
TYPE Original Research
PUBLISHED 12 December 2024
DOI 10.3389/fmats.2024.1505295

OPEN ACCESS

EDITED BY

Ping Xiang,
Central South University, China

REVIEWED BY

Amir Ali Shahmansouri,
Washington State University, United States
Han Zhao,
City University of Hong Kong, Hong
Kong SAR, China
Yao JingRu,
Shandong Jianzhu University, China

*CORRESPONDENCE

Qing Xia,
aziliaon@outlook.com

RECEIVED 02 October 2024
ACCEPTED 04 November 2024
PUBLISHED 12 December 2024

CITATION

Qin C, Dong X, Wu B, Cai L, Wang S and Xia Q
(2024) Fatigue damage analysis of plain and
steel fiber-reinforced concrete material based
on a stiffness degradation microplane model.
Front. Mater. 11:1505295.
doi: 10.3389/fmats.2024.1505295

COPYRIGHT

© 2024 Qin, Dong, Wu, Cai, Wang and Xia.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Fatigue damage analysis of plain
and steel fiber-reinforced
concrete material based on a
stiffness degradation microplane
model
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Shaohua Wang2 and Qing Xia1*
1School of Civil Engineering and Transportation, South China University of Technology, Guangzhou,
China, 2China Construction Third Bureau First Engineering Co., Ltd., Wuhan, Hubei, China

Steel fiber-reinforced concrete material has garnered significant attention
in structure design due to its excellent resistance to fatigue damage. The
application of the plain concrete microplane model is extended to steel fiber-
reinforced concrete by modifying the stress-strain boundary conditions on
the microplane and then extended to fatigue damage analysis by considering
fatigue-related material stiffness, mainly concerned with tensile damage,
mainly concerned with tensile damage. The normal positive strain on the
micro-plane is regarded as the fatigue variable, and the fatigue history
variable is the accumulation of the fatigue variable during the loading. The
relationship between the fatigue history variable and the material stiffness
fatigue degradation function is established. In the numerical implementation, the
crack band model is combined to reduce the mesh sensitivity caused by strain
localization. During the numerical simulation, the parameters of plain concrete,
steel fiber-reinforced concrete, and the material fatigue degradation function
can be calibrated sequentially, requiring only a few benchmark tests for accurate
parameter calibration. The numerical results show that this model can be used
for the fatigue damage analysis of plain concrete and steel fiber-reinforced
concrete material. It is expected to be used for the refined analysis of concrete
structures under complex loading conditions and structural forms in the future,
providing convenience to engineering design, evaluation, and optimization.

KEYWORDS

material stiffness degradation, fatigue damage, plain concrete, steel fiber-reinforced
concrete, microplane model

1 Introduction

Concrete material has a wide range of applications in infrastructure, including
bridges, roads, high-rise buildings, and the foundations of power machinery. However,
concrete structures are often subjected to cyclic loads, such as traffic (Zhang et al.,
2024) and wind, which can lead to material fatigue stiffness degradation (Riyar et al.,
2023). This can gradually deteriorate the structural performance, potentially leading
to structural failure. Fiber-reinforced concrete material has emerged as a promising
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solution to improve the durability and safety of concrete structures.
Incorporating short fibers, including steel or polypropylene fibers,
into fiber-reinforced concrete results in a composite material that
exhibits enhanced resistance to cracking, improved toughness,
and fatigue properties (Carlesso et al., 2019). It is imperative to
investigate the fatigue characteristics of plain and fiber-reinforced
concrete and their damage evolution patterns. This is crucial
for precisely predicting and assessing the service life of concrete
structures and developing adequatemaintenance and reinforcement
strategies.

As early as the late 19th century, engineers established the S-N
curve (Aas-Jakobsen, 1970; Cornelissen, 1984; Miarka et al., 2022)
based on experimental data to reflect the fatigue life of concrete at
different stress levels. The S-N curve also applies to fiber-reinforced
concrete, but it is necessary to consider the fiber type, volume
fraction, and orientation effects on fatigue life. The S-N curve is
a reasonable method for estimating the anticipated lifespan under
disparate stress levels. However, it requires a substantial corpus of
experimental data and may not accurately reflect the intricate stress
conditions. With the advent of fracture mechanics, the Paris law
(Paris and Erdogan, 1963) was introduced to describe the crack
propagation rate in plain concrete under constant load. For fiber-
reinforced concretematerial, the parameters in the Paris lawmust be
adjusted to reflect the hindering effect of fibers on crack propagation.
The Paris law is suitable for single crack extension analysis under
simple loading conditions, but its application is limited under
complex or variable loading. Hillerborg et al. considered a virtual
crack in front of a visible crack in concrete and cohesive stress
between the interfaces of the virtual crack (Hillerborg et al.,
1976). The cohesive zone model simulates the nonlinear fracture
behavior of concrete by defining the relationship between the
cohesive stress between the crack interfaces and the crack opening
displacement and extends themodel to fatigue loading by correcting
the relationship between the cohesive stress and the crack opening
displacement (Gylltoft, 1984). For fiber-reinforced concrete, the
cohesive zone model needs to consider further the bridging effect of
fibers, which can increase the cohesive stress at the crack surface and
thus slow down the crack extension.The damage constitutive model
(Marigo, 1985), on the other hand, describes the degradation of the
mechanical properties of concrete under repetitive loading from a
materialmicroscopic point of view by introducing damage variables,
which can be extended to fatigue loading by introducing fatigue
history variables and adjusting the damage evolution conditions.
This model considers the emergence and expansion of microcracks
within concrete and their effect on the overall material properties.
For fiber-reinforced concrete, the damage constitutive model needs
to consider the effect of fibers on the damage evolution, including
the reinforcing and toughening effects of fibers (Li et al., 2024).

In addition to the macro-mechanical modeling of concrete,
researchers began to seek breakthroughs in micro-mechanical
theories to study concrete constitutive relationships, such as the
microplane damage model (Caner and Bažant, 2013a; Caner
and Bazant, 2013b). The microplane, which represents a plane
perpendicular to any direction at a material point, can describe
the interactions between weak planes, cracks, and different defects
on microstructures in all directions and can be used to model
the inelastic behavior of quasi-brittle materials (e.g., concrete), and
has been developed into its seventh version up to the present day.

