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Phenacyl bromide as Norrish
type I photoinitiator for the facile
synthesis of chain-end functional
PMMA and polystyrene

Mina Kati, Yusra Bahar Cakir, Kerem Kaya,
Huseyin Cem Kiliclar* and Baris Kiskan*

Department of Chemistry Maslak, Faculty of Science, Istanbul Technical University, Istanbul, Türkiye

Phenacyl bromide has been explored as a new Norrish Type I photoinitiator
for radically polymerizing methyl methacrylate and styrene monomers. A
straightforward radical photopolymerization method using UVA light for the
synthesis of chain-end functional poly(methyl methacrylate) and polystyrene
has been developed. The process has been refined for both bulk and solution
photopolymerizations. Chain-end functionalization was demonstrated by the
formation of block-copolymers of the bromine-ended homopolymers, utilized
as macroinitiators, resulting in an increase in the molecular weight of the
corresponding precursor, observed by gel permeation chromatography (GPC).
Block copolymerization was initiated by radicals generated at the chain-
ends by a halogen-atom transfer reagent, namely, dimanganese decacarbonyl
(Mn2(CO)10). This simple light-induced method is promising for the additive
manufacturing field such as vat photopolymerization, stereolithography, digital
light processing as it yields chain-end functional materials that can be further
processed.

KEYWORDS

free radical photopolymerization, Norrish type I photoinitator, phenacyl bromide,
chainend functionalization, halogen abstraction, block copolymerization

1 Introduction

Photochemistry has gained significant attention recently due to the growing emphasis
on sustainability and spatiotemporal control in commercial systems (Albini and Fagnoni,
2004; Clark, 2006; Crivello and Reichmanis, 2014; Kaya et al., 2023). The precise and
effective energy transfer facilitated by light within a defined space enables green synthesis
with temporal control (Lalevée and Fouassier, 2015; Lalevée et al., 2015; Corrigan et al.,
2019). These advantages have been utilized in commercialized additive manufacturing
(AM) and lithography techniques, employing various photochemical reactions to produce
previously unimaginable products (Ober et al., 2019; Ober et al., 2023; Zhang et al., 2019;

Abbreviations: GPC, Gel Permeation Chromatography; NMR, Nuclear Magnetic Resonance;
ATRP, Atom-Transfer Radical Polymerization; PAB, Phenacylbromide; RAFT, Reversible Addition-
Fragmentation-Chain-Transfer; TPO, Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide; MMA, Methyl
Methacrylate; PS, Poylstyrene; PMMA, Poly(methyl methacrylate); TEGDMA, Triethylene glycol
dimethacrylate; DSC, Differential Scanning Calorimetry; FTIR, Fourier-Transform Infrared.
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Petko et al., 2021; Petko et al., 2022; Tomal et al., 2021; Bobrin et al.,
2022). This rapid development also triggered the quest for better
performing photoinitiators to maintain pace with advancing
technologies. Beyond effective initiation, novel initiators are also
expected to offer features such as chain-end functionalization.
Readily substitutable functionalities at the chain ends can be
further exploited to finely tune the properties like chain association,
hydrophilicity, solubility, surface characteristics and rheology of
the polymer (Pispas and Hadjichristidis, 1994; Zha et al., 2016;
Ishiwari et al., 2018; Mohammad et al., 2021a; Mohammad et al.,
2021b). Moreover, these functionalities can be utilized in
synthesizing blocks, grafts and hyperbranched polymers to meet
specific needs across various fields (Yagci and Tasdelen, 2006;
Aydogan et al., 2017; Mohammad et al., 2021a; Kiliclar et al., 2022;
Kumar et al., 2022; Cakir et al., 2023). Therefore, developing a facile
method to achieve these functionalities is of great importance.
Traditionally, techniques like atom transfer radical polymerization
(ATRP), reversible addition-fragmentation chain transfer (RAFT),
photoinduced radical oxidation- addition-deactivation (PROAD)
and iniferter methods have been frequently used for the synthesis
of chain-end functionalized polymers (Matyjaszewski et al., 1998;
Otsu, 2000; Matyjaszewski and Xia, 2001; Gody et al., 2015;
Ciftci and Yagci, 2018; Dworakowska et al., 2022). However, these
methods often rely on either heat or air/moisture sensitive catalysts
(Cu catalyst) which require special treatment (freeze-pump-thaw)
making them challenging techniques for large-scale processes
(Allushi et al., 2017; Ciftci and Yagci, 2018).

