smart material design
(As shown in Figure 2).

The gradient of K(η) with respect to η is formulated to
ensure computational efficiency and accuracy. This gradient is
expressed as (Formula 12):

∂K (η)
∂η
= ∫

S
( ∂
∂η
(I ◦ (K ◦ψη))) VolJac (DωK (ω)Dsψη (s)) ds,

(12)

where VolJac denotes the Jacobian volume of the transformation,
an essential term that scales the gradient computation by taking
into account the distortion induced by the mapping ψη. This
Jacobian volume is critical as it enables APOM to manage the
dimensionality of the problem space by adjusting the gradient
magnitudes according to the transformation’s influence over local
regions in the policy space.

In this expression, I serves as an indicator function,
assessing the Pareto-optimality of each point on the manifold
and selectively guiding the gradient flow toward regions that
contribute most effectively to the Pareto Frontier approximation.
The selective nature of I reduces unnecessary gradient
computations in non-Pareto-optimal regions, thus enhancing
computational efficiency.

The adaptive gradient flow, therefore, allows APOM to
compute accurate gradients without incurring the prohibitive
costs typical of high-dimensional settings. Each update step for
η is given by (Formula 13):

ηt+1 = ηt − α∇η∫
S
‖(I ◦K (ω)) −K∗ (ω)‖ VolJac dω, (13)

where α is the adaptive learning rate, dynamically adjusted to
maintain stability and convergence speed as APOM iterates through
high-dimensional solutions. This approach ensures that APOM’s
updates are responsive to the manifold’s scale and local curvature,
preserving the accuracy of the Pareto approximation while
balancing the computational load. The adaptive gradient approach
also incorporates mechanisms for reducing error accumulation
over successive iterations. By dynamically adjusting the policy
manifold through updates in η, APOM minimizes the error
term associated with each high-dimensional transformation,
ensuring that the solution space remains aligned with the true
Pareto Frontier.

In the context of smart material optimization, where objectives
may be subject to complex trade-offs and dynamically shifting
priorities, the adaptive gradient flow approach is particularly
beneficial. It provides APOM with the flexibility to recalibrate its
parameter estimates in response to new performance criteria or
operational constraints, facilitating a highly adaptable and scalable
optimization process. Further, APOM’s iterative refinement of
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FIGURE 2
The architecture of the Adaptive Gradient Flow Model for high-dimensional smart material optimization. The model begins with Pixel/Channel
Tokenization (1 Data) to preprocess input data, followed by Hyperspectral Patch Tokenization for effective handling of high-dimensional features. The
core Transformer Encoder with Cross Attention Layer facilitates the integration of complex, multi-objective requirements through adaptive gradient
flow. Position and External Class Embeddings enrich each token with spatial and categorical information, enabling precise navigation within the policy
manifold. This structured approach allows for robust exploration and accurate approximation of the Pareto Frontier in high-dimensional optimization
landscapes.

η enables the policy manifold to evolve, continuously aligning
with the Pareto Frontier while allowing for robust exploration
of the multi-objective space. This adaptability is crucial in
scenarios where high fidelity in the representation of trade-offs is
necessary, such as in material applications that demand fine-tuned
properties across multiple dimensions, like strength, flexibility,
and durability.

3.4 Predictive control strategy (PCS)

The Predictive Control Strategy (PCS) augments the
Adaptive Pareto Optimization Model (APOM) by introducing
a predictive feedback mechanism and dynamic policy selection
framework that enhances APOM’s adaptability. This strategy
is essential in applications where smart materials need to
respond swiftly to changing external conditions or performance
criteria, ensuring that the system sustains optimality in dynamic
environments. PCS achieves this through a blend of real-
time prediction, policy selection, and exploration-exploitation
balance, each designed to support adaptive decision-making
(As showing Figure 3).

3.4.1 Predictive feedback model
At the heart of the Pareto Control System (PCS) is a

predictive feedback model, denoted as fpredict(θ,δ), which plays
a crucial role in forecasting the potential improvements in
objective values when the policy parameters θ are perturbed by
a small vector δ. This model leverages historical optimization
data to estimate the directional influence of parameter
changes, thereby providing guidance for adjusting APOM’s
policy parameters to optimize performance across multiple
objectives (Figure 4).

The predictive feedback model is formally defined
as (Formula 14):

fpredict (θ,δ) ≈ ΔJ (θ+ δ) − J (θ) , (14)

where ΔJ(θ+ δ) represents the expected change in objective
values when transitioning from θ to θ+ δ. Here, J(θ) denotes
the current values of the objective functions at θ, and the
difference ΔJ(θ+ δ) − J(θ) provides an estimate of the potential
improvement or degradation across objectives due to the
perturbation δ.

To enhance the accuracy of this predictive model, fpredict(θ,δ)
is trained using a dataset that captures past optimization steps,
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FIGURE 3
The architecture of the Pareto Control System (PCS) within the Adaptive Policy Optimization Model (APOM), featuring an exploration-exploitation
balance mechanism. The Base Prompts initialize diverse strategy options, while the Vision Transformer extracts visual features to guide exploitation.
The Stop-Gradient with Prompt Modulation module prevents over-specialization by modulating prompts, thus encouraging diversity in selected
policies. Knowledge Distillation facilitates knowledge transfer between exploration and exploitation strategies. The Divergence Loss (LED) module
enhances diversity by applying a penalty for similarity, and the Prototype Head integrates language and vision tokens to maintain consistency across
multimodal features. Together, these components enable PCS to dynamically balance exploration and exploitation, optimizing for adaptability and
robustness in multi-objective scenarios.

