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This study investigates the efficacy of synthesized corrosion inhibitors
and evaluates them for microbial influenced corrosion (MIC) control in
carbon steel API 5LX80 induced by Pseudomonas aeruginosa in 3.5 wt%
NaCl. Tetrabromophthalic-based inhibitors (TBIs) have been synthesised and
ascertained on the basis of spectral measurements determined by Fourier
transform infrared spectroscopy (FTIR) and systematically evaluated forMIC. The
results showed that this TBI effectively reduced biofilm formation at 200 ppm.
FTIR and X-ray diffraction (XRD) observations confirmed that adsorption of a
protective film over the surface of metal inhibited bacterial growth. FTIR analysis
revealed the adhesion of the inhibitor over themetal surface. Polarization studies
indicated that this inhibitor 1 decreased the corrosion current densities (1.4588
× 10−4A/cm2) by a mixed-mode mechanism (both anodic and cathodic) and
exhibited 75% corrosion inhibition efficiency. Thus, the present investigation
has gained significance in reporting about novel corrosion inhibitors possessing
biocidal activity to control MIC in API 5LX80 carbon steel used in oil and pipeline
transporting properties.

KEYWORDS

Pseudomonas aeruginosa, microbial influenced corrosion, corrosion inhibitor, carbon
steel API 5LX80, modified tetrabromophthalic compounds

Introduction

Microbial influenced corrosion (MIC), is a type of corrosion which is generally formed
by the secretion of extracellular polymeric substances (EPS) by microorganisms, resulting
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in a distraction caused by the microorganisms by producing a
biofilm layer on the metal surface (Liu et al., 2018; Liu et al.,
2016; Jia et al., 2017a). MIC was identified more than hundred
years ago (Gaines, 1910). MIC often takes place in various
environments, including gas and oil industries, marine settings,
cooling water system (Jia et al., 2018a), and healthcare facilities.
MIC is defined as the breakdown of metals induced by microbes
like bacteria (Little et al., 2020), fungi (Rajasekar et al., 2009;
Obot et al., 2009), and archaea, which exhibit a direct interaction
with the surface of the metals. Through the development of
biofilm layers, MIC may change the electrochemical conditions
at the metal/solution interface (Salgar-Chaparro et al., 2020).
According to estimates, MIC is liable for 20%–30% of all external
corrosion issues and nearly 40% of interior corrosion issues in
pipelines. Carbon steel has been highly used as pipeline materials
in the gas and oil industries (Wolodko et al., 2018). A significant
amount of MIC is caused by localized attacks, exhibiting extensive
penetration into the base metal (Usher et al., 2014). Corrosion
has serious negative impacts on the environment, human health,
finances, and even a company’s brand. Plans for managing industry
risks and assessing equipment and facilities are put into place
to protect them, but maintaining control over MIC is difficult
due to its complexity and unpredictability. Since microorganisms
were first linked to the corrosion process, several molecular
mechanisms have been proposed (Li X. L. et al., 2018; Salgar-
Chaparro et al., 2022). MIC mechanisms are generally classified
into two predominant categories, namely, extracellular electron
transfer MIC (EET-MIC), which occurs when microbial cells
directly or indirectly take up the electron sources from the
metallic material, and chemical MIC (CMIC), which arises from
corrosive metabolites released by microbes during their metabolic
activity (Su et al., 2020). Microorganisms can further accelerate
the corrosion through other mechanisms or disrupt the protective
layer on the surface of the metal (Dou et al., 2019). MIC has
been associated with several types of microorganisms such as
iron-oxidising bacteria (Wang et al., 2014; Liu et al., 2017), iron-
reducing bacteria (Su et al., 2023), acid-producing bacteria (Gu,
2014), and sulphate-reducing bacteria (Jia et al., 2018b). Tetrabromo
derivatives are increasingly recognized for their effectiveness as
corrosion inhibitors, particularly in harsh environments like acidic
and saline media. These compounds exhibit strong adsorption
properties due to their higher electron density, which allows
them to form stable protective films on the metal surface. The
adsorption of tetrabromophthalic compounds shows potential to
decrease the corrosion rate by inhibiting access to the active sites
on the metallic surface, thus lowering the corrosion current and
increasing the charge transfer resistance (Rct) (Vignesh et al.,
2024). Additionally, the halogen atoms in tetrabromo derivatives
enhance the inhibition efficiency by promoting stronger chemical
interactions with the metal, making them promising candidates for
industrial corrosion protection (El-Aouni et al., 2023). For corrosion
protection, inhibitors are used to reduce metal degradation, and
they form protective barriers that prevent microorganisms from
contacting the metal or inhibit the formation of biofilm (Li et al.,
2024). In the present study, we develop the significant and cheapest
alternative anti-corrosion agent to control severe biocorrosion.
Hence, the TBI inhibitor was synthesised and employed as biocide
to inhibit Pseudomonas aeruginosa biofilm formation on carbon

steel. Organic corrosion inhibitors are essential in many industrial
applications for mitigating the detrimental effects of corrosion.