Conventional Norrish Type I photoinitiators e.g., benzoin,
acylphosphine oxide and acylgermanes were being used in
several applications including coatings, dentistry, inks and additive
manufacturing (Yagci et al., 2010; Kowalska et al., 2021; Tomal et al.,
2022; Buchon et al., 2023). Despite their wide utility, classical Type
I photoinitiators cannot produce chain-end functional polymers,
which limits their potential for broader applications. Alternatives
that enable chain-end functionalization can be crucial for specific
purposes, as photochemically generated species can be covalently
bonded at the chain-end during the initiation step. Previously
bromine (Br2) has been directly utilized as a photoinitiator for radical

polymerization to yield chain-end functional polymers (Ghosh et al.,
1973). However, its high toxicity and oxidative nature makes the
process inconvenient for large scale use.

This work proposes the novel use of phenacyl bromide (PAB) as
a Type I photoinitiator, producing polystyrene (PS) and poly(methyl
methacrylate) (PMMA) under UVA light via in-situ bromine radical
generation. The existence of chain-end bromine functionality was
used to create radicals by usingMn2(CO)10 as halogen-atom transfer
reagent.The formed radicals by abstraction of bromine were capable
to initiate free radical polymerization, enabling the synthesis of a
variety of copolymers.

2 Materials and methods

2.1 Materials

Methyl methacrylate (MMA; Merck, 99%) and styrene (St,
Merck, 99%) were used after filtration through basic alumina to
remove the inhibitor and then stored in the fridge. Dichloromethane
(DCM; Sigma-Aldrich %99.8) was purified from amylene stabilizer
prior to use. 2-bromoacetophenone (phenacyl bromide) (PAB,
Sigma-Aldrich, >98%), dimanganase decacarbonyl (Merck, 98%),
n-hexane (Sigma-Aldrich, 98%), and methanol (MeOH, Sigma-
Aldrich, ≥99.9%) were used as received.

2.2 Methods

2.2.1 Synthesis of poly(methyl methacrylate)
(PMMA)

Poly(methyl methacrylate) (PMMA) was synthesized via free
radical photo polymerization, conducted either in bulk or with the
use of a solvent.

2.2.1.1 Bulk polymerization conditions
2 mL of methyl methacrylate (18.78 mmol) and 20 mg of

phenacyl bromide (PAB) (0.10 mmol) were introduced into a dry
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reaction flask which was then purged with dry nitrogen gas to create
an inert atmosphere. The reaction flask containing the reaction
mixture was exposed to irradiation using a photoreactor equipped
with 18 Philips TL-36W BLB lamps. These lamps emitted light at a
nominal wavelength of 365 nmwith an intensity of ca. 100 mW·cm2.
After the irradiation, the resulting polymer was precipitated in
n-hexane and then dried under reduced pressure.

2.2.1.2 Solution polymerization conditions
2 mL of methyl methacrylate (18.78 mmol), 20 mg of PAB

(0.10 mmol) and 2 mL of DCM were introduced into a dry screw-
capped reaction flask, which was then purged with dry nitrogen
gas to create an inert atmosphere. The reaction flask containing the
reaction mixture was exposed to irradiation using a photoreactor
equipped with 18 Philips TL-36W BLB lamps. These lamps emitted
light at a nominal wavelength of 365 nm with an intensity of
ca. 100 mW·cm2. After the irradiation, the resulting polymer was
precipitated in n-hexane and then dried under reduced pressure.

2.2.2 Synthesis of polystyrene (PS)
2.2.2.1 Bulk polymerization conditions

Polystyrene (PS) was synthesized through free radical
polymerization using procedures analogous to those used for the
synthesis of PMMA. 2 mL (17.46 mmol) of styrene and 20 mg
(0.10 mmol) of PAB were combined in a dry screw-cabbed reaction
flask under the nitrogen environment. The reaction mixture
was exposed to irradiation using a photoreactor equipped with
18 Philips TL-36W BLB lamps. These lamps emitted light at a
nominal wavelength of 365 nm with an intensity of approximately
100 mW·cm2. The obtained mixture was precipitated in methanol
and dried under low pressure.

2.2.2.2 Solution polymerization conditions
2 mL of DCM, 2 mL (17.46 mmol) of styrene and 20 mg

(0.10 mmol) of PAB were combined in a dry screw-cabbed reaction
flask under the nitrogen environment. The reaction mixture was
exposed to irradiation using a photoreactor equipped with 18
Philips TL-36W BLB lamps. These lamps emitted light at a
nominal wavelength of 365 nm with an intensity of approximately
100 mW·cm2. The obtained mixture was precipitated in methanol
and dried under low pressure.