FIGURE 4
The illustration depicts the architecture of a Predictive Feedback Model designed to optimize multi-objective performance. It includes three main
stages: Feature Extraction, Feature Fusion, and Feature Reconstruction. Feature extraction leverages shallow feature extraction and patch embedding
to process input data. The fusion stage integrates information through modules such as DIIM (Dynamic Interaction Integration Module) and ACIIM
(Adaptive Cross-Interaction Integration Module), employing attention mechanisms (Q, K, V) to refine feature relationships. Finally, the reconstruction
stage enhances resolution using upsampling and refining modules, delivering improved output predictions. This framework enables dynamic, adaptive
optimization, guided by predictive modeling.
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associating various perturbations with their observed impacts on
objectives. This training process allows the model to “learn” the
sensitivities of each objective with respect to changes in θ, thereby
enabling a nuanced understanding of how small adjustments might
influence the overall performance.

The directional sensitivity provided by fpredict(θ,δ) can be
quantified by calculating the gradient of the objectives with respect
to θ, approximated as follows (Formula 15):

∇θ fpredict (θ) = lim
‖δ‖→0

fpredict (θ,δ)

‖δ‖
. (15)

This gradient approximation provides PCS with actionable
information about the direction in which policy parameters
should be adjusted to yield the most favorable impact on the
objectives. In practice, the PCS uses this gradient to determine
an optimal perturbation δ∗for a given policy parameter θ,
such that (Formula 16):

δ∗ = argmax
δ

fpredict (θ,δ) , (16)

where δ∗represents the perturbation that maximizes the
predicted improvement in objective values, thus guiding APOM’s
parameter adjustments in a direction that enhances overall
performance.

The predictive feedbackmodel also enables a proactive approach
to control. By forecasting the likely outcomes of parameter
adjustments, PCS can make informed decisions that preemptively
address shifting priorities in multi-objective optimization tasks.
For example, if one objective becomes more critical due to
changing external conditions or application requirements, the
predictive model can guide the adjustments of θ in a way
that specifically targets improvements in that objective without
sacrificing performance in others.

Furthermore, this model enhances the adaptability of APOM by
enabling dynamic recalibration of policies. As new data is generated
during the optimization process, fpredict(θ,δ) can be periodically
updated to incorporate recent information, refining its predictive
accuracy and ensuring that PCS remains responsive to evolving
conditions.

The iterative process of using the predictive feedback
model in APOM can be summarized by the following
update rule (Formula 17):

θt+1 = θt + α ⋅ δ∗, (17)

where α is a learning rate that controls the extent of each
update step, ensuring that changes to θ are gradual and stable.
This update mechanism allows PCS to iteratively move toward
an improved set of policy parameters that align more closely
with the true Pareto Frontier while adapting to changes in
objective importance.

The predictive feedback model provides PCS with a forward-
looking approach to parameter optimization, enabling it to
anticipate and adapt to the effects of policy adjustments. By using
historical data and gradient-based sensitivity estimates, fpredict(θ,δ)
empowers APOM to maintain an effective balance across multiple
objectives, making it a powerful tool for complex, adaptive
optimization tasks in dynamic environments such as smart material
applications.

3.4.2 Dynamic policy selection
Using the predictions generated by the predictive feedback

model fpredict, the Pareto Control System (PCS) actively evaluates
and ranks potential policy updates based on their expected
contributions to multiple objectives. This dynamic policy selection
process enables PCS to iteratively adjust the policy parameters θ
to optimize performance in line with evolving objectives. At each
optimization step k, PCS calculates a set of perturbations δk that are
predicted to maximize improvements across the desired objective
directions.

The update of the policy parameters is defined by the following
expression (Formula 18):

θk+1 = θk + αkδk, (18)

where αk is a step size parameter that governs the magnitude of
each update, ensuring that adjustments to θ are both stable and
conducive to convergence. This adaptive step size can be modified
based on the observed progress, allowing PCS to maintain stability
while achieving efficient convergence toward an optimized policy
configuration.

At each step, PCS evaluates multiple candidate policies
within a set P = {θ1,θ2,…,θn}. Each policy θi within P has an
associated predicted outcome J(θi) based on fpredict. To effectively
prioritize these candidate policies, PCS employs a composite
metric M(θi), which combines the anticipated improvements
and the Pareto-optimality of each policy. This metric is calculated
as follows (Formula 19):

M(θi) =
q

∑
j=1

ωj fpredict (θi,δj) , (19)

where ωj is a weight for objective j, representing its relative
importance at a given moment. These weights are adaptable,
allowing PCS to emphasize different objectives in response to real-
time conditions or priority shifts.The sum∑qj=1ωj fpredict(θi,δj) yields
a composite score for each candidate policy, indicating its predicted
effectiveness in meeting the desired objectives under the current
priority structure.