Materials and methods

Materials and reagents

The starting materials, tetrabromophthalic anhydride (TBPA),
and different amino acids such as glycine, valine, and phenylalanine
were purchased from Sigma-Aldrich, India. Glacial acetic acid,
ethanol, and acetone were used as the solvent, and reagents
were obtained from TCI, Merck, and Avra Chemical Company
from India. The Fourier transform infrared spectroscopy (FTIR)
spectrum was recorded using an FTIR spectrometer (JASCO) in the
region of 400–4000 cm−1. The proton nuclear magnetic resonance
(1HNMR) spectrum was recorded with a Bruker 400 spectrometer
using d-CHCl3 as a solvent and TMS as the internal reference.

Synthesis of N-substituted
tetrabromophthalic compounds (I–III)

The starting materials, name, and molecular structure of the
synthesised compounds are given in Schemes 1, 2. The general
synthetic pathway of compounds 01–03 is shown in Scheme 2. The
procedure of the synthesis of compounds (01–03) was adopted
from the reported literature and synthesized compound was
shown in Scheme 3 (Tagle et al., 2015; Swathi et al., 2019). The
calculated amount of TBPA (0.001 mol) was taken in a round-
bottom (RB) flask with 30 mL of glacial acetic acid; then, it was
stirred for approximately 30 min to dissolve TBPA in glacial acetic
acid. A stoichiometric equivalent amount of 1) valine (0.1400 g,
0.001 mol), 2) glycine (0.1300 g, 0.001 mol), and 3) phenylalanine
(0.1900 g, 0.001 mol) in glacial acetic acid was prepared. These
solutions (amino acids) were added dropwise into the round-
bottom (RB) flask containing a solution of TBPA. Then, the reaction
mixture was stirred for 12 h under gentle reflux conditions. Finally,
the reaction mixture was cooled, and acetic acid was removed
under vacuum. The obtained solid was neutralized, filtered, and
washed several times with water. The obtained compound was
dried under vacuum, recrystallized, and then used for further
investigation.

Bacterial strain and culture conditions

Previously isolated P. aeruginosa SKR10 from the wastewater
of the industrial cooling tower by Kokilaramani et al. (2020) was
used in this research project. The strain was identified through 16S
rRNA sequencing and has been recorded in the NCBI GenBank
with the accession number MT211518.1. The strain was retrieved
from the glycerol stocks by subculture using the Luria-Bertani (LB)
agar medium and incubated at 37°C for 24 h. A robust bacterial
culture was then grown from a single colony in Luria-Bertani (LB)
broth, which was placed in an orbital motion shaker with agitation
at 150 rpm for 24 h at 37°C (Parthipan et al., 2021; Jia et al., 2017b).
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SCHEME 1
Molecular structure of starting materials: 1) tetrabromophthalic
anhydride; 2) valine; 3) glycine; 4) phenylalanine.

Well diffusion method

The antibacterial study of the synthesised inhibitor against the
corrosion-inducive bacteria P. aeruginosa SKR10 was determined
using the agar diffusion technique (Jung et al., 2022). Mueller
Hinton Agar (Himedia) was used to determine the antimicrobial
activity of the three synthesised inhibitors (In 1-TB-1,3-DOIBA,
In 2-TB1,3DOIAA, and In 3-TB1,3DOIPA) and was added to
the individual well at various concentrations (50, 100, 150,
and 200 ppm) (Li Y. et al., 2018).Thenegative/positive control of this
experiment was performed using deionised water and gentamycin.
After 24 h of treatment, the average diameter of the inhibition zone
surrounding the disc was measured using a ruler in millimetres
(mm) to assess the toxicity.

Biofilm inhibitory assay

To determine the biofilm inhibitory effects of synthetic
corrosion inhibitors (In - TB-1,3-DOIBA, In 2 - TB1,3DOIAA,
and In 3 - TB1,3DOIPA) by the corrosion-causing bacterium P.
aeruginosa SKR10, the bacterial isolates of interest were cultured
in LB broth medium, followed by a 24-h incubation period at
37°C. The cultures were diluted to achieve a specific optical
density (OD600) of 0.1, which corresponds to approximately 1 ×
108 CFU/mL (Lee et al., 2024). Further dilution achieved a final
concentration of 1 × 106 CFU/mL for biofilm formation assays. The
suppression of biofilm development was assessed using a microtiter
plate method; sterile polystyrene microtiter plates were filled with
the bacterial suspension along with different concentrations of the
inhibitors (50 ppm, 100 ppm, and 200 ppm) (Narenkumar et al.,
2016). Control wells contained the same culture broth without
inhibitors; the sterile 96-well plate was incubated at 37°C for
24 h, and the suspended growth medium was removed; then, the

plates were washed using PBS, and after removing the suspended
growth media, PBS was used to wash the sterile 96-well plate.
Subsequently, 120 µL of the crystal violet solution was added to
each well, and they were left to stand for 20 min. Following this,
125 µL of acetic acid was added to each well, and the mixture was
then incubated for further 15 min at 37°C. Finally, the amount of
biofilms produced was measured using a microplate reader at an
absorbance of 595 nm (Ibrahim et al., 2022).