2.2.3 Copolymer synthesis
2.2.3.1 Synthesis of poly(MMA-co-styrene) via PMMA
macroinitiator

The reaction flask was equipped with a magnetic stirrer and
heated in vacuo with the heat gun. When the tube cooled down,
it was charged with PMMA macroinitiator (97.5 mg, 0.01 mmol),
dichloromethane (2 mL, 31.20 mmol), styrene (2 mL, 17.46 mmol)
anddimanganese decacarbonyl (35.6 mg, 0.09 mmol). Following the
process of nitrogen purging, the sample is subsequently exposed to a
400 nmUV light for 4 h. After irradiation, the resulting polymer was
precipitated in n-hexane. Then it is dried under reduced pressure.

2.2.3.2 Synthesis of poly(styrene-co-MMA) via PS
macroinitiator

67 mg (0.02 mmol) of PS and 14 mg (0.04 mmol) of
dimanganese decacarbonyl were dissolved in MMA in a reaction

flask with a magnetic stirrer under a dry nitrogen atmosphere.
Then the mixture is placed under a 400 nm UV light for 4 h. The
obtained polymer was dissolved in methanol and dried under
reduced pressure.

2.2.4 Characterization methods
2.2.4.1 Photo-DSC procedure

10 mg (∼35 mmol) of TEGDMA together with either 0.01molar
equivalent of PAB or 0.01 molar equivalent of TPO was dropped
inside a Photo-DSC pan using a 10 μL micropipette. Then, the pan
was irradiated under nitrogen atmosphere using 320–500 nm light
source at constant temperature (30°C) until the polymerization was
completed (ca. 10 min). The conversion (C) was calculated by using
the formula C = ΔHt/ΔH0, where ΔHt is the reaction heat evolved at
time t and ΔH0 is the theoretical heat for complete conversion. ΔH0
for TEGDMA is 81.40 kJ mol−1 (Anseth et al., 1994b; Anseth et al.,
1994a; Andrzejewska andAndrzejewski, 1998; Dickens et al., 2003).

2.2.4.2 Gel permeation chromatography
Gel permeation chromatography (GPC) analyses were run

on TOSOH EcoSEC GPC system equipped with an autosampler
system, a temperature-controlled pump, a column oven, a refractive
index (RI) detector, a purge and degasser unit, and a TSK gel
superhZ 2000 4.6 mm ID × 15 cm × 2 cm column. 1.0 mL min−1 of
tetrahydrofuran was utilized as the eluent at a temperature of 40°C.
Calibrations were done by polystyrene standards with a narrow and
limited molecular weight distribution. The data were analyzed by
Eco-SEC analysis software.

2.2.4.3 Nuclear magnetic resonance spectroscopy
H-NMR spectra were recorded on anAgilent VNMRS 500NMR

spectrometer system at room temperature in CDCl3 with Si(CH3)4
as an internal standard.

2.2.4.4 Infrared spectroscopy
The Fourier-transform infrared (FTIR) spectroscopy

measurements were recorded as 16 scans using a PerkinElmer FTIR
Spectrum One spectrometer.

3 Results and discussion

Phenacyl bromide (PAB) has been previously demonstrated to
undergo homolytic cleavage of its carbon-bromine covalent bond
when exposed to UVA irradiation (McGimpsey and Scaiano, 1988).
This process generates bromine radicals together with relatively
less reactive carbon-centered radicals. While both radicals have the
capability to initiate radical polymerization,bromine radicals are likely
to dominate the initiation step, resulting in polymer with bromine
chain-end functionality (Scheme 1A). Bromine atom bonded to sp3

hybridized carbon located at the ß-position of the initial monomer
unit offers versatile post-polymerization modification opportunities.
It can undergo nucleophilic substitution reactions (Scheme 1B) or be
abstracted by halogen-atom transfer techniques such as dimanganese
decacarbonyl (Mn2(CO)10) chemistry (Scheme 1C) (Arslan et al.,
2022). Generated radicals can be further exploited for the synthesis
of more complex polymer architectures such as block, graft and
hyperbranched copolymers (Scheme 1D).
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SCHEME 1
(A) Photoinduced radical polymerization of vinyl monomers using PAB as Type I photoinitiator. (B) SN2 type substitution reaction between bromine
bonded to sp3 hybridized carbon and a nucleophile. (C) Halogen abstraction by photochemically generated Mn(CO)5 radicals from the polymer
chain-end. (D) Synthesis of block copolymers through chain-end activation.

