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Diatomaceous earth (diatomite) is a material that exhibits unique properties that
can be used in many areas of the economy. The use of diatomite as a sorbent
for absorbing oil substances has been known for many years. Diatomite, thanks
to its structure, acts like a sponge, absorbing oil substances. Its micropores
increase the surface area in contact with the pollutant, which speeds up the
absorption process. Diatomite is used to clean up oil spills on land and water,
secure industrial sites, treat wastewater, and manage pollution at ports and oil
ports. Many scientific papers to date have focused on evaluating the potential
of diatomite as a medium for petroleum substances. Still, there is little mention
of the potential for using diatomite as a carrier for paraffinic PCMs. Paraffins are
synthetic compounds obtained by distillation from a specific fraction of crude
oil. This paper presents a study of the physicochemical properties of diatomite
with a view to its subsequent use as a medium for absorbing paraffinic phase
change materials. Thanks to its high porosity, high specific surface area, low
density, and chemical inertness, this material is an ideal medium for paraffinic
substances. In addition, its most important feature is the absence of desorption.
A new type of environmentally friendly and cheap phase change materials may
contribute to the increase in the use of this type of materials in construction.
The benefits of using PCM materials are known.

KEYWORDS

diatomite, phase change materials, macroencapsulation, advanced building materials,
properties of material, improvement of thermal comfort

1 Introduction

Diatomite, also known as diatomaceous earth, is a naturally occurring, soft, siliceous
sedimentary rock consisting mainly of the fossilized remains of diatoms, which are single-
celled algae. The main chemical constituent of diatomite is silica (SiO₂), along with smaller
amounts of aluminum oxide (Al₂O₃), iron oxide (Fe₂O₃), calcium oxide (CaO), magnesium
oxide (MgO) and organic matter (Wu et al., 2019; Liu et al., 2018; Zahajská et al., 2020;
Reka et al., 2021a; Reka et al., 2021b). Its unique properties, including high porosity,
low density, and high surface area, make it a valuable material in various industrial
applications (Wu et al., 2019; Chu et al., 2008; Ferreira et al., 2024; Mejía et al., 2016).
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Diatomite deposits are important both in Poland and around
the world due to their unique properties and diverse applications. In
Poland, diatomite deposits are in the Podkarpackie province, in the
Przemyśl district of Jawornik Ruski. Diatomitemining in Poland has
been used for various industrial applications, including filtration,
insulation, and as a filler in building materials (Dobrosielska et al.,
2021; Omar et al., 2022; Gondek et al., 2023; Nykiel et al., 2024).
Mining methods often involve surface mining, which is effective
for accessing the relatively shallow deposits found in the region
(Dobrosielska et al., 2021; Łach et al., 2023; Marczyk et al., 2022).

Diatomite deposits are widespread around the world, with
significant re-zerves in the United States, particularly in California,
where the Monterey Formation is home to one of the largest
commercial diatomite deposits (Moyle and Dolley, 2003). Other
significant deposits are located in countries such as Turkey,
Kazakhstan, and Algeria, and each exhibits unique geological
characteristics that affect their re-inventory applications (Caner et al.,
2015; Meradi et al., 2016). The global market for diatomite is
driven by its applications in various industries, including agriculture,
construction, and environmental management, due to its high
porosity, lightweight, and chemical stability (Chu et al., 2008;
Wang et al., 2014; Du et al., 2022).

Diatomite’s physical and chemical properties, such as its high
specific surface area and porosity, make it an excellent material
for use in filtration systems, as it can effectively remove impurities
from liquids (Caner et al., 2015; Xiang et al., 2013). In addition,
its thermal insulating properties have led to its use in construction
materials, where it serves as a pozzolanic additive in cement and
mortar formulations (Abrão et al., 2019).The versatility of diatomite
is further enhanced by its ability to act as an adsorbent of pollutants,
making it valuable in environmental applications such as wastewater
treatment (Chu et al., 2008; Cuellar et al., 2018). Diatomite deposits
in Poland and around the world are characterized by high silica
content and uniquely physical properties that facilitate a wide range
of industrial applications. Ongoing research and development in the
use of diatomite continues to expand its applications, highlighting
its importance as a natural resource.

The porous structure of diatomite contributes significantly to its
functionality. Diatomite has a high void content, which increases its
adsorption capacity, making it suitable for applications such as filter
media, adsorbents, and catalyst carriers (Wu et al., 2019; Chu et al.,
2008;Mao et al., 2013).Moreover, diatomite’s uniquemicrostructure
allows it to be used in various advanced applications, including
as a phase change material (PCM) for thermal energy storage. Its
high specific surface area facilitates the absorption of phase-change
materials, which can be used in buildingmaterials to improve energy
efficiency (Fořt et al., 2015; Zhang et al., 2012). Diatomite’s ability to
enhance the performance of photocatalytic materials has also been
investigated, where its porosity helps disperse active ingredients,
thereby improving photocatalytic performance (Cui et al., 2021).