Coupon preparation

In this study, API 5LX80 carbon steel was used to evaluate
MIC. The chemical composition of API 5LX80 is as follows (wt%):
Cr, 0.03; C, 0.070; Ni, 0.02; Al, 0.029; Cu, 0.05; Mn, 1.05; and Si,
0.195, balanced with Fe suspension. The rectangular coupons have
a 1 cm2 exposed surface area, which is utilized for electrochemical
impedance spectroscopy (EIS) and Tafel polarization. Similarly,
2.5 cm2 was used for weight loss analysis (Abdallah et al., 2018).
All the specimens were polished with 600, 800, 1,000, and
1,200 grit of silicon carbide metallurgical paper; the polished
specimens were thoroughly rinsed with Milli-Q water, degreased
in acetone, and dried in a nitrogen gas stream before storing it
in a desiccator until further use; then, the coupons were weighed
and exposed to 15 min of ultraviolet (UV) light before immersion
(Parthipan et al., 2017; Katara et al., 2008).

Weight loss analysis

The initial weight of the triplicated coupons was recorded
prior to immersion in the corrosive solution of 3.5 wt.% NaCl.
In order to calculate the weight elimination of those corrosion
systems that were carried out in triplicate, the carbon steel API
5LX80 coupons were placed on a 500-mL conical flask containing
400 mL of 3.5 wt.% NaCl medium. System 1 acts on abiotic control,
and system 2 acts on biotic control with the P. aeruginosa SKR10
inoculum (approximately 104 CFU/mL). Systems 3, 4, and 5 were
added with 200 ppm of inhibitors. Similarly, systems 6, 7, and 8
were added with 200 ppm of inhibitors and additionally inoculated
with P. aeruginosa SKR10 at a concentration of approximately
2.2 × 106 CFU/mL (Kokilaramani et al., 2022). These corrosion
systems were maintained at an identical temperature of 37°C for
7 days without any interruptions. The coupons were acquired and
subsequently subjected to pickling treatment in Clark’s solution,
consisting of 5% of stannous chloride and 2% antimony trioxide
dissolved in concentrated hydrochloric acid (HCl) with continuous
agitation at room temperature for 5–10 min, prior to being
rinsed with double-distilled water and dried with an air dryer
(Rajasekar et al., 2011). Finally, all coupons’ weight was recorded,
and the corrosion rates (Equation 1) were determined in accordance
with the standards provided by the National Association of
Corrosion Engineers.

Equation 1 is expressed as follows:

CorrosionRate (mmy) =
K∗Wl (g)

D( g
cm2 ) ∗A(cm

2) ∗T(hrs)
, (1)

Frontiers in Materials 03 frontiersin.org

https://doi.org/10.3389/fmats.2025.1508966
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Vignesh et al. 10.3389/fmats.2025.1508966

SCHEME 2
General representation of the synthesis of compounds: I–III.

SCHEME 3
Molecular structure of synthesized compounds I–III.

where K = 8.76 × 104;Wl = weight loss (g);mmy = corrosion
rate (millimetre per year penetration);D = density of metal
(g/cm3);A = exposure area (cm2); T = exposure time in a corrosive
environment (hrs).

Electrochemical measurements

The electrochemical analyses, including electrochemical
impedance spectroscopy (EIS) and polarization studies, were
conducted using the Metrohm Autolab instrument (PGSTAT204),

Netherlands, coupled with Nova 2.1.7 software. All the
electrochemical analyses were performed under a conventional
three-electrode configuration assembly: the reference electrode
was Ag/AgCl (3M KCl), the working electrode was composed of
API 5LX80 carbon steel coupon, and platinum mesh was used
as the counter electrode. EIS was performed at the open-circuit
potential (OCP) using a 10 mV sinusoidal voltage signal with a
frequency range of 10−2–105 Hz (Wang et al., 2018), employing a
scanning rate of 0.010 V/min (Liu et al., 2015). Potentiodynamic
polarization analysis was performed: anodic polarization up to
+200 mV and cathodic polarization down to −200 mV were
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executed at a scanning rate of 0.002 V/s relative to the corrosion
potential (Ecorr).

Fourier transform infrared spectroscopy
analysis

To confirm the functional constituents, the corrosion
product was collected after the weight loss measurement study.
The corrosion product was adequately dried and kept in the
desiccated specimens were homogenized with potassium bromide
(KBr) to create pellets of uniform shape and composition. The
pellets were subjected to FT-IR spectroscopy (Version 10.6.0
of the PerkinElmer Spectrum IR) analysis within the wave
number of 400–4,000 cm−1, employing an 8 cm−1 resolution and
conducting 64 scans per spectrum to achieve comprehensive
characterization (Kashyap et al., 2022).