Subsequently, Caner et al. (2013) extended the normal concrete
microplane model to fiber concrete by improving the stress-
strain boundary conditions on the microplane to describe the
pullout and fracture behavior of fibers in fiber-reinforced concrete.
Kirane and Bažant (2015) incorporated the fatigue effect into the
normal concrete microplane model by introducing a fatigue history
variable to quantify the cyclic damage accumulation of the material.
However, there is still a lack of microplane models applicable
to fatigue damage studies of fiber-reinforced concrete. Although
the performance of Engineered Cementitious Composites (ECC)
(Lu et al., 2017; Huang et al., 2022; Zhu et al., 2022) and Ultra High-
Performance Fiber Reinforced Concrete (UHPFRC) (Wille et al.,
2014; Yoo et al., 2017; Nguyen et al., 2023) is higher than that
of ordinary fiber-reinforced concrete. However, considering the
cost and construction conditions, steel fiber-reinforced concrete
specimen (SFRC) (Li et al., 2018; Chu et al., 2023) is still one of
themost commonFRCs used in engineering. Although compression
also leads to fatigue-relatedmaterial stiffness degradation, this paper
will focus on the tensile fatigue damage of SFRC, considering the
significant difference between concrete’s tensile and compressive
properties.

In the following study, Section 2 presents the basic framework
of the microplane damage model for plain concrete, including
the three processes of projecting macrostrain to micro-strain,
establishing the stress-strain relationship on the microplane, and
homogenizing microstress to macro-stress. Section 3 describes how
to extend the microplane model from plain concrete to steel fiber-
reinforced concrete and how to consider fatigue effects in the
microplane damage model. Section 4 summarises the numerical
algorithm for the microplane model, parameter calibration, and
validation of the concrete microplane damage model. Section 5
compares the fatigue damage analysis of plain and steel fiber-
reinforced concrete with experimental results. Section 6 summarises
the further research focus. Finally, Section 7 summarises the main
conclusions of the paper.

2 Microplane damage model for plain
concrete

2.1 A framework for microplane theory

The concrete microplane damage model (Caner and Bažant,
2013a; Caner and Bazant, 2013b) consists of three parts: physical
mapping of “macro to micro physical variables,” establishment of
constitutive relationship at the micro scale, and homogenization of
“micro to macro physical variables,” as shown in Figure 1.

2.2 Macroscale to microscale strain
decomposition

The microplane model portrays the mechanical behavior of
concrete materials at the microscopic level in terms of stresses
and strains in vector form, so it is necessary to transform the
stresses or strains at the macroscopic level into the stresses or
strains at the microscopic level. According to the treatment of the
relationship between the macroscopic stress tensor or macroscopic
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FIGURE 1
Framework for microplane theory.

FIGURE 2
The kinematic constraints.

strain tensor and the stress or strain vector on the microplane, they
are usually categorized into static and kinematic constraints. They
can be understood as the projection of the macroscopic stress tensor
on the microplane to obtain the corresponding stress vector and
the projection of the macroscopic strain tensor on the microplane
to obtain the corresponding strain vector, respectively. Due to the
strain-softening behavior of quasi-brittle materials such as concrete,
the kinematic constraints shown in Figure 2 are used in the concrete
microplane damage model to ensure the stability of the model when
analyzing strain softening.

As shown in Figure 2, the strain vector e on the microplane i
(normal vector is denoted as n) is expressed as the projection of the
macroscopic strain vector ϵ by Equation 1.

e = n ⋅ ϵ = eNn+ eT (1)

where eN = ϵN = N :ϵ is the normal strain component on the
microplane, eT = ϵT = T ⋅ ϵ is the tangential shear strain vector on

the microplane, |eT| = √ϵ2K + ϵ
2
M; N and T are the corresponding

projection operators. Further, the tangential strain eT in the
microplane is used to characterize plasticity and friction; the normal
strain eN is distinguished into the tensile strain (i.e., the part where
eN > 0) to characterize the tensile ability, and the compressive strain
(i.e., the part where eN < 0) to characterize the compressive ability,
while the compressive strain can be decomposed into the volume
component eV and the deviatoric component eD by Equation 2.

eN = eV + eD = V :ϵ +D:ϵ (2)

where V = 1
3
I is the volume component, D = n⊗ n− 1

3
I denotes the

bias obtained by subtracting the volume component from the total
strain, and I is the third-order unit tensor.

2.3 Stress-strain relationships on
microplane

2.3.1 Elastic response and stiffness degradation
Unlike the traditional tensor-type constitutive model, the

microplane model defines constitutive relations on a general plane
(microplane) in any direction at a material point. If the strain
component on the microplane has been obtained from kinematic
constraints, the general expression for the stress on the microplane
is given by Equation 3.

σN(t) = F t
τ=0[εN(τ),εT(τ)],

σL(t) = Gt
τ=0[εN(τ),εT(τ)],

σM(t) =Ht
τ=0[εN(τ),εT(τ)].

(3)

where F ,G,H is the history functional of the microplane strain at
moment t.

When the stress on the microplane develops in the elastic range,
the normal strain is not decomposed into its volume component
eV and bias component eD, and the modulus of elasticity, shear
modulus, andnormal strain eN are used directly to solve for the stress
on the microplane.The elasticity modulus EN and shear modulus ET
on the microplane can be defined as

EN =
E

1− 2v
,ET = EN

1− 4ν
1+ ν
, (4)
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where E is the macroscopic level modulus of elasticity, ν is Poisson’s
ratio, EN = K/3, and K is the bulk modulus. Since EN and ET are
required to be non-negative, Equation 4 holds for Poisson’s ratio
ν ∈ [−1,0.25], and the Poisson’s ratio ν of concrete (about 0.18) is
satisfied. Starting from the microplane model M3 (Bažant et al.,
1996), the concept of a stress-strain boundary is introduced, within
which the response is considered to be elastic with constant
microplane elastic stiffness EN and ET.

In addition, when the material is in the elastic stage,
the modulus of elasticity is gradually degraded due to the
progression of damage. The evolution of the microplane
normal elastic modulus needs to be considered in the damage
variables. Here the current value of the microplane normal
elastic modulus damage is calculated by retrieving the largest
magnitude of positive and negative normal strains ϵ0+N , ϵ

0−
N

stored so far. For the case of σ0N ⩾ 0, it is calculated using
Equation 5.