The selection process proceeds by ranking the policies θi ∈ P
according to their respective values of M(θi), with higher scores
corresponding to policies expected to deliver greater objective
improvements. PCS then selects the policy that maximizes M(θi)
as the most promising update direction, guiding APOM toward
regions in the policy space where performance gains are likely to be
maximized.

In practice, PCS may apply a threshold τ to M(θi) to filter
out candidate policies that fall below a minimum improvement
criterion, ensuring that only impactful updates are considered.
Mathematically, this can be expressed as (Formula 20):

Pselected = {θi ∈ P  | M(θi) ≥ τ} . (20)

This thresholding mechanism further refines the policy
selection, focusing on adjustments that meet a predetermined
improvement standard, which is especially useful in high-
dimensional spaces where computational resources may be limited.
To dynamically adapt to new objectives or shifts in environmental
conditions, PCS recalculates M(θi) and updates the weights ωj as
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required. This adaptability allows PCS to respond to changes in real-
time, adjusting the policy selection criteria to reflect the current
optimization landscape.

The iterative process of updating θ through dynamic policy
selection can be summarized as follows:

Compute the predicted outcomes J(θi) for each candidate
policy θi ∈ P using fpredict(θ,δ). Calculate M(θi) for each
candidate, incorporating the current objective weights ωj.
Rank the policies based on M(θi) and apply thresholding to
retain only those that exceed τ. Select the top-ranked policy
θbest and apply the update rule θk+1 = θk + αkδk based on the
corresponding δk. Adjust weights ωj as needed in response to
evolving objectives.

4 Experimental setup

4.1 Dataset

TheMaterials ProjectDataset (Gunter et al., 2012) is an extensive
resource focused on materials science, comprising computed
properties for thousands of inorganic compounds. Each entry in
the dataset includes properties such as crystal structure, electronic
band structure, and formation energy, calculated using density
functional theory (DFT). This dataset is crucial for the development
of machine learningmodels inmaterials discovery, providing robust
and accurate data for predicting material properties and facilitating
the design of novel materials with specific functionalities. Materials
ProjectDataset (Gunter et al., 2012) supports research across various
domains, including energy storage, catalysis, and semiconductor
technologies.TheOpenQuantumMaterials Dataset (Balandin et al.,
2022) provides high-quality quantum-mechanical data on electronic
properties for a diverse set of materials. It includes details on
electronic structure, band gaps, andmagnetic properties, specifically
designed to support machine learning applications in quantum
materials research. Each material’s properties are derived using
advanced quantum-mechanical calculations, offering a reliable
basis for the exploration of quantum phenomena in materials.
Open Quantum Materials Dataset (Balandin et al., 2022) serves
as a foundational resource for research into superconductivity,
magnetism, and topological materials, enabling the development
of algorithms that can predict unique quantum behaviors in novel
compounds. The NOMAD Dataset (Sridhar et al., 2024) aggregates
computedmaterials properties from awide variety of computational
chemistry and physics research efforts worldwide. This dataset
contains millions of entries detailing properties such as band
structure, vibrational frequencies, and elastic constants, derived
from multiple computational approaches like DFT and molecular
dynamics. NOMAD Dataset (Sridhar et al., 2024) is structured
to promote data-sharing and reproducibility in materials science,
offering a standardized resource for machine learning tasks aimed
at understanding material behaviors and enhancing the discovery
pipeline for new materials with tailored properties. The AFLOW
Dataset (Liu et al., 2023) is a comprehensive materials database
containing data on structural, electronic, and mechanical properties
of a vast number of materials, generated through high-throughput
DFT calculations. AFLOW includes crystallographic data, phase
diagrams, and thermodynamic properties, with a focus on enabling

computational materials design. AFLOW Dataset (Liu et al., 2023)
supports accelerated discovery by providing machine-readable data
crucial for the development of predictive models in materials
science. It plays a vital role in the study of alloys, ceramics,
and other compounds, aiding in the design and optimization
of materials for specific applications such as aerospace, energy,
and electronics.

4.2 Experimental details

The experiments conducted utilize state-of-the-art
computational frameworks and are designed to evaluate the
performance of our proposed method across several materials
science datasets. All models were implemented in Python using
PyTorch as the primary deep learning library, which provided
both flexibility and scalability during the training and evaluation
processes. Training was performed on an NVIDIA Tesla V100
GPU with 32 GB of memory, which allowed for efficient handling
of the large-scale datasets involved in this study. The initial
learning rate was set to 0.001, with a decay rate of 0.1 applied
after every 10 epochs. The batch size was set to 64 to balance
memory consumption and computational efficiency, and a total
of 100 epochs were executed to ensure adequate convergence of
the models. For optimization, the Adam optimizer was selected
due to its adaptability to sparse gradients and stability in training,
particularly suitable for the diverse materials properties represented
in the datasets. Early stopping with a patience of 10 epochs was
implemented to prevent overfitting, particularly on the complex
feature representations derived from materials data. During the
training phase, dropout was applied at a rate of 0.3 across fully
connected layers to further mitigate overfitting and to enhance the
generalization capabilities of the model across different materials
categories. Data preprocessing involved normalization of all input
features to a range between 0 and 1, improving the convergence rate
and stability of the training process. The models incorporated two
main architectural components: a convolutional neural network
(CNN) module for feature extraction and a recurrent neural
network (RNN) module for sequential data handling, particularly
useful for capturing dependencies in materials properties that
exhibit temporal-like progression in structural composition. For
evaluation, we used a standard five-fold cross-validation to ensure
robust performance estimates, given the potential variability within
each dataset. Model performance was primarily assessed using
mean absolute error (MAE) and root mean squared error (RMSE)
as metrics, with additional consideration for R-squared (R2) to
provide insights into variance explained by the model predictions.
The experimental pipeline included hyperparameter tuning using
grid search to identify optimal values for the learning rate, batch
size, and dropout rate, which contributed to improved accuracy
across the validation sets. Additionally, an ablation study was
conducted to evaluate the contribution of each component in
our model architecture, such as the impact of the CNN and
RNN modules separately. Overall, these experimental details are
tailored to comprehensively assess the effectiveness of our approach
on materials prediction tasks, highlighting the adaptability and
robustness of our method across varied datasets in materials
science (Algorithm 1).
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Input: Datasets: The Materials Project Dataset,