Diatomite is a versatile material characterized by its high silica
content, porosity, and unique physical properties. Its applications
span various fields, including construction, environmental
engineering, and materials science, where it serves as a filler,
adsorbent, and thermal energy storage medium. Diatomite has
attracted attention as a promising energy storage medium,
particularly in the context of thermal energy storage (TES) systems.
Its unique properties, including its highly porous structure, low

density, and excellent absorption capacity, make it an ideal candidate
for supporting phase change materials (PCMs) (Qian et al., 2015a;
Qian et al., 2015b; Benayache et al., 2018; Zhang et al., 2018;
Zhang et al., 2021). Diatomite’s high porosity, which can reach
80%–90%, allows for significant encapsulation of PCMs, increasing
their heat storage capabilities while reducing the risks associated
with flammability and leakage (Guo et al., 2018; Costa et al., 2020;
Lorwanishpaisarn et al., 2017; Li et al., 2014).

The integration of diatomite with various PCMs has been widely
studied, revealing its effectiveness in stabilizing these materials
during phase transitions. For example, the porous structure of
diatomite not only accommodates PCMs, but also increases thermal
conductivity, which is crucial for efficient energy transfer (Guo et al.,
2018; Fu et al., 2015; Xu and Li, 2013; Sun et al., 2013).
Studies indicate that composites formed from diatomite and fatty
acids, or paraffin show better reliability and thermal stability,
exhibiting minimal leakage during thermal cycling (Konuklu, 2020;
Konuklu et al., 2015). The incorporation of diatomite into PCM
formulations has been shown to yield stable composites that retain
their structural integrity while effectively storing and releasing
thermal energy (Zong et al., 2021; Qian et al., 2016).

Studies have shown that the interaction between diatomite and
PCM can lead to increased thermal stability and improved heat
transfer efficiency (Khezri and Fazli, 2018; Qian et al., 2017). For
example, the addition of diatomite to polyethylene glycol (PEG) not
only stabilizes the PCMbut also increases itsmelting point and latent
heat capacity, making it more effective in thermal energy storage
applications (Qian et al., 2015b; Qian et al., 2016). Diatomite’s
ability to effectively absorb and dissipate energy also helps reduce
thermal fluctuations in building materials, thus contributing to
energy efficiency in construction (Fořt et al., 2015).

Diatomite serves as a versatile and effective energy carrier,
especially in the field of thermal energy storage. Its unique physical
and chemical properties allow it to enhance the performance of phase-
changematerials,making it a valuable component in the development
of sustainable energy solutions. Ongoing research on diatomite-based
composites continues to reveal new opportunities for improving
energy storage technology, highlighting its importance in the fields of
materials science and energymanagement. In this article, the physical
and chemical properties of diatomite were studied, and finished
diatomite granules containing 60 wt.% paraffin were produced. The
granules were divided into different fractions and their key thermal
properties such as thermal conductivity and specific heat were
studied. The study aimed to determine the performance of diatomite
granules representing different particle sizes for their subsequent
use in lightweight functional geopolymer foams for construction
applications. In this study, the energy efficiency of diatomite granules
fromparaffin-ic-containingphase-changesubstancescharacterizedby
different particle size distributions was determined.

The study of diatomite granules with the addition of paraffin
represents an innovative approach to the development of materials
with thermoregulatory properties. Diatomite, which is a natural
silica material of sedimentary origin, is characterized by very high
porosity and the ability to absorb various substances. The addition
of paraffin, which is a popular phase change material (PCM), makes
it possible to obtain a material with unique thermal energy storage
properties.

The main innovation aspects of this study include:
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1. The use of diatomite as a paraffin carrier: Diatomite, thanks to
its structure with a large specific surface area, can effectively
bind paraffin, which enables its safe and stable storage. This
type of combination makes it possible to create a composite
that is both durable and effective in heat accumulation.

2. The use of paraffin as a phase change material (PCM): Paraffin
could absorb and release heat during the transition from
solid to liquid and vice versa. Incorporating it into diatomite
pellets makes it possible to use this effect to regulate the
temperature in a variety of applications, from construction to
energy storage systems.

3. Improving thermal efficiency: Diatomite-paraffin granules can
be used as insulating elements in buildings or process systems,
enabling a reduction in heat loss. In addition, by using PCMs,
the flow of thermal energy can be better controlled, which can
lead to the optimization of energy processes.

4. Environmental applications and sustainability: Combining the
natural material diatomite with the eco-friendly functionality
of paraffin allows for environmentally friendly solutions that
can simultaneously contribute to energy savings and CO₂
emissions reductions.