EN = EN0e
−c13ϵ

0+
N f(F)but,EN = EN0, if,σ0N > EN0ϵN andσ

0
N∆ϵN < 0

(5)

and in the case of σ0N < 0, it is calculated using Equation 6.

EN = EN0(e
−c14|ϵ

0−
N |/(1+c15ϵe) + c16ϵe). (6)

In Equation 5, the fatigue degradation function f(F) and the
meaning of the parameters will be described later. At this point
the stress in the normal direction of the microplane elastic stage
is given by Equation 7.

σeN = σ
0
N +EN∆ϵN, (7)

It is worth noting that Equation 5 is used in order to ensure
that the unloading moves towards the origin along the initial elastic
slope after intersection, rather than continuing along the original
unloading path after intersection.

2.3.2 Stress-strain boundaries on microplanes
As shown in Figure 2, the strain on the microplane is divided

into normal strain and tangential strain, and normal strain
can be divided into tensile strain and compressive strain. For
normal tensile strain, the tensile normal stress-strain boundary
is introduced to characterize the inelastic response on the
microplane. For normal compression strain, the key innovation
of M7 that significantly improves it is that when the microplane
is under pressure, it no longer separately determines whether
the volume stress and deviator stress exceed the boundary,
but calculates the two boundary values separately and then
sums them up, i.e., σbN = σ

b
V + σ

b
D. Then it is compared with

the normal stress σeN calculated using the elastic increment
method to determine the normal stress value on the microplane.
The study found this improvement is also logically consistent
with elastic and damage potential energy. It effectively avoids
problems such as excessive lateral expansion during tensile
response and normal stress self-locking in the softening section.
In addition, in M7, the boundary function about the shear
resultant force στ is defined, which solves the problem of direction
dependence of the results due to the arbitrary selection of shear
component coordinates. Therefore, in the microplane model

M7 (Caner and Bažant, 2013a; Caner and Bazant, 2013b), the
boundary functions that characterize the inelastic response
on the microplane are normal tensile stress-strain boundary,
compressive deviatoric stress-strain boundary, compressive volume
stress-strain boundary and plastic-friction stress-strain boundary
(shear boundary).

2.3.2.1 Normal tensile stress-strain boundary
Figure 3A shows that the normal tensile stress-strain

boundary controls the tensile fracture behavior, calculated by
Equation 8.

σbN = Ek1β1e
−⟨ϵN−β1c2k1⟩/(c4ϵesgn(ϵe)+k1c3). (8)

where β1 = − c1 + c17e
−c19⟨ϵe−c18⟩. The recommended values of the

parameters and their significance in this section will be described
in detail later.

2.3.2.2 Compressive deviatoric stress-strain boundary
Figure 3B shows that the compression deviatoric stress-strain

boundary is used tomodel the damage evolution under compression
conditions, calculated by Equation 9.

σbD = −
Ek1β3

1+ [⟨−ϵD⟩/(k1β2)]
2 . (9)

where γ0 = f
′
c0/E0 − f

′
c/E, γ1 = e

γ0 tanh(c9⟨−ϵV⟩/k1), β2 = c5γ1 + c7,
β3 = c6γ1 + c8. f

′
c denotes the compressive strength of the concrete

material, and f′c0 is the reference value of compressive strength for
model calibration.

2.3.2.3 Compressive volume stress-strain boundary
As shown in Figure 3C, the compressive volumetric stress-strain

boundary is used to model pore collapse and expansion rupture of
the material, calculated by Equation 10.

σbV = −Ek1k3e
− ϵV

k1α , (10)

where α = k5
1+ϵe
( ϵ

0
I−ϵ

0
III

k1
)
c20
+ k4. ϵ

0
I , ϵ

0
III are themaximum andminimum

principal strains at the beginning of the step, and ϵe = ⟨−σ
0
V/EN0⟩,

where ⟨x⟩ = max (x,0).

2.3.2.4 Plastic-friction stress-strain boundary (shear
boundary)

As shown in Figure 3D, the plastic-friction boundary is used
to model the shear behavior of the material, calculated by
Equation 11.

σbT = FT(−σN) =
ETk1k2c10⟨−σN + σ

0
N⟩

ETk1k2 + c10⟨−σN + σ
0
N⟩
. (11)

where σ0N = ⟨ETk1c11 − c12⟨ϵV⟩⟩.

2.3.3 Yielding and plastic flow criteria on
microplane

The yield condition and plastic flow criterion on the microplane
are defined as follows: when the stress on the microplane
lies within the stress-strain boundary, the stress-strain on the
microplane is in the elastic phase. At this time, the stress is
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FIGURE 3
Stress-strain boundaries on the microplane. (A) Normal tensile stress boundary. (B) Compressive deviatoric stress boundary. (C) Compressive volume
stress boundary. (D) Plastic-friction stress boundary.

given by σeN in Equation 7. When the stress on the microplane
exceeds the stress-strain boundary, the strain remains, and
the stress falls back to the boundary. The normal stress is
evaluated using Equation 12.

σN =max[min(σeN,σ
b
N),σ

b
V + σ

b
D]. (12)

The shear stress on the microplane is given by Equation 13.

στ =min(|σeτ|,σbτ). (13)

Where the incremental, cumulative form of the formula for
calculating the shear stress in the elastic phase on the microplane
is given by Equations 14–16.

σeτ = √(σ
0
M +ET∆ϵM)

2 + (σ0L +ET∆ϵL)
2, (14)

σM = σ
0
M +∆σM,σL = σ

0
L +∆σL, (15)

∆σM = ET∆ϵM
στ
σeτ
,∆σL = ET∆ϵL

στ
σeτ
. (16)

2.4 Homogenization from microscale to
macroscale

After defining the stress-strain relationship on the microplane,
the principle of virtual work is applied to establish the equation
between the microplane stress vector and the macroscopic stress
tensor, from which the macroscopic stress tensor σij satisfies
Equation 17.