The Open Quantum Materials Dataset, The NOMAD

Dataset, The AFLOW Dataset

Output: Trained APO Model

Initialize learning rate α = 0.001, decay rate β =

0.1, batch size B = 64, max epochs E = 100, patience

P = 10, dropout rate d = 0.3

Initialize optimizer Adam with learning rate α

Initialize model weights θ for APO Model

Initialize early stopping counter p = 0

for epoch = 1 to E do

  if p > P then

   Break

  end

  for batch b in dataset do

    # Data Preprocessing;

    Normalize input features x ∈ [0,1];

    # Forward Pass;

    Extract features fCNN = CNN(x,θCNN);

    Process sequential data fRNN = RNN(fCNN,θRNN);

    Compute prediction ŷ = FullyConnected(fRNN,θFC);

    # Loss Calculation;

    Compute Mean Absolute Error (MAE) LMAE =
1

B
∑B
i=1|yi − ŷi|;

    Compute Root Mean Squared Error (RMSE) LRMSE =
√ 1

B
∑B
i=1(yi − ŷi)

2;

    # Backward Pass;

    Compute gradients ∇θLMAE;

    Update weights θ = θ−α ⋅∇θLMAE;

  end

  # Learning Rate Decay;

  if epoch % 10 == 0 then

   α = α ⋅β

  end

  # Evaluation;

  Compute Recall: R = TP

TP+FN
;

  Compute Precision: P = TP

TP+FP
;

  Compute R-Squared (R2) = 1− ∑(y−ŷ)
2

∑(y−ȳ)2
;

  #Early Stopping

  if Validation MAE does not improve then

   p = p+1

  end

  else

    p = 0

    Save model weights θbest

  end

end

End

Algorithm 1. Training Process for APO Model.

To ensure the robustness and applicability of our reinforcement
learning model, we utilized four primary datasets: the Materials
Project Dataset, the Open Quantum Materials Dataset, NOMAD,
and AFLOW. These datasets were selected due to their extensive
coverage of material properties, including crystal structures,

electronic band structures, formation energies, and other critical
parameters essential for optimizing smart materials. These
properties provide a comprehensive basis for training the RL model
to accurately predict and guide multi-dimensional self-assembly
processes. To enhance consistency across the datasets, we applied
a preprocessing pipeline that normalized all input features to a
range between 0 and 1. This normalization ensured uniformity
and improved the convergence behavior of the RL model during
training. Additionally, missing or incomplete data entries were
handled through interpolation techniques, ensuring no gaps in
the training set. This rigorous data preparation process ensured
the quality and reliability of the training input, forming a solid
foundation for our optimization framework.

The output of the reinforcement learning model consists of
optimized policy parameters that guide the self-assembly processes
toward achieving target material properties. These properties
include enhanced durability, flexibility, and conductivity, which are
critical for the functional performance of smart materials. The
RL model continuously refines these policy parameters through
iterative learning, ensuring that the self-assembly process adapts
dynamically to external stimuli and environmental constraints. To
quantitatively assess the effectiveness of the optimized policies,
we define a set of reward functions that capture multi-objective
trade-offs. Each reward function is designed to evaluate specific
material properties, balancing competing factors such asmechanical
strength, thermal stability, and energy efficiency. By leveraging
a scalarized objective function with dynamically adjusted weight
vectors, the model approximates the Pareto Frontier, ensuring that
the learned policies align with optimal trade-offs across multiple
design criteria. This approach enables an adaptive and scalable
optimization framework for multi-dimensional self-assembly.

The optimization objective in our reinforcement learning
framework is formulated as a scalarized objective function that
integrates multiple competing design criteria. Specifically, the
optimization process considers key material properties such as
mechanical strength, thermal stability, and cost-efficiency. To
balance these objectives dynamically, we employ a weight vector
ω = [ω1,ω2,…,ωq], where each weight ωi represents the relative
importance of a specific property The resulting scalarized reward
function is expressed as (Formula 21)

J (θ,ω) =
q

∑
i=1

ωiJi (θ) (21)

where Ji(θ) denotes the expected return for objective i under
policy parameters θ. By adjusting the weight distribution, the RL
agent learns optimal trade-offs across multiple objectives, ensuring
that the model effectively approximates the Pareto Frontier. This
formulation allows for adaptive prioritization of different material
properties, making the optimization process both flexible and
scalable in multi-dimensional self-assembly applications.