X-ray diffraction analysis

The carbon steel API 5LX80 corrosion products from the
systems S1 to S8 were subjected to XRD analysis using a
Bruker D8 instrument equipped with a LynxEye and scintillation
counter detector. The analysis spanned an angular range
of 5–140°, with X-ray tube settings at 40-kV and 30-kV
power levels (Muthukrishnan et al., 2017).

Results and discussion

Fourier transform infrared spectroscopy
analysis of synthesised compounds

The FTIR spectra of synthesised compounds are shown in
Figure 1 I: 3-methyl-2-(4, 5, 6, 7-tetrabromo-1, 3-dioxoisoindolin-
2-yl) butanoic acid (TB-1, 3-DOIBA); II: 2-(4, 5, 6, 7-tetrabromo-
1, 3-dioxoisoindolin-2-yl) acetic acid (TB1, 3DOIAA); and
III: (S)-3-phenyl-2-(4, 5, 6, 7-tetrabromo-1, 3-dioxoisoindolin-
2-yl) propanoic acid (TB1, 3DOIPA); compound functional
groups and their relevant stretching frequencies are presented
in Table 1.

Well diffusion method

The antibacterial activities of the synthesized inhibitors
(TB-1,3-DOIBA, TB1,3DOIAA, and TB1,3DOIPA) assessed
using the well diffusion technique at various concentrations
(50, 100, 150, and 200 ppm) were tested. The synthesised
inhibitors showed the highest zones of inhibition observed at
an optimum concentration of 200 ppm at 2.92 ± 0.1 mm, 2.31
± 0.1 mm, and 0.92 ± 0.1 mm in TB-1,3-DOIBA, TB1,3DOIPA,
and TB1,3DOIAA, respectively. The inhibitors were extremely
efficient against the P. aeruginosa SKR10 bacteria at 200
ppm of TB-1,3-DOIBA and TB1,3DOIPA, which suppressed
the bacterial growth rate in a random manner over other
concentrations (Kokilaramani et al., 2021).

FIGURE 1
FTIR spectrum of synthesised compounds, SS-01 (TB-1, 3-DOIBA),
SS-02 (TB1, 3DOIAA), and SS-03 (TB1, 3DOIPA).

Biofilm inhibitory assay

The biofilm assay of TBI synthesised inhibitors at various
concentrations of 50, 100, and 200 ppm was chosen to assess the
biofilm inhibition efficiency against strain P. aeruginosa SKR10
with the crystal violet method. The inhibition efficiencies of
inhibitors 1 to 3 were 79.6%, 42.7%, and 71%, respectively. As
illustrated in Figure 2, the inhibitors significantly reduced the
biofilm growth on well surfaces at the optimum concentration
of 200 ppm. The prominent violet colour variations in the
wells reveal the biofilm’s retention of the crystal violet dye,
which are due to the extensive stacking of biofilm structures.
This occurrence demonstrates the potential of inhibitors to
inhibit the formation of EPS, such as proteins, lipids, and
carbohydrates (Qi et al., 2024). This inhibition of EPS production
was crucial as these substances play a vital role in the formation
of biofilm and stability. Hence, the ability of inhibitors to
disrupt EPS production indicated a possibility for inhibiting
biofilm efficiencies. Based on the biofilm assay, all the three
inhibitors were further chosen for biocorrosion evaluation of carbon
steel API 5LX80.

Weight loss analysis

In order to describe the corrosion behaviour of carbon steel
API 5LX80 induced by strain P. aeruginosa SKR10, the average
corrosion rates and the weight loss of specimens with and without
the presence of P. aeruginosa and the inhibitors were determined
from the obtained weight loss experiment results. Table 2 shows
the specimens’ weight loss and corrosion rates during a 7-day
period with and without the presence of P. aeruginosa SKR10,
and Figure 3 shows before and after immersion of carbon steel
API 5LX80. In the abiotic and biotic systems, S1 and S2 exhibit
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TABLE 1 FTIR spectrum results of synthesised compounds.

Molecular structure and code Functional group Assigned stretching frequency (cm−1)

TB-1, 3-DOIBA

-C-Br group (aromatic) 1,093 and 1,163

-C= O group 1,715

-C-N-C 1,267

Aromatic ring: C=C; =C-H (stretch, sp2) 1,382; 2,969

Acidic group: (O-H); (C=O) 3,463 and 1781

TB1, 3DOIAA

-C-Br group (aromatic) 1,058 and 1,123

-C= O group 1,716

-C-N-C 1,263

Aromatic ring: C=C; =C-H (stretch, sp2) 1,418; 2,984

Acidic group: (O-H); (C=O) 3,468 and 1,781

TB1, 3DOIPA

-C-Br group (aromatic) 1,118 and 1,163

-C= O group 1,722

-C-N-C 1,267

Aromatic ring: C=C; =C-H (stretch, sp2) 1,382; 2,969

Acidic group: (O-H); (C=O) 3,478 & 1,781

FIGURE 2
Biofilm assay of P. aeruginosa in the presence of inhibitors at various concentrations.
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TABLE 2 Weight loss analysis of carbon steel API 5LX80 in the presence and absence of P. aeruginosa and inhibitors. S1—Abiotic, S2—Biotic,
S3—Inhibitor 1, S4—Inhibitor 2, S5—Inhibitor 3, S6—P. aeruginosawith S3, S7—P. aeruginosawith S4, and S8—P. aeruginosawith S5.