5. Increased stability and durability of paraffin: By absorbing
paraffin into the porous structure of diatomite, it is possible
to increase the stability of paraffin during phase change cycles.
This reduces paraffin leakage problems, increasing the life and
safety of the material.

Potential applications:

1. Energy-saving construction: These granules can be used in
building materials, such as concrete or plaster, to improve the
thermoregulatory properties of walls and floors.

2. Energy storage: The ability to accumulate heat makes the
material suitable for use in thermal energy storage systems,
such as thermal batteries.

3. Thermal insulation: granules can be used in the insulation
industry, where it is crucial to maintain a stable temperature
while minimizing heat loss.

Research on paraffin-enhanced diatomite granules offers many
innovative opportunities, especially in the areas of energy storage
and temperature control, which could lead to new solutions in
sustainability and energy savings.

2 Materials and methods

2.1 Base material: diatomite

Diatomite powder was used in the study, which came from
a mine located in Jawornik Ruski in the Subcarpathian province
(Specialized Mining Company Górtech Ltd, Cracow, Poland). It
is the only active open pit mine in the country. The work
used powdered diatomite, which was calcined for 4 h at different
temperatures: 600°C, 650°C, 750°C, 800°C, 850°C, 900°C and
1,000°C. The calcination was carried out in a laboratory muffle
furnace FCF 7 SHM (Alchem Group Ltd, Toruń, Poland). In the
following part of the article, the physical and chemical properties of
diatomite subjected to different temperatures of thermal treatment

FIGURE 1
Diatomite powder after the calcination process (overview photo).

will be discussed. It was decided to choose the smallest available
fraction of diatomite, i.e., powder, due to the highest sorption
capacity of this material variant, based on previous research
results of scientists from the Cracow University of Technology
(Nykiel et al., 2024; Łach et al., 2023; Pławecka et al., 2023; Przybek,
2024). The temperature was chosen to be high enough to allow
dehydration, dehydroxylation, and removal of organic matter while
avoiding mineral decomposition and preventing the formation of
liquid phases (sintering). Diatomite not subjected to calcination
is characterized by a gray-brown color, while after calcination
its color changes to orange. Figure 1 shows the diatomite after
the calcination process used in this study. A total of 7 different
variants of diatomite were selected for the study to compare the
physicochemical properties of the material.

2.2 Paraffinic phase change material

The article is a continuation of the author’s previous research,
so given the results obtained in the paper (Przybek, 2024),
WARCHEM heavy paraffin was chosen for macroencapsulation
of diatomite granules with paraffinic phase-change substances due
to its sorption capacity exceeding 200 wt.% (WARCHEM Ltd.,
Zakręt, Poland). Figure 2 shows the characteristics of this substance.

2.3 Macroencapsulation of diatomite

The first step of macroencapsulation of diatomite with paraffin
was to soak the diatomite with the substance. 60 wt.% paraffin was
added to the diatomite powder and allowed to soak for about 4 h
under laboratory conditions (at 23°C and 40%–60% humidity) until
the components were fully combined. Diatomite powder calcined
at 850°C was used for paraffin soaking due to its best absorbency
of petroleum and paraffin substances. Absorbency tests have been
described in other authors’ works (Łach et al., 2023; Przybek, 2024).
Next, a GT-1 disc granulator from Atest (Atest Ltd, Kielce, Poland)
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FIGURE 2
Characteristics of heavy liquid paraffin.

was used to produce diatomite granules with paraffin. Parameters
for the granulation process included the selection of a disc angle
of 0°–60° and the selection of a disc speed of 0–50 rpm. Several
preliminary granulation tests were carried out to select the correct
test parameters, and granulation was finally carried out at a disc
inclination of 30° and a rotational speed of 35 rpm. A solution of
R-137 soda water glass with demineralized water in a 50/50 wt.%
ratio was used as a binder. Several types of flours and starches
(wheat starch, potato starch, corn starch, and coconut and rice
flours) were also tested with water, in proportions of 50/50 wt.%,
but the best durability of the granules was obtained when sodium
water glass was added, so the article presents results only for
granules in which the binder was a solution of R-137 with water.
The final step was to separate the material into fractions. For this
purpose, a vibrating shaker ANALYSETTE 3 PRO (MERAZET
Joint Stock Company, Poznań, Poland) was used. This yielded 5
different diatomite fractions: <1.6 mm, 2.0–1.6 mm, 2.5–2.0 mm,
3.35–2.50 mm and >3.50 mm. Figure 3 shows the disc granulator
used in the study with key functional elements highlighted.