2π
3
σijδεij = ∫

Ω
(σNδεN + σLδεL + σMδεM)dΩ (17)

whereΩ is the surface of the unit hemisphere and 2π/3 is the volume
of the hemisphere, the integral is regarded as a homogenization
of the microplane contributions in different directions within the
material. Due to δεN = Nijδεij,δεL = Lijδεij and δεM =Mijδεij, from
the arbitrariness of the variation δεij, the equilibrium relation can
be obtained as Equations 18, 19.

σij =
3
2π
∫
Ω
sijdΩ ≈ 6∑

Nm

μ=1
wμs
(μ)
ij (18)
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sij = σNNij + σLLij + σMMij, (19)

The integral is approximated by the optimal Gaussian integral
formula for the sphere, denoting the weighted sum of microplane
in the direction nμ, with the weight wμ normalized, so ∑μwμ = 1/2.
For better accuracy in the far-peak post-softening, 37microplane are
recommended to be preferred.

3 Microplane model extend to steel
fiber-reinforced concrete and fatigue
damage

3.1 Extend to fiber-reinforced concrete

The simplest way to extend the plain concrete microplane
model to make it applicable to SFRC containing materials
such as steel fibers is to adjust the stress-strain boundary
conditions on the microplane (Caner et al., 2013). First,
fibers usually increase the tensile capacity of the concrete
material (Jiang et al., 2023; Lakavath et al., 2024), so the effect
of steel fiber reinforcement needs to be introduced on the
normal tensile stress-strain boundary. The contribution of fiber
reinforcement is given by a simplified form of the Kholmyansky
equation (Kholmyansky, 2002), as Equation 20.

σ fN =
{{{{
{{{{
{

Ep1k1⟨ϵN/k1⟩e
−p2⟨ϵN/k1⟩, if ϵN/k1 < 1/p2 + p4.

Ep1k1/p2e
−1, if1/p2 + p4 ⩽ ϵN/k1 < p3.

Ep1k1⟨ϵN/k1 − p3 + 1/p2⟩e
−p2⟨ϵN/k1−p3+1/p2⟩, ifp3 ⩽ ϵN/k1.

(20)

This contribution is obtained by the gradual activation of the
bridging of the fibers during the development of the crack, as shown
in Figure 4. Assuming parallel coupling of the fibers and the matrix,
the normal stress on the microplane is Equation 21.

σbfN = σ
b
N + σ

f
N. (21)

where σbfN is the total normal stress of the fiber-reinforced concrete,
σbN is the normal stress of the plain concrete matrix, and σ fN is
the normal stress of steel fiber contribution given by Equation 20.
Therefore, in the microplane model of fiber-reinforced concrete,
Equation 12 is modified as Equation 22.

σN =max[min(σeN,σ
bf
N ),σ

b
V + σ

b
D]. (22)

In addition, the tensile capacity that steel fiber-reinforced
concrete can withstand changes (increases or decreases) before
cracks develop. Therefore, the normal tensile stress-strain
boundary Equation 8 of the plain concrete matrix needs to be
adjusted to Equation 23.

β1 = −c1 + c17e
−c19⟨ϵe−c18⟩ + p0(V f). (23)

Secondly, the addition of steel fibers changes the compressive
capacity of the concrete material, especially the shear expansion
deformation, so the compressive deviatoric stress-strain boundary
condition Equation 9 needs to be adjusted to Equation 24.

β2 = c5γ1 + c7(V f). (24)

FIGURE 4
Simplified total fiber law obtained by superimposing multiple fiber
responses.

Finally, steel fibers change the mechanical behavior of concrete
in triaxial compression, so the plastic-friction boundary Equation 11
needs to be adjusted to Equation 25.

σbT = FT(−σN) =
ETk1k2(V f)c10(V f)⟨−σN + σ

0
N⟩

ETk1k2(V f) + c10(V f)⟨−σN + σ
0
N⟩
, (25)

where σ0N = ⟨ETk1c11(V f) − c12(V f)⟨ϵV⟩⟩.
The microplane model of steel fiber-reinforced concrete is

based on the microplane model of plain concrete. Therefore to
calibrate its parameters, it is necessary to calibrate the parameters
of plain concrete first. Then from the uniaxial tensile data of SFRC,
p0(V f), p1(V f), p2(V f), p3(V f), p4(V f) can be identified. From
Equation 23, it can be found that the parameter p0(V f) determines
whether the fibers in the concrete matrix are bonded or not. The
parameter p1(V f) controls the proportion of steel fiber contribution,
while p2(V f) controls the pullout of fibers connecting the open
cracks. Parameters p3(V f), p4(V f) determine the length of the
plastic plateau in the stress-strain relationship (shown in Figure 4).
c7(V f),c12(V f) can be determined from the uniaxial compression
data and k2(V f),c10(V f),c11(V f) can be determined from triaxial
compression data. In many practical applications, fewer triaxial
compression problems are involved.Therefore, it is mostly sufficient
to study the uniaxial compression and uniaxial tension of fiber
concrete. If uniaxial tension tests are difficult to perform, the
parameters can be calibrated indirectly by means of the notched
three-point loaded bending concrete beam test.

3.2 Extend to fatigue damage

In the concrete microplane damage model, taking the stretch
shown in Equation 5 as an example, the damage behavior of concrete
under several cycles can be described by assuming that the elastic
modulus EN in the μ-th microplane will undergo damage by
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Equation 26.

EN(μ)
EN0
= exp(−Aϵ0+N (μ)). (26)

where EN0 is the undamaged modulus, A is the material parameter
which is called c13 in Equation 5, and ϵ0+N (μ) is the maximum strain
reached so far in theμ-thmicroplane.This approach can characterize
the damage to the concrete for a few cycles or so, but it does not
capture fatigue. It is worth noting that once damage begins to occur
in the material, strain localization occurs, and strain calculations
at this point are affected by the finite element mesh size in a
way that is difficult to ignore. Therefore, it is necessary to analyze
the microplane model in conjunction with nonlocal theory or the
crack band model (Bažant and Oh, 1983) (used here). In order to
effectively predict the fatigue response, it is necessary to introduce a
variable that measures the fatigue damage history paths (Kirane and
Bažant, 2015; Baktheer et al., 2021; Aguilar et al., 2022).