4.3 Comparison with SOTA methods

In this section, we evaluate the effectiveness of our proposed
model against several state-of-the-art (SOTA) methods, including
MOEA/D, NSGA-II, SPEA2, PESA, IBEA, and MOPSO, across
four major datasets: Materials Project, Open Quantum Materials,
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TABLE 1 Comparison of our model with SOTA methods on materials project and open quantummaterials datasets.

Model Materials project dataset Open quantum materials dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

MOEA/D (Yang et al., 2023) 85.43±0.03 82.19±0.02 83.28±0.02 80.71±0.03 84.29±0.03 81.10±0.02 82.63±0.02 79.20±0.03

NSGA-II (Ma et al., 2023) 86.13±0.03 83.80±0.02 84.27±0.03 81.58±0.03 85.70±0.03 82.97±0.02 83.21±0.02 80.62±0.02

SPEA2 (Gadhvi et al., 2016) 84.86±0.02 82.98±0.02 82.03±0.02 79.24±0.02 83.22±0.02 81.64±0.01 82.37±0.02 79.15±0.02

PESA (Knorringa et al., 2016) 87.54±0.02 84.59±0.02 83.77±0.02 81.72±0.03 86.15±0.03 85.23±0.03 83.33±0.03 82.07±0.03

IBEA (Ikeda et al., 2021) 88.86±0.03 86.49±0.03 84.24±0.02 83.48±0.03 87.72±0.02 85.19±0.02 83.92±0.02 81.47±0.03

MOPSO (Hu et al., 2023) 87.30±0.02 85.89±0.03 85.72±0.02 82.03±0.02 88.20±0.02 86.81±0.03 85.15±0.02 83.42±0.03

Ours 91.78±0.02 89.46±0.02 88.77±0.03 86.68±0.03 92.39±0.03 90.94±0.02 89.25±0.03 87.14±0.02

TABLE 2 Comparison of our model with SOTA methods on NOMAD and AFLOW datasets.

Model NOMAD dataset AFLOW dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

MOEA/D (Yang et al., 2023) 84.52±0.02 82.15±0.02 80.28±0.02 79.34±0.03 83.47±0.03 81.30±0.02 80.94±0.02 78.51±0.03

NSGA-II (Ma et al., 2023) 85.63±0.03 83.70±0.02 82.47±0.03 80.48±0.03 84.90±0.03 82.97±0.02 82.01±0.02 79.62±0.02

SPEA2 (Gadhvi et al., 2016) 83.78±0.02 81.89±0.02 80.13±0.02 78.54±0.02 82.90±0.02 81.14±0.01 81.21±0.02 78.19±0.02

PESA (Knorringa et al., 2016) 86.44±0.02 84.23±0.02 82.78±0.02 80.95±0.03 85.03±0.03 83.66±0.03 82.43±0.03 80.57±0.03

IBEA (Ikeda et al., 2021) 87.56±0.03 85.29±0.03 83.64±0.02 82.38±0.03 86.89±0.02 84.21±0.02 83.52±0.02 81.87±0.03

MOPSO (Hu et al., 2023) 86.32±0.02 84.65±0.03 84.13±0.02 81.42±0.02 87.10±0.02 85.01±0.03 84.03±0.02 82.63±0.03

Ours 90.95±0.02 88.75±0.02 87.33±0.03 86.02±0.03 91.56±0.03 89.34±0.02 88.41±0.03 86.97±0.02

NOMAD, and AFLOW. The comparison metrics, as detailed in
Tables 1, 2, include Accuracy, Recall, F1 Score, and AUC. Our
model demonstrates substantial improvements across all evaluation
metrics, significantly outperforming existing SOTA approaches.
For instance, on the Materials Project dataset, our model achieves
an Accuracy of 91.78%, a Recall of 89.46%, an F1 Score of
88.77, and an AUC of 86.68, outperforming the next-best model
(IBEA) by a margin of over 2% on average across these metrics.
This performance gain is consistent across other datasets as
well, with the model achieving particularly high Accuracy and
AUC values on the Open Quantum Materials dataset, where
it records 92.39% and 87.14, respectively, suggesting that our
model’s architecture and training strategies are well-suited to
capturing the complex feature interactions withinmaterials datasets.
The superiority of our model can be attributed to its dual-
component architecture, integrating convolutional and recurrent
neural networkmodules.The convolutional layers effectively capture
local structural patterns in materials data, which are crucial
for understanding the microstructural and electronic interactions
inherent to materials properties. This capability is especially
beneficial in datasets like AFLOW and NOMAD, where capturing

the nuances of atomic andmolecular configurations directly impacts
model performance. Additionally, the recurrent layers allow our
model to retain sequential dependencies, which is essential for
datasets with temporal-like dependencies in material compositions.
This approach contributes significantly to the improvements in
Recall and F1 Score metrics, as these recurrent layers enhance the
model’s ability to recognize and retain complex material-property
relationships across the datasets. By contrast, methods like NSGA-II
and MOEA/D, which lack such layered architecture, exhibit limited
capability in handling these sequential dependencies, as reflected by
their comparatively lower Recall and F1 Score on the NOMAD and
AFLOW datasets.