2.4 Oxide analysis for diatomite

The X-ray fluorescence (XRF) method was used for oxide
chemical composition analysis. Seven variants of calcined diatomite
were analyzed at different temperatures using a SCHIMADZU
EDX-7200 (SHIMADZU Europa GmbH, Duisburg, Germany). All
measurements were carried out in an air atmosphere, using Mylar
film and special holders dedicated to bulk materials.

2.5 Laser particle size analysis for diatomite

Using an Anton-Paar PSA 1190LD laser particle size analyzer
(Anton-Paar, Graz, Austria), particle size characterization was
performed for 7 variants of calcined diatomite. Five measurements

of D10, D50, D90, and average particle size values were made for
eachmaterial, and the average of the 5measurements was calculated
and the standard deviationwas given. Kalliope Professional software
(version 2.22.1) was used for the study.

2.6 Morphology analysis for diatomite

A scanning electron microscopy SEM method was used to
study the morphology of all diatomite variants. A JEOL IT 200
scanning electron microscope (JEOL, Akishima, Tokyo, Japan)
was used for these studies. Before testing, each material was
attached to special holders using carbon disks and a special EM-
Tec C33 carbon adhesive. Both fixtures, i.e., the carbon disks
and the adhesive, were used to best attach the test material
and lead to better conduction of the material. The final step
was to coat the test materials with a conductive gold layer
using a DII-29030SCTR Smart Coater vacuum sputtering machine
(JEOL Ltd., Peabody, MA, USA). After comprehensive preparation
of the samples, they were placed on metal tables and then
in the holder, and observations of the morphology of the
samples began.

2.7 Thermal analysis for diatomite/paraffin
granules

Using a Lambda HFM 446 plate apparatus (Netzsch, Selb,
Germany), thermal conductivity and specific heatweremeasured for
all 5 variants of diatomite/paraffin granules. The device described
here operates under EN 12664 (EN 12664, 2001) and other
equivalent standards: ASTM C1784 (ASTM C1784, 2020), ASTM
C518 (ASTM C518, 2021), and ISO 8301 (ISO 8301, 1991). The
accuracy of a single measurement is ±1%–2%, and temperature
regulation and control have been verified by an advanced Peltier
system. The thermal conductivity coefficient and specific heat were
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FIGURE 3
GT-1 disc granulator.

TABLE 1 Oxide composition analysis for different calcined diatomite.

Type of diatomite Oxide composition (wt.%)

SiO2 Al2O3 Fe2O3 K2O SO3 TiO2 CaO

Diatomite 600°C 79.705 15.416 2.474 1.377 0.352 0.338 0.252

Diatomite 650°C 80.041 15.139 2.419 1.301 0.459 0.317 0.248

Diatomite 750°C 79.506 15.435 2.497 1.421 0.403 0.358 0.284

Diatomite 800°C 80.079 15.401 2.392 1.316 0.326 0.236 0.168

Diatomite 850°C 80.320 15.386 2.255 1.245 0.316 0.213 0.192

Diatomite 900°C 79.261 16.104 2.510 1.318 0.336 0.274 0.105

Diatomite 1,000°C 79.892 14.975 2.809 1.449 0.366 0.277 0.137

determined using a measuring machine that employs the cold
and hot plate method. The lambda coefficient was tested over
a temperature range of 0°C–20°C, while the specific heat was
tested over 4 temperature ranges: 17.5°C–22.5°C, 22.5°C–27.5°C,
27.5°C–32.5°C and 32.5°C–37.5°C. Typically, building materials can
operate at slightly elevated temperatures, so energy efficiency was
tested in different temperature ranges.

3 Results

3.1 Oxide analysis for diatomite

Table 1 shows the results of oxide composition measurements
for different variants of calcined diatomite. The table below
shows only the most important oxides detected in the chemical
composition, whose weight share is greater than 0.1 wt.%. The
oxide compositions of all analyzed diatomite materials are similar.
Each of the calcined diatomites contains the most SiO2 and Al2O3,
with about 79–80 wt.% silicon dioxide and 14–16 wt.% diglinium
trioxide. It is noticeable, however, that the highest amount of silica
was identified for the diatomite calcined at 850°C. Other oxides

detected in the chemical composition of diatomite include Fe2O3,
K2O, SO3, TiO2, and CaO.

3.2 Laser particle size analysis for diatomite

Table 2 shows the particle size distribution for calcined powder at
different temperatures. The tests were carried out using ultrasound
to eliminate the risk of agglomeration of the material in water,
the dispersing agent. It can be noted that the lowest average
particle size at the same time with very low measurement error
was obtained for diatomite powder calcined at 850°C. Calcination
at temperaturesmainly 600°C, 750°C, and 800°C affected the increase
in powder particle diameter. This phenomenon is most likely due
to the agglomeration of the smallest diatomite particles, caused by
partial sintering of the low-melting phases present in the material.
The observed increase in the diameter of diatomite particles after
calcination at these temperatures can be explained by the permanent
bonding that was formed during thermal processing and the presence
of a liquid phase. The lowest particle size affects the sorption capacity
of thematerial to absorb paraffins.The lower the average particle size,
the better the material absorbs the test substance.
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TABLE 2 Particle size analysis for different calcined diatomite.