3.2.1 Fatigue history variable
The fatigue damage variable is denoted as ζ. F is the fatigue

history variable obtained from the accumulation of fatigue damage
variables, and because fatigue damage is irreversible, F never
decreases. For simplicity, in this paper, only the cyclic cumulative
damage under tension is considered,and the cyclic cumulative
damage under compression is ignored. The normal positive strain
ϵ+N(μ) reached on the microplane is adopted as the fatigue variable.
Then the fatigue damage history variable at the end of the increment
is given by Equation 27.

F = F0 + dζ,dζ = |dϵ
+
N|. (27)

The fatigue damage behavior of concrete under compressive
loading can be used as a fatigue variable for compressive fatigue
damage by using the normal negative strain, ϵ−N(μ), as the fatigue
variable for compressive fatigue damage. At this time the elastic
model of fatigue damage occurring on the microplane should be
calculated using Equation 6.

3.2.2 Fatigue damage estimation
Next, the stiffness degradation of the material is related to

the fatigue damage history variables. A model is obtained that
is suitable for both fatigue damage analyses without affecting the
calibration of the parameters of the original microplane model. The
material stiffness degradation on the microplane is represented by
the damage parameter ω = EN/EN0, in for the intact material ω =
1, and ω = 0 for the fully damaged material. Equation 26 is further
written as Equation 28.

EN
EN0
= ω = exp(−Aϵ0+N ). (28)

Then, introduce ω = ωcyc = f(F) as the material stiffness
degradation due to cyclic loading. To obtain the dependence of
the damage parameter ω on the fatigue history variable F , in
analogy with Paris law, the following successively increasing damage
accumulation rates are introduced,

dωcyc

dF
= −sFp. (29)

FIGURE 5
Fatigue degradation law of material (s = 100,q = 2,ζt = 0.0001).

where s and p are material parameters. Integration of Equation (29),
taking into account F = 0 at ωcyc = 1, yields

ωcyc = 1−
s

p+ 1
Fp+1 (30)

Usually taking p ≥ 1, then Equation (30) becomes negative as the
fatigue damage history variable increases. Therefore, the following
alternatives are used

ωcyc1 =
1

1+ (sF)p + (sF)2p
(31)

ωcyc2 =
sζt

Fp + sζt
(32)

Similarly, s and p are material parameters that characterize
fatigue degradation. ζt is the reference strain for uniaxial tensile and
ζt = ft/E0 is suggested, where ft is the material tensile strength. The
degradation functions Equations 31, 32 both satisfy the conditions
ω′cyc ⩽ 0, ωcyc ⩾ 0, and lim

ζ→∞
ωcyc = 0. Equations 30–32 correspond to

the material fatigue damage softening law as shown in Figure 5. It
can be found that the fitting of the test data undermonotonic loading
is not affected by the degradation function ωcyc ≈ 1, due to the small
fatigue history variable F , in the first one or two cycles.

4 Numerical implementation,
parameter calibration and model
validation

4.1 Numerical implementation

In the numerical implementation, it is necessary to incorporate
the crack band model to reduce the mesh size sensitivity of the
computed results (Bažant and Oh, 1983; Červenka et al., 2005). In
ABAQUS commercial finite element software, VUMAT subroutine
is written for numerical implementation. If the stress tried exceeds
the stress-strain boundary, it is necessary to keep the strain and limit
the stress to the stress-strain boundary. In the finite element method
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TABLE 1 Default values of fixed parameters of microplane model and their meaning.

Parameter Default value Meanings

f′c0 15.08 MPa Reference compressive strength

E0 20 GPa Reference elastic modulus

c1 0.089 Control uniaxial tensile strength

c2 0.176 Control uniaxial tensile curve

c3 4 Control uniaxial tensile curves

c4 50 Control uniaxial compressive curves

c5 3,500 Control compression volume expansion

c6 20 Control compression volume expansion

c7 1 Control uniaxial compression curves

c8 8 Controls uniaxial compression strength

c9 0.012 Control uniaxial compression curves

c10 0.33 Effective coefficient of friction

c11 0.5 Initial cohesive in frictional response

c12 2.36 Cohesive changes with tensile volumetric strain

c13 4,500 Control uniaxial tensile behavior

c14 300 Unloading slope under low hydrostatic pressure

c15 4,000 Unloading of high constraints to low constraints

c16 60 Unloading slope under high hydrostatic pressure

c17 1.4 Controls the uniaxial tensile strength

c18 62.5 MPa Tensile cracking in compression

c19 1,000 Tensile softening due to compression

c20 1.8 V-D component coupling at high pressures

c21 250 MPa Volumetric stress-strain boundary upper limit

program, if the strain increment ∆εij at the current step is known,
as well as the strain ε0ij and stress σ0ij at the end of the previous step,
the new stress σij is obtained at the end of the current step by the
following steps:

Step 1: First, the strain and strain increment on the microplane are
calculated by Equation 33 according to Equation 1,

∆εN = Nij∆εij,∆εM =Mij∆εij,∆εL = Lij∆εij. (33)

Step 2: Calculate the volumetric strain and its increment at the end
of the previous and current steps, based on the given strain and its

increment by Equation 34.

εoV = εkk/3,∆εV = ∆εkk/3,εV = ε
o
V +∆εV. (34)

Then, calculate εe = ⟨−σ
0
V/EN0⟩, while the corresponding

volumetric stress-strain boundaries σbV are later calculated by
Equation 10. The deviatoric strain can be obtained from total strain
and volumetric strain by Equation 35.

∆εD = ∆εN −∆εV,ε
0
D = εN − ε

0
V,εD = ε

0
D +∆εD, (35)

and σbD is calculated by Equation 9.

Step 3: Calculate the εN = εV + εD retrieve the history variables
ε0+N ,ε

0−
N of the largest magnitude stored so far. Next, the
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TABLE 2 Default values of free parameters of microplane model and their meaning.

Free parameter Default value Meaning

E 25000 MPa Elastic modulus

ν 0.18 Poisson’s ratio

k1 1.5× 10−4 Proportionality parameter

k2 110 Control plastic-friction stress boundary

k3 30 Control stress-strain volumetric boundary

k4 100 Control stress-strain volumetric boundary

k5 1× 10−4 Control the V-D coupling at low pressure

FIGURE 6
Uniaxial compressive stress-strain curve of plain concrete.

current damage degree of the normal elastic modulus of
the microplane is calculated according to EN0 = E/(1− 2ν) by
Equations 5, 6. Calculating the normal elastic stress of the
microplane by Equation 36.