The ability to easily modify the polymer chain ends opens
up numerous possibilities for tailoring polymers obtained from
phenacyl bromide initiators. Hence, we displayed this versatility
by using classical MMA and Styrene (S) monomers. Initially,
to establish optimal photopolymerization conditions, reactions
were conducted using both solution and bulk polymerization
methods. Reactions were monitored for 6 h or until vitrification
occurred. For solution polymerizations, dichloromethane (DCM)
and ethyl acetate were selected as solvents due to their compatibility
with the monomers and initiator. Moreover, these solvents
also offer good transparency in the UVA region, ensuring
efficient light penetration throughout the reaction mixture. The

polymerization details and molecular weight characteristics of the
obtained polymers were carefully analyzed. Figure 1 illustrates the
progression of these reactions over time, showing the evolution of
molecular weight. Table 1 provides a comprehensive overview of the
reaction conditions and the resulting polymer properties, including
number-average molecular weight (Mn), weight-average molecular
weight (Mw), and dispersity index (Đ).

Bulk polymerization results, as shown in Figure 1, reveal
that vitrification occurs rapidly for MMA, taking only 15 min,
while styrene requires 6 h. However, solution polymerization offers
more precise control over molecular weight and yields more
consistent results by eliminating the vitrification. Gel permeation
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FIGURE 1
Mw versus reaction time graph of (A) S and (B) MMA polymerization using PAB as photoinitiator.

TABLE 1 Photoinitiated FRP of MMA and styrene monomers using PAB as Type I photoinitiator.

Polymer Reaction time (h) Mw
d (kg·mol−1) Mn

d (kg·mol−1) Đd

PMMAa 1 15.1 7.2 2.1

PMMAa 2 16.8 8.0 2.1

PMMAa 3 18.9 9.0 2.1

PMMAa 4 20.7 8.6 2.4

PMMAa 5 21.0 6.8 3.1

PMMAa 6 19.9 7.4 2.7

PMMAb 0.25 25.0 9.6 2.6

PSa 1 6.0 2.7 2.2

PSa 2 9.0 3.2 2.8

PSa 3 12.0 3.4 3.5

PSa 4 16.4 3.7 4.4

PSa 5 19.0 4.0 4.7

PSa 6 21.9 4.1 5.3

PSb 1 0.9 0.5 1.8

PSb 2 19.3 6.2 3.1

PSc 1 28.3 10.5 2.7

PSc 6 68.3 20.1 3.4

aPolymerization reactions were conducted under 360 nm nominal light irradiation in solution using DCM as solvent.
bPolymerization reactions were conducted under 360 nm nominal light irradiation in bulk condition.
cPolymerization reactions were conducted under 360 nm using ethyl acetate as solvent.
dDetermined by GPC.
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chromatography (GPC) analysis showed weight average molecular
weights (Mw) of up to 68.3 kDa for polystyrene and 21 kDa
for poly(methyl methacrylate) (PMMA). As anticipated, longer
polymerization times led to increased conversions and broader
dispersity index for both polymers (Supplementary Table S1). Gel
permeation chromatography (GPC) analysis revealed the emergence
of bimodal distributions in the chromatograms of samples subjected
to extended reaction times (Supplementary Figure S1).This bimodal
behavior is likely attributed to coupling and disproportionation
reactions occurring during the termination step of free-radical
polymerization. Prior to the formation of the bimodal molecular

weight distribution, a slight decrease in dispersity was observed,
suggesting a reduction in the population of oligomers within the
reaction medium.

In addition toGPC, 1H-NMRspectra (Supplementary Figure S2)
of the photochemically synthesized PMMA and PS can be found in
the supporting information.

Control experiments conducted without phenacyl bromide
(PAB) showednomonomer conversion, indicating PAB’s crucial role
as a photoinitiator.

In addition to control experiments, S andMMApolymerization,
we conducted PhotoDSC to evaluate the photoinitiation efficiency

FIGURE 2
(A) Heat flow versus irradiation time graph of the polymerizations of TEGDMA monomer using PAB under 100 mW cm−1 irradiation. (B) Conversion
versus irradiation time graph of the polymerizations of TEGDMA monomer using PAB under 100 mW cm−1 irradiation.