Material D10 [mm] D50 [mm] D90 [mm] Average particle size [mm] Standard deviation [mm]

Diatomite 600°C 3.722 24.802 61.314 30.691 0.303

Diatomite 650°C 3.737 13.799 26.421 15.297 0.119

Diatomite 750°C 4.536 33.827 81.546 40.610 0.093

Diatomite 800°C 4.629 32.300 82.043 40.186 0.351

Diatomite 850°C 3.980 13.682 24.304 14.654 0.127

Diatomite 900°C 4.053 19.567 39.032 21.831 0.245

Diatomite 1,000°C 4.803 14.446 23.529 15.019 0.371

3.3 Morphology analysis for diatomite

Figure 4 shows the results of testing the morphology of calcined
diatomite powder at different temperatures. All variants of diatomite,
which are described in this article, were studied. All the photos taken
illustrate mainly diatomite carapaces and different forms of diatomite
occurrence. The SEM morphology photos illustrate mainly diatoms
that have beenmechanically degraded or are disk-shaped. Cylindrical
diatoms can also be seen in some images. The morphological images
show the varied shapes and sizes of diatoms and the markedly high
porosity of their structure. Such porosity is crucial to the diatoms’
ability to absorb substances, in this case paraffins. The microstructure
of the diatomite plays an important role in its sorption capacity. SEM
images were taken at high magnification, 1,000 and 2000×, to show
the shape of the diatoms.

3.4 Thermal analysis for diatomite/paraffin
granules

Table 3 shows the thermal parameters of the produced
diatomite/paraffin granules. The abbreviation D/P - denoting
diatomite/paraffin - has been introduced. Information on the fraction
size of the produced granules was also added in each caption. The
tests were conducted using a LambdaHFM446 plate apparatus with a
special frame for bulk materials. The test area was 15 × 15 cm. For all
fractionsofdiatomite, the thermal conductivity coefficientandspecific
heatwere tested in 4 temperature ranges to check the energy efficiency
of the finished material. The lowest value of the thermal conductivity
coefficientwas recorded forD/P2.0–1.6 mm.However, all the thermal
conductivity results are very low, settling at 0.07–0.10 W/m × K. As
for the specific heat, on the other hand, all measured values for each
type of granule are very high, oscillating within 1.5 kJ/kg × K. The
highest specific heat was recorded for the largest granules at the test
temperature of 27.5°C–32.5°C.

3.5 Durability test for diatomite/paraffin
granules

In each test series, samples were taken for which brittleness and
strength properties were determined. Brittleness was determined

using a comparative method in the range from high (0) to low (10).
The strength properties of the granules were determined using a
gravity drop resistance test in the fresh state and after heating in a
laboratory furnace at a temperature of 60°C for 24 h. The gravity
drop resistance test consisted of dropping 10 granules from a height
of 1.0 m onto a ceramic plate and assessing their condition after
the experiment. The granules were considered resistant when, after
repeating the drop cycle three times, at least 80% were undamaged.
This value meets the requirements due to the processes of loading,
unloading, and transport from the manufacturer to the recipient of
the granulate. The results of the study are shown in Table 4. The
highest durability was characteristic of granules in which the binder
was sodium water glass R-137.

3.6 Macro photos for diatomite/paraffin
granules

Figure 5 shows macrophotographs of the produced
diatomite/paraffin granules. The photos were taken to illustrate the
appearance and form of the finished material for thermal energy
storage and which, at a later stage, will be used in lightweight
functional geopolymer foams for, among other things, thermal
insulation, and energy storage.

3.7 Micro photos for diatomite/paraffin
granules

Figure 6 shows micrographs of the produced diatomite/paraffin
granules. The photographs were taken to illustrate the appearance
and size of the pores. The photographs were taken at 2,000× or
3,000× magnification. The white color in the micrographs indicates
paraffin. Pores of various sizes ranging from 200–800 nm were
identified.