System Average weight loss (mg) Corrosion rate (mm/y) Inhibition efficiency [IE (%)]

S1 74.9 ± 1.5 4.95 ± 0.1 —

S2 96.2 ± 0.5 6.36 ± 0.1 —

S3 18.8 ± 1.5 1.25 ± 0.1 75

S4 38.2 ± 0.5 2.52 ± 0.1 49

S5 28.8 ± 2.0 1.91 ± 0.1 61

S6 36.7 ± 1.5 2.43 ± 0.1 62

S7 54.2 ± 0.5 3.58 ± 0.1 44

S8 46.0 ± 2.0 3.04 ± 0.1 52

FIGURE 3
Image shows the carbon steel API 5LX80 coupons after the corrosion studies at a period of 7 days. (A) Before immersion. (B) After 7 days of immersion.

74.9 ± 1.5 mg and 96.2 ± 0.5 mg, respectively. These results
represent that P. aeruginosa SKR10 exhibited 22.1% ± 0.2% more
weight loss compared with the abiotic system. In the presence
of inhibitors in experimental systems, S3 to S5 showed 18.8
± 1.5, 38.2 ± 0.5, and 28.8 ± 2.0 mg, respectively, followed
by the corrosion rates of 1.25 ± 0.1, 2.52 ± 0.1, and 1.91 ±
0.1 mm/year, respectively. However, in the presence of inhibitors
with P. aeruginosa SKR10 presenting S6–S8, these systems showed
36.7 ± 1.5, 54.2 ± 0.5 mg, and 46 ± 2.0 mg weight loss were
observed, followed by the corrosion rates recorded as 2.43 ±
0.1, 3.58 ± 0.1, and 3.04 ± 0.1 mm/year, respectively. Moreover,
the inhibitor has the efficiency to inhibit biofilm formation and
thus reduce the corrosion rate, which are related to the MIC
(Idelfitri et al., 2023; Azzouzi et al., 2022). Among the inhibitors,
inhibitors 1 and 3 exhibited the effective inhibition efficiencies of
75% and 61%, respectively. Overall, weight loss results underscore
the potential of inhibitors for mitigating corrosion and also
reducing the MIC.

Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) was used to
analyse the electrochemical characteristics of surfaces subjected to
corrosion after exposure of both sterile and bacteria-inoculated
media. Figure 4 shows the EIS graphical representation of API
5LX80 carbon steel with and without the presence of inhibitors
and P. aeruginosa SKR10. Figure 4A represents a Nyquist plot, and
Figure 4B represents a bode plot of the EIS properties. ZView
software (version 3.0) was used to find a suitable equivalent circuit
for each system and obtain the best fitting of each data with
their corresponding equivalent circuits (AlSalhi et al., 2023); these
models are shown in Figure 5. The surface roughness capacitance
of the working electrode is determined using a model involving a
constant phase element (CPE), and the electrochemical impedance
spectroscopy (EIS) values, including charge transfer resistance (Rct)
and solution resistance (Rs), for the various systems are shown
in Table 3. The abiotic system S1 Rct is observed as 92.221 Ω
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cm2, followed by the biotic system P. aeruginosa SKR10 inoculated
S2 slightly decreased as 78.52 Ω cm2. The highest Rct values
were observed in system S3 containing the inhibitor TB-1,3-
DOIBA showing the value 201.47 Ω cm2, and systems S4 and S5
containing inhibitors TB1,3DOIAA and TB1,3DOIPA show values
153.13 Ω cm2 and 167.4 Ω cm2, respectively. The P. aeruginosa
SKR10 bacterium possessed the inhibitor systems S6–S8, and their
Rct values were 101.96 Ω cm2, 81.063 Ω cm2, and 94.843 Ω cm2,
respectively. In the presence of bacteria and inhibitor (S6–S8), the
Z-value was increased by exposure time and reached its highest
amount after the end of the exposure (Figure 4A). The bode-phase
plots of carbon (Figure 4B) show one peak maxima in media after
the end of the exposure at the low and high frequency ranges,
representing the inhibition of biofilm on the metal surface. The
higher Rct values were observed in inhibitor systems with and
without bacteria, confirming that the synthesised inhibitors were
adsorbed on the metallic surface to form a thick protective layer
and thus reduce the corrosion rate (Narenkumar et al., 2019). The
formation of the protective layer occurred through electron transfer
between phases, specifically from the electrode to hydrogen ions in
the aqueous phase influenced by the resistance of the metal surface.