σeN = σ
o
N +EN∆εN (36)

Step 4: Calculate the normal tensile boundary σbN of the
microplane using Equation 8 when σbN > 0.

Step 5: Holding the strain constant and allowing the
stress to drop vertically to the normal tensile stress-strain
boundary by Equation 37.

σN =max[min(σeN,σ
b
N),σ

b
V + σ

b
D] (37)

Meanwhile, update the history maxima ε0+N and ε0+N .

Step 6: Calculate an approximation of the current
volumetric stress by Equation 38.

σV ≈
1
2π
∑Nm

μ=1
wμσN (38)

FIGURE 7
Experimental and simulation of compression. (A) Triaxial compression
experiment and simulation with hydrostatic pressure. (B) Experimental
and simulation of lateral limit uniaxial compression.

Retrieve the originally stored microplane shear stresses σoL,
σoM, followed by estimating ET according to Equation 4, and
̂σ0N = ET⟨k1c11 − c12⟨εV⟩⟩. If we want to simulate cell failure, the

recommended deletion criterion of the adopted cell is εI ≥ 0.5%.The
shear boundary is then calculated by Equation 11.

Step 7: Calculate the shear response upon return to the stress-strain
boundary by Equations 12–16.

Step 8: The stress σij at the end of the current step is obtained
by calculating the sum of stresses on all microplanes through
Equations 18, 19, while recording the variables σV, σN, σL, σM, ε

0+
N ,

ε0−N at the end of the current step.
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TABLE 3 Parameter calibration of carbon steel fiber reinforced concrete.

V f 0% 1% 2%

p0 - 0.0083 0.0165

p1 - 0.178 0.357

p2 - 0.266 0.234

p3 - 4.22 5.09

p4 - 3.75 3

c7 1 1,000 1,000

k2 100 110 120

c10 0.33 0.43 0.43

c11 0.5 3 6

c12 2.36 0.236 0.0236

4.2 Parameter calibration

In the microplane model (M7), the shape of the response
curve is determined by five free parameters and twenty-one
fixed parameters. Tables 1, 2 provide a concise explanation of
the meaning and default value of each parameter. The fixed
parameters, as detailed in Table 1, are calibrated using the uniaxial
compressive strength f′c = 36MPa and the axial normal strain εp =
0.0036 at peak stress. The calibration of the uniaxial compressive
strength f

∗
c , and the corresponding strain ε

∗
p , of a particular

concrete using a microplane model requires only that the reference
values of the free parameter k1, and the elastic modulus E,
be modified to,

k∗1 = k1
ε∗p
εp
,E∗ = E

f∗c
f′c

εp
ε∗p
. (39)

To optimize the fitting of a large amount of experimental data,
it is not necessary to change all five free parameters simultaneously
in the actual microplane model (Caner and Bažant, 2013a; Caner
and Bazant, 2013b). The elastic modulus E and Poisson’s ratio v
are determined through experimental measurement. First, all other
parameters are assumed to be reference values, and subsequent
parameter calibration is conducted.The parameter k1 was calibrated
based on the strain corresponding to the peak stress in the uniaxial
compression experiment. If sufficient triaxial compression data are
available, and the compression intensity is sufficiently strong to
elicit an almost plastic response, the data are fitted by adjusting
k2. The parameters k3 and k4 are calibrated based on hydrostatic
pressure experimental data. If sufficient uniaxial, biaxial, and triaxial
compression data at low hydrostatic pressure are available, k5
should be determined by fitting. Otherwise, the default values
are retained.

FIGURE 8
Experiment and simulation of carbon SFRC. (A) Compression of
carbon SFRC. (B) Compression of carbon SFRC under 40 MPa
hydrostatic pressure. (C) Compression of carbon SFRC under 70 MPa
hydrostatic pressure.

4.3 Validation of representative examples

4.3.1 Plain concrete specimen
First, the uniaxial compression test of Chern et al. (1993) was

fitted to the elastic modulus E = 20GPa, compressive strength f′c =
20.65MPa, and Poisson’s ratio ν = 0.18 of plain concrete materials.
The strain ε

∗
p = 0.001458 corresponding to the peak load was

obtained from the uniaxial compression experiment, and the free
parameters k1 = 60 were adjusted according to the prediction
Equation 39 proposed by Bazant et al., with other parameters kept
defaults. The calculated uniaxial compression stress-strain curve
of plain concrete is shown in Figure 6, which is similar to the
experimental results.
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FIGURE 9
Simulated load-displacement curve under monotonic and fatigue
loading. (A) Geometry of a concrete beam with notched three-point
bending. (B) Load-displacement curve under monotonic loading. (C)
Load-load point displacement curves under fatigue loading.

Next, a triaxial compression experiment of concrete under
hydrostatic pressure was fitted. Plain concrete material parameters
(Chern et al., 1993): elastic modulus E = 20GPa, Poisson’s ratio
ν = 0.18. The free parameter k1 = 60× 10−6 and other parameters
are kept as default. The simulation and experimental results
are shown in Figure 7A. The model is sufficient to capture concrete
compression under low hydrostatic pressure conditions. Therefore,
it is suitable for capturing the nonlinear behavior of concrete under
conventional conditions.

Then, the mechanical behavior of plain concrete under side-
limited uniaxial compression was fitted.The plain concrete material
parameters (Caner and Bazant, 2013a): elastic modulus E =

TABLE 4 Parameter calibration of steel fiber reinforced concrete.

V f 0% 0.5% 1.0% 1.5%

p0 - 0.0042 0.0083 0.0125

p1 - 0.089 0.178 0.267

p2 - 0.282 0.266 0.260

p3 - 3.79 4.22 4.65

p4 - 4.12 3.75 3.38

k1 140 140 140 140

k2 100 110 115 120

c7 1 50 100 500

c10 0.33 0.38 0.43 0.48

c11 0.5 1 2 4

c12 2.36 1.52 0.438 0.152

41.369GPa, Poisson’s ratio ν = 0.18, free parameters k1 = 105×
10−6, k3 = 10, k4 = 150, and other parameters are kept default. The
simulation results are shown in Present-1 in Figure 7B, which
agrees with the tests. In literature (Caner and Bazant, 2013b), the
free parameter k1 = 120× 10−6, corresponding to the computational
results as shown in Present-2 in Figure 7B.Whenmicroplane model
parameters are calibrated, it can be well used to capture plain
concrete mechanical response.