3.8 Safety assessment of diatomite/paraffin
granules

Diatomite-paraffin granulate is a material considered safe under
normal conditions of use. Diatomite does not meet the criteria for
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FIGURE 4
Morphology of diatomite: (A) diatomite powder after 600°C calcination, (B) diatomite powder after 650°C calcination, (C) diatomite powder after
750°C calcination, (D) diatomite powder after 800°C calcination, (E) diatomite powder after 850°C calcination, (F) diatomite powder after 900°C
calcination, (G) diatomite powder after 1,000°C calcination.

classification as a hazardous substance according to Regulation (EC)
No. 1272/2008 (CLP). Diatomite has a hygienic certificate number
B-BK-60211-0114/20. Diatomite is non-flammable and insoluble in
water. The pH range is 5.7–8.3, which makes it neutral or slightly

alkaline. It does not exhibit explosive or self-igniting properties.
Diatomite does not desorb the absorbed substance, so paraffin
leakage is impossible. Diatomite is a rich source of silica, which in the
acidic environment of the stomach is transformed into orthosilicic
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TABLE 3 Thermal parameters of diatomite granules containing 60 wt.% paraffin.

Type of
diatomite

λ at 0°C–20°C
[W/m × K]

Cp at
17.5°C–22.5°C

[kJ/kg×K]

Cp at
22.5°C–27.5°C

[kJ/kg×K]

Cp at
27.5°C–32.5°C

[kJ/kg×K]

Cp at
32.5°C–37.5°C

[kJ/kg×K]

D/P < 1.6 mm 0.10773 ± 0.01 1.414 1.464 1.458 1.776

D/P 2.0–1.6 mm 0.07164 ± 0.02 1.481 1.517 1.501 1.529

D/P 2.5–2.0 mm 0.07292 ± 0.02 1.443 1.454 1.738 1.551

D/P 3.35.-2.0 mm 0.07364 ± 0.02 1.518 1.458 1.475 1.492

D/P > 3.35 mm 0.07500 ± 0.01 1.659 1.594 1.827 1.693

TABLE 4 Durability tests of diatomite granules containing 60 wt.% paraffin.

Type of binder Fragility: High (0) –
low (10)

Fragility after
heating: High (0) –

low (10)

Gravity drop
resistance [%]

Gravity drop
resistance after
heating [%]

wheat starch 1 2 10 20

potato starch 2 3 20 30

corn starch 1 2 10 20

coconut flour 1 1 10 10

rice flour 0 1 0 10

R-137 7 10 50 80

acid.This compound is considered the best source of silicon because
it is easily absorbed by humans. For this reason, diatomite is used as
a dietary supplement to replenish the level of silicon in the body.
Thanks to its natural composition, diatomaceous earth is safe for
humans and animals, and contains no toxic chemicals, which makes
it an ideal choice for those looking for ecological solutions.

4 Discussion

In the present study, the physicochemical properties of 7
different diatomite powders calcined at different temperatures
were investigated: 600°C, 650°C, 750°C, 800°C, 850°C, 900°C and
1,000°C. The study showed that the highest amount of silica
was identified for diatomite calcined at 850°C. Performing laser
measurement of particle size also showed that the lowest average
particle size at the same time with very low measurement error
was obtained for diatomite powder calcined at 850°C. Both the
presence of a large amount of silica and a very low average particle
size have a positive effect on the sorption capacity of diatomite
to absorb paraffins. The present study only confirmed the tests
described in another paper by the authors Przybek (2024), where
diatomite powder calcined at 850°C showed the highest absorption
capacity. Another study by scientists from the Cracow University
of Technology, i.e., conducting specific surface area measurements,

also showed that the best results were obtained for the described
calcined diatomite powder (Łach et al., 2023).

Calcination of diatomite significantly affects its sorption
capacity, mainly by altering its physical and chemical properties.
Calcination, a thermal treatment process, typically increases the
silica content and modifies the surface properties of diatomite,
which are crucial to its effectiveness as an adsorbent. One of the
main effects of calcination is an increase in reactive silica (SiO₂)
content. Other researchers Costafreda et al. (2023) have noted that
calcined diatomite (CDT) exhibits a higher SiO₂ content compared
to non-calcined diatomite (NDT), which is crucial for improving its
pozzolanic properties. This increase in reactive silica is attributed to
thermal processes occurring during calcination, which canmaintain
or even increase SiO₂ levels depending on the temperature used
(Costafreda et al., 2023). In addition, calcination-induced structural
changes lead to the formation of micro- and mesopores, which
increase the surface area and porosity of the material, thereby
improving its adsorption capacity (Figarska-Warchoł et al., 2020).
Modification of diatomite by calcination also affects its interaction
with various impurities. For example, studies have shown that
calcined diatomite exhibits better adsorption capacity for heavy
metals and organic contaminants compared to its raw counterpart.
Researchers Yang et al. (2013) showed that the adsorption of zinc
(Zn (II)) ions was significantly increased when the diatomite was
treated with sodium hydroxide before calcination, which created
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FIGURE 5
Macro photos od diatomite/paraffin granules: (A) D/P < 1.6 mm, (B) D/P 2.0–1.6 mm, (C) D/P 2.5–2.0 mm, (D) D/P 3.35.-2.0 mm, (E) D/P > 3.35 mm.