By specifying the values of RCt, the surface coverage (θ) and
inhibition efficiency (η%) parameters were calculated from the
following Equation 3 (Majidi et al., 2019):

θ = (
R(inhibitor)Ct −R(Control)Ct

R(inhibitor)Ct

), (2)

η% = θ× 100. (3)

InEquation 2,R(Control)Ct andR(inhibitor)Ct represent thecharge transfer
resistance in the absence and presence of inhibitors, respectively.

Tafel polarization

Figure 6 represents the polarization curves for API 5LX80 with
and without bacteria and inhibitor at 7 days of immersion, and
its associated data corrosion current (icorr) and corrosion potential
(Ecorr) are presented in Table 4. In the biotic medium, the corrosion
current was observed as 6.6716 × 10−4 A/cm2, which confirms that
P. aeruginosa SKR10 exhibits the highest potential for causing metal
deterioration in a 3.5 wt% NaCl environment. However, in addition
to the inhibitor medium, S3–S8 showed 1.4588 × 10−4 A/cm2,
3.7175 × 10−4 A/cm2, 1.9626 × 10−4 A/cm2, 2.7313 × 10−4A/cm2,
5.2318 × 10−4 A/cm2, and 4.0104 × 10−4 A/cm2, respectively.
In the presence of P. aeruginosa SKR10, Ecorr shifted negatively
and icorr increased; this indicates that the cathodic reaction takes
place, thus accelerating the corrosion by P. aeruginosa SKR10. The
polarization measurement also revealed the higher oxidation rate
of carbon steel in the S2 medium, which induced the acceleration
of oxygen reduction and consequently increased the corrosion rate.
The enzymatic processes of P. aeruginosa SKR10 utilize oxygen as
the terminal electron acceptor and oxidize Fe through metabolic
hydrogen peroxide by the catalase enzyme (Moradi et al., 2024).
On the contrary, the significant increase in the oxidized species
(Fe2+ and Fe3+) amount examined by XRD confirms that the
electrons are essential for the growth and activity of bacteria

(Wang et al., 2022; Batmanghelich et al., 2017). Conversely, in
the presence of an inhibitor, the icorr value lower than the biotic
medium, indicating inhibitor adsorption on the metal surface,
led to the suppression of both anodic and cathodic reactions of
corrosion (Pinnock et al., 2018; Rajput et al., 2021). Consequently,
the inhibition efficiency of TBI was observed as approximately
74%, which indicated TBI as an excellent corrosion inhibitor
for API 5LX80.

Thesurface coverage (θ) and inhibitionefficiency (η%)parameters
were calculated from the following Equation 5 (Majidi et al., 2019):

θ = (
i(Control)corr − i

(inhibitor)
corr

i(Control)corr

), (4)

η% = θ× 100. (5)

In Equation 4, i(Control)corr and i(inhibitor)corr represent the corrosion
current density in the absence and presence of inhibitors, respectively.

Surface analysis

Fourier transform infrared spectroscopy analysis
The functional groups of the corrosion products and the

findings of the inhibitor absence and presence on the metallic
surface were identified using FTIR spectroscopy, as illustrated
in Figure 7. The FTIR spectrum indicates the inhibitor binds
with the API 5LX80 carbon steel metallic surface. The presence
of the organic functional groups in the biocorrosion products
was validated from the peaks, as observed in Figure 7. Among
the peaks observed in the spectra, the peaks at 3,361 cm−1and
2,922 cm−1 due to the stretching vibrations of -OH (hydroxyl)
and–C-H (aliphatic group), respectively, indicating the presence
of hydrophilic functionalities that can form hydrogen bonds
with water or other molecules and–C-H groups, suggests the
presence of organic compounds that may enhance corrosion
resistance by creating a hydrophobic barrier, reducing water or
ion penetration onto the metal surface. The absorption peak at
1,638 cm−1 related to the stretching frequency carbonyl group
(C=O) confirms that the carboxylic acid group is present in the
corrosion products, suggesting its role in corrosion protection by
forming complexes or chelates with metal ions (Vignesh et al.,
2024). The signals for the stretching vibrations of -C-N-C-, -C=C
(alkene), and–C-Br (aromatic halides) at different regions were
observed at 1,387 cm−1, 1,106 cm−1, and 606 cm−1 respectively;
the -C-N-C- groups enhance barrier properties through hydrogen
bonding, the -C=C groups increase structural rigidity, and the -
C-Br groups provide hydrophobic characteristics to protect the
metal surface (Sethi et al., 2013). A comparison of S3, S4, S5,
S6, S7, and S8 and the inhibitor’s functional groups indicates
alterations upon the interaction with the metal surface, providing
solid evidence of the binding of inhibitor components to the carbon
steel API 5LX80 metal surface and subsequent suppression of
biofilm development.