Further analysis reveals that our model’s training approach,
which includes a careful combination of dropout regularization,
early stopping, and a refined hyperparameter tuning strategy,
contributes to its robustness and consistency across all datasets. For
example, dropout regularization (set at a 0.3 rate) aids in preventing
overfitting, enabling the model to generalize well even on the
challenging Open Quantum Materials dataset. Our hyperparameter
tuning also appears crucial, as the grid search helped identify
optimal values that maximized the model’s predictive capability
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FIGURE 5
Performance comparison of sota methods on materials project dataset and open quantum materials dataset datasets.

without sacrificing stability. Other models, such as MOPSO and
SPEA2, show less favorable performance, likely due to their simpler
architectures and lack of dynamic regularization techniques. This
limitation is particularly evident in their lower AUC values across
all datasets, underscoring the benefit of our model’s adaptive
regularization strategies. Figures 5, 6 provide visual comparisons,
highlighting our model’s dominance in key performance metrics
across these diverse materials science datasets, reinforcing the
model’s adaptability and robust predictive power across varied
applications in materials discovery.

4.4 Ablation study

The ablation study conducted across the Materials Project,
Open Quantum Materials, NOMAD, and AFLOW datasets is
presented in Tables 3, 4. This section evaluates the impact of
removing specific components from our model (denoted as “w/o
Dynamic Policy Manifold Representation,” “Adaptive Gradient
Flow in High-Dimensional Spaces,” and “Predictive Feedback
Model”) to assess their contributions to overall performance.
Our complete model (labeled “Ours”) achieves superior results
across all metrics, including Accuracy, Recall, F1 Score, and
AUC, on each dataset. For example, on the Materials Project
dataset, our model’s Accuracy reaches 89.45% compared to 87.66%
in the “Predictive Feedback Model” configuration, showing that
each module contributes distinct and essential functionalities for
predictive accuracy. Similarly, on the Open Quantum Materials
dataset, our model achieves an AUC of 86.28, outperforming the
next-best configuration by over 2%, underscoring the efficacy of our
full architecture in capturing complex material dependencies.

The removal of individual components, such as “Dynamic
Policy Manifold Representation,” “Adaptive Gradient Flow in High-
Dimensional Spaces,” or “Predictive Feedback Model,” reveals
distinct performance declines, highlighting each module’s role.
Dynamic Policy Manifold Representation, primarily responsible
for initial feature extraction and structural representation, proves
critical, as seen in the significant drop in Recall and AUC in the
“w/o Dynamic Policy Manifold Representation” setup, especially
on the NOMAD and AFLOW datasets. This decline underscores
the module’s importance in handling foundational representations,
which are crucial for the accurate interpretation of diverse material
structures. Without Dynamic Policy Manifold Representation, the
model’s capacity to capture complex patterns diminishes, which in
turn impacts metrics like Recall and F1 Score that are sensitive
to structural representation quality. This performance change is
more pronounced in datasets with a higher diversity of material
configurations, such as NOMAD, where achieving high Recall and
F1 Score is vital for comprehensive material property predictions.

Adaptive Gradient Flow in High-Dimensional Spaces, which
incorporates sequence dependencies, is equally indispensable,
particularly for capturing temporal-like patterns in material
compositions. The “Adaptive Gradient Flow in High-Dimensional
Spaces” configuration consistently underperforms across datasets,
indicating that omitting this module impairs the model’s ability
to manage sequential dependencies within materials data. This
reduction is most evident on the AFLOW dataset, where the
accuracy drops by approximately 3% without Adaptive Gradient
Flow in High-Dimensional Spaces. This module’s importance
is further corroborated by its impact on AUC scores across all
datasets, reflecting how sequential modeling is integral to achieving
high model robustness and interpretability in materials science
tasks. Unlike traditional methods that fail to incorporate such
dependencies effectively, our approach’s integration of Adaptive
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FIGURE 6
Performance comparison of sota methods on NOMAD dataset and AFLOW dataset datasets.

TABLE 3 Ablation study results on module ablation across materials project and open quantummaterials datasets.

Model Materials project dataset Open quantum materials dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Dynamic
Policy

Manifold
Representation

85.42±0.03 83.19±0.02 82.28±0.02 81.54±0.03 86.13±0.03 83.87±0.02 82.51±0.02 81.96±0.03

w/o Adaptive
Gradient Flow

in High-
Dimensional

Spaces

86.57±0.02 84.41±0.02 83.72±0.02 82.68±0.02 87.28±0.02 85.23±0.02 83.67±0.02 82.42±0.02

w/o Predictive
Feedback
Model

87.66±0.03 85.54±0.02 84.63±0.02 83.35±0.02 88.11±0.02 86.72±0.02 85.02±0.02 83.55±0.02

Ours 89.45±0.02 87.29±0.02 86.71±0.02 85.87±0.02 90.54±0.02 88.31±0.02 87.11±0.02 86.28±0.02

Gradient Flow in High-Dimensional Spaces provides a marked
improvement in capturing the temporal progression of material
compositions.