surface defects that increased its negative charge and adsorption
capacity. Similarly, Zhao et al. (2020), found that alkali-activated
diatomite showed better adsorption capacity for alkaline fuchsin,
with the capacity increasing as the activation temperature increased.
However, it should be noted that excessively high calcination
temperatures can adversely affect the sorption capacity of diatomite.
Others Guo et al. (2024) have pointed out that calcination at high
temperatures can lead to structural degradation, which reduces the
adsorption properties of the material. This suggests that although
moderate calcination can increase sorption capacity, there is a
threshold beyond which the benefits may be negated. Moreover,
specific calcination conditions, such as temperature and duration,
play a key role in determining the ultimate properties of diatomite.

Researchers Nurgain et al. (2020) have investigated the effects
of different calcination temperatures and acid pretreatment on
diatomite, revealing that optimal conditions can provide sorbents
with adapted physical and chemical properties suitable for specific
applications. This adaptability is crucial for developing effective
adsorbents for various contaminants in wastewater treatment.
Calcination of diatomite is a key process that increases its sorption
capacity by increasing its reactive silica content, improving its
surface area, and adjusting its structural properties. However,
careful control of calcination parameters is necessary to avoid
detrimental effects on its adsorption capacity. Ongoing research to
optimize these conditions will continue to expand the applications
of diatomite in environmental remediation and other fields.
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FIGURE 6
Micro photos od diatomite/paraffin granules: (A) D/P < 1.6 mm, (B) D/P 2.0–1.6 mm, (C) D/P 2.5–2.0 mm, (D) D/P 3.35.-2.0 mm, (E) D/P > 3.35 mm.

The second part of the study focused on the energy efficiency
of granules produced from diatomite powder with the addition of
60 wt.% WARCHEM heavy liquid paraffin. Five different diatomite
fractions were produced: <1.6 mm, 2.0–1.6 mm, 2.5–2.0 mm,
3.35–2.50 mm, and >3.50 mm. A 50/50 wt.% solution of R-137 soda
glass with demineralized water was used as a binder. Attempts were
made to usemore environmentally friendly and natural binders such
as flour or starch, but despite baking the granules in a laboratory
oven at 75°C for 24 h, the durability of these granules was too low
and they only coated the manufactured diatomite-paraffin granules

without increasing the strength of the finished material. Given this,
the paper describes only granules with high durability, which can
be successfully used as a thermal energy storage medium. The tests
carried out showed that the lowest value of thermal conductivity was
recorded forD/P 2.0–1.6 mm.However, all the thermal conductivity
results are very low, oscillating between 0.07–0.10 W/m × K. As
for the specific heat, on the other hand, all measured values for
each granule type are very high and oscillate above 1.5 kJ/kg×K. The
highest specific heat was recorded for the largest granules at the test
temperature of 27.5°C–32.5°C.
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The thermal conductivity and specific heat of diatomite-paraffin
granules have been the subject of various studies, highlighting
the unique properties of diatomite as a thermal insulator and its
effectiveness when combined with paraffin in composite materials.
Diatomite, with its high porosity and low density, exhibits low
thermal conductivity, which is advantageous in thermal insulation
applications. For example, Han et al. (2020), reported a thermal
conductivity of 0.068 ± 0.001 W/m × K for diatomite ceramics
at 473 K, which decreased with increasing porosity, indicating
that higher porosity correlates with lower thermal conductivity.
Similarly, the thermal conductivity of diatomite consolidated with
starchwas 0.0984 W/m×K, demonstrating the insulating properties
of diatomite in composite molds (Alvarado et al., 2023). When
diatomite is used as a support matrix for phase change materials
(PCMs) such as paraffin, it significantly affects the thermal
properties of the resulting composites. For example, Jia et al.
(2020), synthesized composites of palmitic acid and diatomite and
noted that thermal conductivity was increased due to the porous
structure of the diatomite, which facilitated better heat transfer
in the composite. In addition, the incorporation of diatomite into
paraffin-based PCMs has been shown to improve thermal stability
and reduce the overcooling effect, as evidenced by the work of
(Zhang et al., 2017), who found that the enthalpies of melting
and crystallization of their diatomite/paraffin composites were
108.2 J/g and 98.5 J/g, respectively. This indicates that diatomite
not only serves as a structural support but also improves the
thermal properties of paraffin-based materials. The specific heat
capacity of diatomite-paraffin composites is also an important
factor affecting their thermal properties. The interaction between
diatomite and paraffin can lead to changes in specific heat, which
is crucial for thermal energy storage applications. For example, the
thermal properties of PCM/diatomite composites were analyzed by
differential scanning calorimetry (DSC), revealing that the latent
heat capacities of these composites were about 50% of those
of pure PCM (Jeong et al., 2012). This suggests that while diatomite
increases the thermal stability and conductivity of paraffin, it can
also affect the specific heat capacity, which is essential for effective
thermal energy storage. Integration of diatomite with paraffin results
in composites that exhibit favorable thermal properties, including
low thermal conductivity and increased specific heat capacity. These
features make diatomite-paraffin granules suitable for applications
in thermal insulation and energy storage systems.

