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Editorial on the Research Topic

The role of hydrogels in the bio-medical field
s

Hydrogels are chemically or physically cross-linked materials for use in several real-
world applications across industrial, military, and bio-medical technology applications.
With multidisciplinary research, promising advancements and insights have been
developed in hydrogel technology. Related materials with differing compositions
include aerogels, cryogels, xerogels, or sol-gels (Job et al., 2005; Coradin et al., 2006).
An initial hydrogel technology began as a water-based crosslinked network material
utilizing polyhydroxyethylmethacrylate (pHEMA) for the purpose of permanent contact
applications with human tissues for uses inside a patient (Chirani et al., 2015). Over time,
biogel hydrogels were synthesized to have varying viscosities and elastic properties leading
to themodern development of “smart hydrogels”. Smart hydrogels are localized personalized
medicine gel-based microenvironments containing specific tunable properties to produce
desired effects, are surgically injectable, and are sensitive to stimuli (Shojaeifard et al.).
Hydrogels offer several benefits, including a less pro-inflammatory immune response
compared to other less biocompatible materials, such as metallic implants (Carossino et al.,
2016). Since hydrogels are porous, they also allow for more natural
diffusion than other materials when incorporated into a human body. There
is also a potential for hydrogels to be more cost effective than other
biotechnologies.

Additionally, hydrogels are tunable and can have formation adjusted quickly to
environmental changes, can be synthesized to be biodegradable, and are an acceptable
environment for cellular incorporation and scaffolding for 3D-cell culture. Further
advancements in clinical mapping of these hydrogel properties, optimization of pore-
microstructure, and rheological measurements could help practical applications of
selecting the right gels for the right clinical procedure. Varying the Young’s modulus
and chemical composition of hydrogels can change the levels of cell responsivity,
cell migration, and cell adhesion. For applications involving synthetic tissues during
ongoing tissue and organ shortages, hydrogels with growth factors such as vascular
endothelial growth factor (VEGF) can be utilized to guide the overall shape of tissue
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growth and recovery. Potentially using hydrogel-encapsulated
autologous stem cells could lower the chance of a body rejecting
tissue (Lu et al., 2024). Peptide incorporation can also affect
mechanical stiffness of the hydrogel (Shen et al., 2007). Polylactic
acid, polyethylene glycol, and natural materials have been suitable
for synthesis of hydrogels (Farman et al.). Other example material
incorporation with hydrogel includes but is not limited to chitosan,
alginate, collagen nanofibers, nanoparticles, gelatin, elastin,
hyaluronic acid, dextran, polyvinyl alcohol, poly (hydroxyethyl
methacrylate), and polyN-isopropylacrylamide. Conjugated hybrid
hydrogels with bio-active components have also had successful
formation for synthetic tissue design (Zhu and Marchant, 2011).

Potential objectives of hydrogel research include but are not
limited to: Matrigel, artificial cartilage, synthetic synovial fluid,
synthetic vitreous humor, plastic surgery implants, liquid bandages,
liquid stitches, scaffolding for tissue recovery in burn victims, soft-
robotics, bioprinting, water processing membranes, and even in
cosmetic industries and textiles. Furthermore, wearable electronic
sensors could be an excellent usage of hydrogels for people at
the early stages of neuromuscular disorders or other clinical
manifestations where controlling prosthetic soft-robotic devices
would have a larger range of motion than the person. If there
is environmental pollution from a factory or shipping spill,
absorptive hydrogels can be used with enzymatic incorporation
for environmental recovery for health and safety (Du et al., 2020).
Hydrogels are also currently, one of the most promising materials
for promoting vascularization due to its biocompatibility in human
tissues (López-Gutierrez et al.).The biodegradability of the hydrogel
can also be modulated to make quick release or long release
biotherapeutics. Sustained biotherapeutic compound delivery in
pharmaceutical applications has been shown to be widely utilized
with hydrogels (Umar et al.; Goyal and Mitra, 2022).

With cross-collaborative research, hydrogels can be used in the
real-world across various fields to assist lives for the better. Advances
in hydrogel technology could produce match-ready hydrogels
specific to the patient’s situation. Journal editors would like to thank
the authors for their contributions to this Research Topic and hope

for an inspiring journey ahead with the continuation into research
advancements.
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