X-ray diffraction analysis
The XRD analyses of the corrosion products on API 5LX80

carbon steel with and without bacteria and inhibitor are presented
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FIGURE 4
(A)Nyquist plot of carbon steel API 5LX80 after the corrosion studies. (B) Bode plot of carbon steel API 5LX80 after the corrosion studies. S1—abiotic,
S2—biotic, S3—inhibitor 1, S4—inhibitor 2, S5—inhibitor 3, S6—P. aeruginosa with S3, S7—P. aeruginosa with S4, and S8—P. aeruginosa with S5.

FIGURE 5
EIS circuit of the biocorrosion system.

in Figure 8. XRD analysis confirmed the formation of iron
oxide–hydroxide JCPDS 01-089-5894, manganese oxide JCPDS
01-075-0826, and ferric oxide JCPDS 01-086-0551 corrosion
products (Sun et al., 2016). The biotic systems indicated more
strong peaks when compared to abiotic control; the iron
particles found in the bacterial systems as corrosion products
suggest that the bacterial strains are capable of oxidizing
inorganic compounds included in the composition of carbon
steel. The inhibitor-treated samples demonstrated reduced peak
intensities, indicating that the inhibitors effectively suppressed
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TABLE 3 Electrochemical impedance spectroscopy (EIS) parameters of carbon steel API 5LX80 in the presence and absence P. aeruginosa and
inhibitors. S1—Abiotic, S2—Biotic, S3—Inhibitor 1, S4—Inhibitor 2, S5—Inhibitor 3, S6—P. aeruginosawith S3, S7—P. aeruginosawith S4, and S8—P.
aeruginosawith S5.

System CPE (F) Rct (Ω cm2) Rs (Ω cm2) n θ η%

S1 1.36 × 10−2 ± 0.1 92.2 ± 2.0 9.22 ± 0.1 0.62 ± 0.01 — —

S2 1.19 × 10−2 ± 0.1 78.5 ± 1.8 8.37 ± 0.1 0.62 ± 0.01 — —

S3 3.19 × 10−2 ± 0.1 201.4 ± 3.5 9.15 ± 0.1 0.56 ± 0.01 0.54 ± 0.02 54 ± 0.2

S4 1.43 × 10−1 ± 0.1 153.1 ± 3.0 9.79 ± 0.1 0.54 ± 0.01 0.39 ± 0.02 40 ± 0.1

S5 6.55 × 10−2 ± 0.1 167.4 ± 2.5 14.37 ± 0.1 0.54 ± 0.01 0.44 ± 0.02 45 ± 0.1

S6 4.22 × 10−3 ± 0.1 101.9 ± 2.0 8.39 ± 0.1 0.65 ± 0.01 0.22 ± 0.02 23 ± 0.1

S7 1.31 × 10−2 ± 0.1 81.0 ± 2.0 9.96 ± 0.1 0.67 ± 0.01 0.03 ± 0.01 3 ± 0.1

S8 1.69 × 10−2 ± 0.1 94.8 ± 2.0 8.91 ± 0.1 0.62 ± 0.01 0.17 ± 0.02 17 ± 1

FIGURE 6
Tafel Polarization of carbon steel API 5LX80 after the corrosion studies. S1—abiotic, S2—Biotic, S3—inhibitor 1, S4—inhibitor 2, S5—inhibitor 3, S6—P.
aeruginosa with S3, S7—P. aeruginosa with S4, and S8—P. aeruginosa with S5.

the formation of corrosion products, although some variation
was noted. Notably, samples treated with both inhibitors with
bacteria exhibited the lowest-intensity peaks comparable to
those observed in the inhibitor systems, which suggested that
the inhibition effects were maintained even in the presence
of bacteria (Sachan and Singh, 2020). These findings of XRD
analysis indicated that the inhibitor not only inhibits the growth
of bacterial strain but also reduces the corrosion rate, most likely
via adsorbing on the metal surface.

Proposed mechanism of inhibition of
biocorrosion of carbon steel API 5LX80

Thebiofilm inhibitory assay demonstrated that the bacterial strain
exhibited high sensitivity to the synthesised inhibitor. This finding
was further confirmed by linear polarization, EIS, FTIR, and XRD
analyses conducted on bacterial systems with inhibitors. FTIR results
show that inhibitor molecules attach to the metal surface via various
organic functional groups found in corrosion products. These peaks
correspond to the stretching vibrations of hydroxyl and aliphatic
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TABLE 4 Tafel polarization parameters of carbon steel API 5LX80 in the presence and absence of P. aeruginosa and inhibitors. S1—Abiotic, S2—Biotic,
S3—Inhibitor 1, S4—Inhibitor 2, S5—Inhibitor 3, S6—P. aeruginosawith S3, S7—P. aeruginosawith S4, and S8—P. aeruginosawith S5.