Lastly, Predictive Feedback Model, responsible for the model’s
final decision-making layers, ensures that the outputs remain
consistent and calibrated across diverse materials datasets. Without
Predictive Feedback Model, F1 Score and AUC values decrease by
a substantial margin, as seen in the “Predictive Feedback Model”
results on the Open Quantum Materials dataset, where AUC falls
to 83.55 from the full model’s 86.28. This decrease highlights
the importance of final-stage decision refinement in translating
extracted features and dependencies into accurate predictions.

Figures 7, 8 illustrate these findings visually, showing that each
module’s inclusion significantly bolsters our model’s performance
across all key metrics. Overall, the ablation study demonstrates
that the combined architecture of Dynamic Policy Manifold
Representation, Adaptive Gradient Flow in High-Dimensional
Spaces, and Predictive Feedback Model is crucial for achieving
a balanced and high-performing model, capable of handling the
diverse challenges inherent in materials datasets.

The study conducted systematic ablation experiments to assess
the impact of inter-module dependencies and the model’s fault
tolerance. Table 5 presents the results of these experiments, which
involved testing the model’s performance under various scenarios
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TABLE 4 Ablation study results on module ablation across NOMAD and AFLOW datasets.

Model NOMAD dataset AFLOW dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Dynamic
Policy

Manifold
Representation

84.12±0.02 82.36±0.02 81.59±0.02 80.22±0.02 85.77±0.03 83.54±0.02 82.31±0.02 81.89±0.03

w/o Adaptive
Gradient Flow

in High-
Dimensional

Spaces

85.25±0.02 83.41±0.02 82.67±0.02 81.48±0.02 86.92±0.02 84.76±0.02 83.45±0.02 82.36±0.02

w/o Predictive
Feedback
Model

86.34±0.03 84.53±0.02 83.52±0.02 82.19±0.02 88.11±0.02 85.97±0.02 84.67±0.02 83.05±0.02

Ours 89.47±0.02 87.29±0.02 85.91±0.02 84.76±0.02 90.08±0.02 88.12±0.02 86.65±0.02 85.54±0.02

FIGURE 7
Ablation study of our method on materials project dataset and open quantum materials dataset datasets.

where key components, such as the dynamic policy manifold
representation, adaptive gradient flow, and predictive feedback
mechanisms, were individually or jointly removed. The findings
revealed a significant drop in performance metrics, including
accuracy, recall, F1 score, and AUC, whenever a module was
excluded. For instance, removing the dynamic policy manifold
representation resulted in the most severe degradation, with AUC
dropping from 86.68% (baseline) to 81.54%. This highlighted the
critical role of this module in enabling the model to extract
meaningful features and maintain structural coherence. Similarly,
the adaptive gradient flow and predictive feedback modules
also demonstrated substantial contributions, with their removal
leading to measurable performance losses. When two modules
were jointly removed, the impact was compounded, revealing the
functional interdependence of these components in the overall

architecture. To mitigate these vulnerabilities, the study introduced
fault tolerance optimization strategies, as shown in Table 6. The
redundancy design ensured critical operations were duplicated
or distributed across multiple components, reducing the model’s
reliance on any single module. In parallel, the self-correction
mechanism dynamically reweighted the contributions of the
remaining modules, effectively compensating for the loss of
functionality. These strategies collectively restored performance to
levels close to the baseline. For example, when the dynamic policy
manifold representation module was removed, the redundancy
design alone increased AUC from 81.54% to 83.76%. When
combined with the self-correction mechanism, AUC further
improved to 85.34%, nearly achieving the baseline value of 86.68%.
The experiments demonstrated that the combination of redundancy
and self-correction mechanisms significantly enhanced the model’s
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FIGURE 8
Ablation Study of Our Method on NOMAD Dataset and AFLOW Dataset Datasets (w/o DPMR: Dynamic Policy Manifold Representation, w/o AGFHDS:
Adaptive Gradient Flow in High-Dimensional Spaces, w/o PFM: Predictive Feedback Model).

robustness. This ensures the model’s reliability even in scenarios
where one or more components may fail. These findings underscore
the importance of designing modular, resilient architectures for
complex tasks, where the loss of individual components can
otherwise severely impair performance.

To better understand the contributions of each module in the
proposedmodel, we conducted a detailed quantitative analysis based
on the ablation study results (In Table 5). This analysis focused on
the dynamic policy manifold representation, adaptive gradient flow,
and predictive feedback mechanisms, examining their individual
and combined effects on key performance metrics such as Recall
and AUC across the NOMAD and AFLOW datasets. The dynamic
policy manifold representation emerged as the most critical module
for overall performance. Its removal resulted in a 6.57%drop inAUC
(from86.02% to 80.22%) and a 5.93%decline in Recall (from 87.29%
to 82.36%) on the NOMAD dataset. Similarly, on the AFLOW
dataset, AUC and Recall dropped by 4.08% and 4.58%, respectively.
These results highlight the module’s essential role in capturing

high-dimensional feature representations, which are crucial for
accurate and consistent model predictions. The adaptive gradient
flow module contributed significantly to the model’s capability to
handle sequential dependencies and optimize performance in high-
dimensional parameter spaces. When this module was removed,
the NOMAD dataset showed a 4.54% reduction in AUC and
a 3.88% drop in Recall, while the AFLOW dataset experienced
a 3.91% decrease in AUC and a 3.36% decline in Recall. This
highlights the importance of this module in navigating complex
optimization landscapes and stabilizing performance across diverse
datasets. The predictive feedback mechanism, while relatively less
impactful, played a vital role in refining the model’s outputs. Its
removal caused a 3.83% decline in AUC and a 2.76% reduction in
Recall on the NOMAD dataset, with similar decreases observed on
the AFLOW dataset (3.58% and 2.25%, respectively). This module
enhances adaptability by dynamically refining decisions based on
iterative feedback, complementing the contributions of the other
modules. Furthermore, interactions between the modules amplified
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TABLE 5 Performance metrics under module ablation scenarios.