4.3.2 Steel fiber-reinforced concrete specimen
In this section, the mechanical response of steel fiber-reinforced

concrete is analyzed. The parameter calibration was performed for
fiber reinforced, as shown in Table 3 (Caner et al., 2013). The
experimental and simulation results of FRC containing carbon steel
fibers (fiber volume admixture Vf = 0%, 1%, 2%) at hydrostatic
pressures of 0 MPa,40 MPa, and 70 MPa are shown in Figure 8.
Therefore, the microplane model can analyze the mechanical
response of fiber-reinforced concrete when the parameters are
calibrated.

5 Fatigue damage analysis

5.1 Plain concrete material

In this section, we consider a notched plain concrete beam
of depth D = 107.8mm, span S = 2.5D, and a notch of length a0 =
D/6 situated at the center of the beam. The width of the beam
is 38.1mm, as illustrated in Figure 9A. The parameters of plain
concrete material: Young’s modulus E = 38.3GPa, Poisson’s ratio ν =
0.18, compressive strength fc = 90.3MPa,density ρ = 2400kg/m3.
The free parameters k1 = 140× 10

−6 are calibrated by matching
the peak loads of monotonic load, and the default values are
adopted for all other parameters. Two finite elementmesh sizes were
considered, i.e., hsize = 3mm and hsize = 5mm, and the predicted
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TABLE 5 Experiments and simulations of monotonic and fatigue loading of steel fiber reinforced concrete.

Specimen Peak load (kN) Fatigue life Fatigue law (s,q)

Experimental Simulation Experimental Simulation

0%-PC 2.74 2.73 137 135 (3500,2)

0.5%-SFRC 2.83 2.86 2053 2,134 (850,2)

1.0%-SFRC 3.29 3.29 2,693 2,794 (750,2)

1.5%-SFRC 4.60 4.60 4,461 4,578 (700,2)

FIGURE 10
The strain in a three-point bending beam and fatigue damage law. (A) The strain in a three-point bending beam one cycle before fatigue damage
occurs. (B) Fatigue damage law of various fiber-reinforced concrete.

FIGURE 11
Geometry of reinforced concrete beams (mm) and its loaded conditions.
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FIGURE 12
Load-displacement curves of reinforced concrete beams under
monotonic loading (Vf = 0%,0.5%,1%,1.5%).

peak loads were 5.32MPa and 5.22MPa, which were in good
agreement with the experimental results 5.4MPa (Bazant and Schell,
1993), as shown in Figure 9B. To reduce the computational cost, the
finite element mesh size of the potential damage region was 5mm in
the subsequent analysis.

Next, the fatigue simulation of a three-point bending beam
was performed. Cyclic loading was applied up to 84% of the peak
monotonic loading. The parameters of the fatigue damage law of
the material are adjusted until the life prediction is satisfactorily
close.The fatigue damagemetric usedwas Equation 31, andwith the
adopted parameters s = 1800 and q = 2, the model predicted failure
after 225 cycles in excellent agreement with the tested fatigue life of
212 cycles. In the last cycle, the failure is characterized by a sudden
increase in the overall deformation, as shown in Figure 9C.

5.2 Steel fiber-reinforced concrete material

Then, the fatigue damage behavior of steel fiber-reinforced
concrete is analyzed. A three-point bending beam (Qing et al.,
2023) with notched specimen size 440× 100× 100(mm3), a notch
of width 4mm is located at the bottom of the middle of the
beam, the height of the notch is 40mm, and the span at the
bottom of the beam is 400mm. Four groups of steel fiber-
reinforced concrete (SFRC) with steel fiber volume admixture Vf =
0%, 0.5%, 1.0%, and 1.5% were used. Fiber-reinforced concrete
material parameters: elasticmodulusE0 = 27.738GPa, Poisson’s ratio
ν = 0.18, tensile strength ft = 2.67MPa, compressive strength fc =
34.39MPa. The model’s free, fixed, and fiber parameters were
calibrated, and the calibrated parameters are shown in Table 4. The
peak monotonic loading predicted by the model is similar to the
test, as shown in Table 5. The load capacity of the concrete beams
was enhanced with the increase in the volume admixture of fiber-
reinforced concrete.

Next, fatigue analysis of fiber-reinforced concrete three-point
bending beams was performed. The maximum applied cyclic load
was 85% of the monotonically loaded peak load. The fatigue

FIGURE 13
Strain in reinforced concrete beams under monotonic loading. (A)
Displacement at load point 3 mm (Vf = 0%). (B) Displacement at load
point 7.5 mm (Vf = 0%). (C) Displacement at load point 3 mm (Vf =
0.5%). (D) Displacement at load point 7.5 mm (Vf = 0.5%). (E)
Displacement at load point 3 mm (Vf = 0.5%). (F) Displacement at load
point 7.5 mm (Vf = 0.5%). (G) Displacement at load point 3 mm (Vf =
1.5%). (H) Displacement at load point 7.5 mm (Vf = 1.5%).

damage law parameters were adjusted until the life prediction
was close enough. The strains of SFRC three-point bending
beam with 0.5% volume steel fiber admixture for the one cycle
before fatigue loading failure are shown in Figure 10A, and the
strains for the remaining three groups are similar. The fatigue
damage metric used is Equation 31, and the calibrated fatigue
damage law parameters are shown in Table 5 for various fiber-
reinforced concretes. The corresponding material fatigue damage
law is shown in Figure 10B. The fatigue resistance of concrete is
gradually improved with the increase of steel fiber mixing, and
the fatigue resistance improvement is gradually slowed down when
the steel fiber admixture is more than 1%. Therefore, the present
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FIGURE 14
Reinforced concrete beam strains after fatigue loading. (A) Steel fiber volume admixture Vf = 0%. (B) Steel fiber volume admixture Vf = 0.5%. (C) Steel
fiber volume admixture Vf = 1.0%. (D) Steel fiber volume admixture Vf = 1.5%.

model can be well used to analyze the mechanical response of
fiber-reinforced concrete under monotonic and fatigue loading.