System icorr (A/cm
2) Ecorr (V) ba (V/dec) bc (V/dec) Corrosion rate (mm/year) θ η%

S1 6.28 × 10−4 ± 0.1 −5.92 × 10−1 ± 0.01 0.12 ± 0.01 −0.38 ± 0.01 5.13 ± 0.2 — —

S2 6.67 × 10−4 ± 0.1 −6.05 × 10−1 ± 0.01 0.12 ± 0.01 −0.25 ± 0.01 6.43 ± 0.1 — —

S3 1.45 × 10−4 ± 0.1 −5.44 × 10−1 ± 0.01 0.08 ± 0.01 0.14 ± 0.01 1.19 ± 0.1 0.76 ± 0.01 76 ± 0.5

S4 3.71 × 10−4 ± 0.1 −5.84 × 10−1 ± 0.01 0.10 ± 0.01 0.58 ± 0.01 2.31 ± 0.1 0.40 ± 0.01 41 ± 0.3

S5 1.96 × 10−4 ± 0.1 −5.09 × 10−1 ± 0.01 0.09 ± 0.01 0.27 ± 0.01 1.58 ± 0.2 0.68 ± 0.01 69 ± 0.4

S6 2.73 × 10−4 ± 0.1 −5.84 × 10−1 ± 0.01 0.09 ± 0.01 1.09 ± 0.01 2.54 ± 0.2 0.59 ± 0.01 59 ± 0.5

S7 5.23 × 10−4 ± 0.1 −5.76 × 10−1 ± 0.01 0.10 ± 0.01 −0.59 ± 0.01 3.71 ± 0.1 0.21 ± 0.01 22 ± 0.3

S8 4.01 × 10−4 ± 0.1 −5.56 × 10−1 ± 0.01 0.12 ± 0.01 −1.38 ± 0.01 3.17 ± 0.1 0.39 ± 0.01 40 ± 0.4

FIGURE 7
FTIR spectrum of corrosion products on the carbon steel API 5LX80
after the corrosion studies. S1—abiotic, S2—biotic, S3—inhibitor 1,
S4—inhibitor 2, S5—inhibitor 3, S6—P. aeruginosa with S3, S7—P.
aeruginosa with S4, and S8—P. aeruginosa with S5.

groups, while the 1,638 cm⁻1 peak indicates the carbonyl group is
present. The inhibitors adsorb on the metal surface and form a
protective film that reduces biofilm formation and biocorrosion.
XRD analysis reveals the presence of iron oxide–hydroxide, ferric
oxide, and manganese oxide as the main corrosion products. In

FIGURE 8
X-ray diffraction spectrum of corrosion products on the carbon steel
API 5LX80 after the corrosion studies. S1—abiotic, S2—biotic,
S3—Inhibitor 1, S4—Inhibitor 2, S5—Inhibitor 3, S6—P. aeruginosa with
S3, S7—P. aeruginosa with S4, and S8—P. aeruginosa with S5.

a system with bacteria, stronger diffraction peaks indicate the
bacteria’s role in metal oxidation. However, samples treated with
inhibitors show reduced peak intensities, indicating that the inhibitors
effectively limit corrosion product formation. The halogen atoms
in tetrabromo derivatives further enhance the inhibition efficiency
by facilitating strong interactions with metal surface protection (El-
Aouni et al., 2023), and the schematic representation of the proposed
mechanism is shown in Figure 9. The synthesised inhibitors reduced
the chemical corrosion as well in MIC. In conclusion, the synthesised
organic inhibitor TBI is suitable for the carbon steel API 5LX80 in
the crude oil reservoir.

Frontiers in Materials 11 frontiersin.org

https://doi.org/10.3389/fmats.2025.1508966
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Vignesh et al. 10.3389/fmats.2025.1508966

FIGURE 9
Schematic representation of the proposed inhibition mechanism of microbial influenced corrosion.

Conclusion

This study demonstrated synthesised organic inhibitors TB-1,3-
DOIBA, TB-1,3-DOIAA, andTB-1,3-DOIPA, which are effective and
eco-friendly corrosion inhibitors with biocidal properties, which was
suitable for mitigating the MIC on API 5LX80 carbon steel in a
hypersaline (3.5 wt%NaCl) environment.This study revealed thatTBI
can act as a potential corrosion inhibitor with biocidal properties for
carbon steel API 5LX80 in a hypersaline environment; it was enriched
with corrosive bacteria. EIS analysis reveals that P. aeruginosa SKR10
accelerates the corrosion of carbon steel API 5LX80. The optimal
antibacterial concentration of TBI was 200 ppm, which was obtained
by the well diffusionmethod. EIS analysis confirmed that TBI formed
a protective film on the metal surface and thus inhibited biofilm
formation, and inhibition efficiencies were about 74%. On the basis of
obtained results, TBI significantly inhibits corrosion due to biocidal
properties. From these findings, the TBI inhibitor is expected to be
favourable for the reducing risks of pipeline corrosion, oil reservoir,
and biofouling and improvesmetal life spanwith negligible impact on
the surrounding environment.
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