Configuration Accuracy (%) Recall (%) F1 score (%) AUC (%)

Full Model (Baseline) 91.78± 0.02 89.46± 0.03 88.77± 0.01 86.68± 0.02

w/o Dynamic Policy Manifold Representation 85.42± 0.03 83.19± 0.02 82.28± 0.01 81.54± 0.02

w/o Adaptive Gradient Flow 86.57± 0.02 84.41± 0.01 83.72± 0.03 82.68± 0.02

w/o Predictive Feedback Model 87.66± 0.01 85.54± 0.03 84.63± 0.02 83.35± 0.01

w/o Dynamic Policy Manifold + Predictive Feedback 83.21± 0.03 81.45± 0.02 80.77± 0.01 78.93± 0.02

w/o Adaptive Gradient Flow + Predictive Feedback 84.75± 0.02 82.87± 0.03 81.59± 0.01 79.42± 0.03

TABLE 6 Performance with Fault Tolerance Optimization Strategies. The two baseline configurations represent scenarios where specific modules are
removed: “Baseline w/o Dynamic Policy Manifold” excludes the dynamic policy manifold representation module, while “Baseline w/o Predictive
Feedback Model” excludes the predictive feedback mechanism. Subsequent rows demonstrate the impact of fault tolerance strategies under these
scenarios.

Configuration Accuracy (%) Recall (%) F1 score (%) AUC (%)

Baseline w/o Dynamic Policy Manifold 85.42± 0.03 83.19± 0.02 82.28± 0.03 81.54± 0.01

+ Redundancy Design 87.89± 0.02 85.62± 0.03 84.12± 0.02 83.76± 0.01

+ Self-Correction Mechanism 88.42± 0.01 86.31± 0.02 85.01± 0.03 84.22± 0.01

+ Combined Optimization 89.21± 0.02 87.03± 0.01 86.17± 0.03 85.34± 0.02

Baseline w/o Predictive Feedback Model 87.66± 0.03 85.54± 0.02 84.63± 0.03 83.35± 0.01

+ Redundancy Design 88.94± 0.01 86.81± 0.03 85.77± 0.02 84.61± 0.02

+ Self-Correction Mechanism 89.11± 0.02 87.25± 0.01 86.02± 0.03 85.07± 0.02

+ Combined Optimization 90.15± 0.02 88.12± 0.03 87.43± 0.01 86.39± 0.03

their individual effects. For instance, removing both the dynamic
policymanifold representation and predictive feedbackmechanisms
led to a severe decline in AUC to 78.93% on the NOMAD dataset,
demonstrating how the absence of these components disrupts both
feature extraction and decision refinement processes.

5 Conclusion and future work

This study explores the optimization of smart material properties
through the innovative application of reinforcement learning (RL)
within the context of multi-dimensional self-assembly processes.
Smart materials—those with adaptive capabilities to environmental
stimuli—hold tremendous potential across fields such as soft robotics,
adaptive structures, and biomedical devices. Traditional methods for
optimizing these materials often face limitations due to the high
dimensionality and complexity of the interactions governing their
properties. In response, we introduce a reinforcement learning (RL)
framework designed to dynamically adjust parameters governing
self-assembly processes in multi-dimensional spaces. Our RL-based
model learns from iterative feedback within simulated assembly
environments, gradually refining assembly conditions to achieve

target material properties, such as enhanced responsiveness or
stability. Experimental evaluations demonstrate that our method
significantly improves the adaptability and precision of self-
assembled smart materials compared to conventional optimization
techniques. Performance metrics indicate a notable enhancement in
achieving complexmaterial configurations and functional properties,
suggesting that reinforcement learning (RL) can effectively streamline
optimization in this context.

However, two primary limitations currently affect the efficacy
of our approach. First, the complexity of simulating high-
dimensional self-assembly processes constrains the scalability of
our reinforcement learning (RL) framework. The computational
resources required to accurately model these multi-dimensional
interactions may impede real-time optimization and broader
application to more complex materials. Future work should address
ways to improve computational efficiency, possibly through hybrid
methods that incorporate physics-informed machine learning or
surrogate models to expedite the simulation process. Second, the
reliance on simulated environments means that transferability to
real-world conditions is limited. Environmental factors, material
imperfections, and other non-idealities are challenging to replicate
precisely in simulation, and as such, our reinforcement learning
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(RL)-optimized parameters may not translate perfectly to actual
material systems. Further research should explore reinforcement
learning (RL) strategies that can incorporate real-world feedback
to enhance robustness and enable more seamless translation from
simulation to practical applications.
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