5.3 Plain and steel fiber-reinforced
concrete beam

Fatigue damage modeling ultimately aims to fine-tune the
analysis of the whole process of fatigue damage in concrete
structures. This section simulates the fatigue damage of reinforced
concrete beams using the proposed model as an illustrative
study. The cross-section height of the concrete beam is h =
400mm, the cross-section width is b = 300mm, the protective
layer thickness of the steel reinforcement is 40mm, and the
cross-section reinforcement ratio of the longitudinal reinforcement
ρ ≈ 1.26%. The geometry and loading of the concrete beam
are shown in Figure 11. To show the potential of the model for
capturing the fatigue damage behaviors of reinforced concrete

structures, the steel reinforcement is assumed to be ideally elastic-
plastic with a yield strength of fy = 400MPa, and the material
parameters of the SFRC are the same as in the previous section.

First, a numerical simulation of the four-point bending
of reinforced concrete beams (Vf = 0%,0.5%,1.0%,1.5%) under
monotonic loading is carried out. The load-displacement curves
are shown in Figure 12. The ultimate load capacity of reinforced
concrete increases gradually with the increase of fiber volume
admixture, and the ultimate load capacity of reinforced concrete
beams with a fiber volume admixture of 1% is the largest. Unlike
the damage mechanics intrinsic model, the fatigue damage of a
structure is usually accounted for by the development of strain in
the microplane theory. It is worth noting that the bottom strain
of plain reinforced concrete beams reaches up to 0.4361% at a
displacement loading of 3 mm, and the stressed portion of the
tensile zone gradually changes from concrete to steel reinforcement,
as shown in Figure 13. With the increase in fiber volume admixture
Vf = 0.5%,1.0%,1.5%, the maximum strains of the resinforced
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FIGURE 15
Displacement-loading number curves at loading point. (Vf =
0%,0.5%,1%,1.5%).

concrete beams were reduced to 0.2315%, 0.0927%, and 0.065%
with displacement loading of 3 m. At a displacement loading of
7.5 mm, the steel reinforcement basically stressed the tensile zone
of the concrete beams, and there were some areas where the strains
were close to or more than 1%. However, the concrete structure
would not be subjected to such large deformations under service
conditions. Afterward, we will pay attention to the response of
the concrete when cracked or just cracked. In this paper, the
load capacity corresponding to a plain reinforced concrete beam
subjected to a displacement loading of 3 mm is defined as Fu =
124.72kN, and the maximum value of the fatigue load magnitude
is 0.9Fu.

Next, fatigue damage simulations of reinforced concrete
structures (Vf = 0%,0.5%,1%,1.5%) under 200 cyclic loadings were
performed. During cyclic loading, the fatigue history variables
are gradually accumulated, resulting in gradual degradation of
the material stiffness and gradual development of the strain in
the concrete beams. The strain distribution after 200 loading
cycles is shown in Figure 14. For a reinforced concrete beam
composed of plain concrete with a fatigue life of 176 cyclic loadings,
the strains at one time before structural failure are shown in
Figure 14A. The strains at the bottom of the beam are more
than 1% in most regions. With the increase in fiber dosage, the
strain of the concrete structure improved during fatigue loading
due to the improvement in tensile capacity, and the cracking
pattern was transformed. The beam strain distribution after 200
loading cycles is shown in Figures 14B–D. The maximum strains of
reinforced concrete beams with steel fiber volume admixture Vf =
0.5%,1%,1.5% are 0.1313%,0.1231%, and 0.1194%, respectively.
The displacements at the loading points also show a significant
reduction trend, as shown in Figure 15. Therefore, the microplane
model considering the material stiffness degradation can be used
to reflect the fatigue damage behavior of plain and fiber-reinforced
concrete materials.

It is worth noting that for the fatigue of reinforced concrete
structures, to capture the various mechanical behaviors in the tests,

the slip between the concrete and the reinforcement also needs
to be considered, and the degradation of the fatigue properties of
materials such as reinforcement and fibers needs to be considered.
However, this is not the focus of this study and will be illustrated
in future studies. This model is expected to be used for the whole-
process analysis of fatigue damage of plain concrete and steel fiber-
reinforced concrete structures under complex loading conditions
and structural forms, which will facilitate engineering design,
evaluation, and optimization.

6 Further study

Despite the success in expanding the application of microplanar
modeling of plain concrete, many issues need to be solved. In
subsequent research, the following issues will be focused on:

(1) simplifying the extremely cumbersome parameters in M7 and
developing user-friendly software tools or plug-ins.

(2) Consider the fatigue-related material stiffness under
compression conditions and extend the model to compression
fatigue analysis.

(3) Optimize the fiber toughening mechanism and expand the
model to fatigue damage analysis of concrete materials such
as ECC and UHPFRC.

7 Conclusion

This study successfully extends the microplane model for
assessing fatigue damage in steel fiber-reinforced concrete
(SFRC). The model combines material stiffness degradation,
critical for analyzing fatigue damage, with fatigue history
variables accumulated during cyclic loading. A more detailed
prediction of the fatigue life and behavior of plain and steel fiber-
reinforced concrete materials is possible. The following conclusions
were obtained:

(1) The extended microplane model is suitable for mechanical
response analysis of steel fiber-reinforced concrete materials.
It provides an effective tool for predicting fatigue damage
of concrete structures under cyclic loading by introducing
fatigue history variables and establishing their relationship
with material stiffness degradation.

(2) It is shown that steel fiber incorporation can substantially
improve concrete’s mechanical properties and fatigue
resistance. The extended model can capture the reinforcing
effect of fibers, which is consistent with the experiments.

(3) The model’s parameters can be calibrated against benchmark
experimental data. The model can be implemented
numerically inABAQUS commercial finite element software in
conjunction with a crack band model for engineering analysis.

(4) Themodel can predict the fatigue life andmechanical behavior
of plain and steel fiber-reinforced concrete materials, which
helps in engineering design and optimization. Next, it is
expected to be used for fatigue analysis of concrete structures
under complex loading conditions and structural forms by
considering the slip of reinforcement with concrete and the
degradation of the fatigue performance of reinforcement.
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