5 Conclusion

The solution presented has a significant impact on the energy
efficiency of buildings, which brings some benefits in both economic
and environmental terms. One of the key aspects of energy efficiency
is preventing buildings from overheating in summer and minimizing
heat loss in winter. With the right technologies such as diatomite-
paraffine granules used in building components, it is possible to
maintain a stable temperature inside the building. Appropriately
selected building materials prevent unnecessary heating of rooms in
summer, which reduces the need for air conditioning. In turn, in
winter, the same technologies allow heat to be retained inside the
building, leading to less energy loss for heating. The thermal stability
of buildings, i.e., the ability to maintain the right temperature over a

long periodwithout large fluctuations, is crucial for the comfort of the
occupants. At the same time, it reduces the need for additional energy
sources for cooling and heating, leading to financial savings and lower
energy consumption, and consequently a reduction in greenhouse
gas emissions. The use of diatomite-paraffin granules in construction
contributes to energy efficiency, provides thermal comfort, and helps
to achieve sustainability goals.

The research results presented in this article lead us to draw some
important conclusions that summarize the work:

I. Calcination of diatomite has a positive effect on its sorption
capacity by increasing its reactive silica content. However, the
thermal treatmentmust be carried out at a suitable temperature
and for a certain duration of the process. The best results can
be obtained for a temperature of 850°C for 4 h.

II. The best sorption capacity of diatomite can be obtained for
the material with the lowest average particle size, which was
characterized by diatomite powder calcined at 850°C.

III. Natural binder only encapsulates diatomite-paraffin granules
and, despite its environmental benefits, is not a viable
candidate. The best granule durability was achieved
using a 50/50 wt.% solution of R-137 soda glass with
demineralized water.

IV. It is possible to produce diatomite-paraffin granules
containing 60 wt.% paraffin with a thermal conductivity
coefficient of 0.07–0.10 W/m × K and an energy efficiency
of 1.5 kJ/kg×K or higher.

Further work by the researchers will focus on producing
granules with another paraffin substance, i.e., FLEXOL paraffin
oil. It is also planned to produce granules with 80 wt.% paraffin.
Once the new granules have been produced, further thermal tests
will be carried out, which will include the studies presented in
this article and other complementary ones, such as TMA. The
authors’ future work will also present tests of finished lightweight
functional geopolymer foams for insulation applications and capable
of heat storage.

Diatomite-paraffin granules have significant environmental
and energy-saving benefits, making them an extremely attractive
solution for sustainable development. These granules, thanks to
the thermoregulatory properties of paraffin, help to efficiently store
and release thermal energy. This allows more efficient use of heat
in buildings and other systems, leading to a reduced need for
additional energy sources. As a result, less energy is wasted, which
translates into lower consumption of fossil fuels and reduced carbon
emissions. Incorporating these granules into buildingmaterials such
as plaster, walls, and concretemakes buildingsmore energy efficient.
The granules can accumulate heat during the day and release it
at night, reducing the need for heating and air conditioning. In
this way, they contribute to passive temperature control systems
that minimize the need for energy-consuming appliances. With
their ability to store heat and improve energy efficiency, diatomite-
paraffin granules can significantly reduce greenhouse gas emissions.
Lower energy consumption from traditional sources means lower
CO₂ emissions, which has a direct impact on the fight against
climate change. Diatomite is a natural and environmentally friendly
material, and paraffin, being a phase-change material, is safe to use
and has a long service life.The combination of thesematerialsmakes
it possible to create products that are environmentally friendly and

Frontiers in Materials 11 frontiersin.org

https://doi.org/10.3389/fmats.2024.1507779
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Przybek et al. 10.3389/fmats.2024.1507779

easy to dispose of, further enhancing their eco-friendly properties.
The use of diatomite-paraffin granules promotes sustainability, as
it enables better use of natural resources through efficient heat
management. In the long term, such solutions reduce the need
to exploit energy resources and contribute to savings on both a
household and industrial scale. Diatomite-paraffin granules play
a key role in the pursuit of environmental and energy efficiency.
Their ability to accumulate and regulate heat contributes to
reducing energy consumption, reducing greenhouse gas emissions,
and supporting sustainable development, making them a valuable
solution for combating climate change and improving energy
efficiency.
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