FIGURE 3
FTIR spectra of (A)PMMA, (B)PS initiated via PAB.
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of PAB. Since, photo DSC is a powerful and accurate technique for
real-timemonitoring of monomer conversions. We compared PAB’s
performance in the radical polymerization of triethylene glycol
dimethacrylate (TEGDMA), a classical di-functional acrylate, with
that of diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), a
commercial and highly efficient photoinitiator commonly used in
3D printing applications.

Figure 2A illustrates the photocuring exotherms of TEGDMA
in the presence of PAB and TPO using polychromatic irradiation
(λ = 320–500 nm). Figure 2B shows the percentage conversion
of TEGDMA over time for both photoinitiators. Although PAB’s
photoinitiation efficiency is slightly lower than TPO’s, it remains
comparable. Considering the previously demonstrated advantages
of PAB, (Kaya, 2023; Tabak et al., 2024b; Tabak et al., 2024a)
including its ability to produce chain-end functional polymers, these
PhotoDSC results suggest that PAB could serve as a promising
alternative to TPO in various 3D printing applications, especially
where post polymermodification and/or chain extension is required
for further usage.

In order to characterize the presence of acetophenone
radical-initiated polystyrene) and poly(methyl methacrylate),
Fourier-Transform infrared (FTIR) spectroscopy was used. In
the PS spectrum, a carbonyl stretching band around 1,700 cm–1

(highlighted in blue) indicated the presence of trace amounts of
acetophenone groups. Conversely, the PMMA spectrum showed
no evidence of aromatic C–H stretching bands (approximately
3,100 cm–1) or aromatic C=C stretching bands (approximately
1,550 cm–1), which are highlighted in green (Figure 3).This spectral
analysis confirms the successful incorporation of the initiator
fragments into the polymer chains and provides insight into the
initiation mechanism.

One of the primary advantages of PAB is its ability to
generate chain-end functional polymers that can be further
utilized in the synthesis of a variety of polymers such as block
or graft copolymers. This functionality was exploited in this
study to synthesize block copolymers via halogen abstraction
chemistry. Dimanganese decacarbonyl (Mn2(CO)10) is a well-
established reagent known for its photo-cleavability under visible
light irradiation. Upon irradiation, Mn2(CO)10 dissociates,
forming manganese pentacarbonyl radicals (•Mn(CO)5) capable
of abstracting halogens from organohalide structures (Scheme 1C).
By integrating the halogen abstraction capability ofMn₂(CO)₁₀ with
the chain-end bromine-functionalized photochemically synthesized
PMMA and PS from PAB, the formation of block copolymers
(PMMA-b-PS) can be achieved.

Accordingly, GPC analysis after irradiating bromine end
functional PS with Mn2(CO)10 and MMA revealed a significant
increase in weight-average molecular weight from Mw = 20 kDa
to Mw = 53 kDa. However, the GPC chromatogram exhibited
two distinct peaks for both reactions, indicating the presence
of unreacted bromine-functional polymers alongside non-
reactive acetophenone-functional precursor polymers in the
precipitate (Figure 4). Additionally, the observed molecular weight
distribution may be influenced by radical coupling reactions
associated with the termination step of the polymerization and
halogen abstraction process.

To further characterize the block copolymer composition, 1H
NMR spectroscopy was employed. The NMR spectra revealed a

FIGURE 4
GPC chromatograms of bromine functional PS macroinitiator and
PS-b-PMMA synthesized via Mn2(CO)10.

styrene to MMA ratio of 1:1.2 in the block copolymer synthesized
using the styrene macroinitiator (Supplementary Figure S3). This
ratio provides insight into the relative block lengths and the
efficiency of the chain extension process.

4 Conclusion

We have developed a facile radical photopolymerization method
utilizingphenacylbromideasaType Iphotoinitiator toproducechain-
end bromine functional polymers. These functionalized polymers
serve as versatile precursors for the synthesis of various copolymer
architectures. The polymerization conditions for this light-induced
technique have been optimized through comprehensive analysis
of gel permeation chromatography and gravimetric results. The
presence of bromine end-functionality was demonstrated through the
synthesis of PMMA-PS block copolymers, facilitated by the halogen
abstraction capability of •Mn(CO)5 radicals.These results collectively
demonstrate the effectiveness of our novel approach in synthesizing
bromine end-functional polymers and further block copolymers.
Apparently, such photo initiating system can be utilized for the
production of a variety of polymers that can be utilized in several
applications like additivemanufacturing and lithography for the post-
functionalization of printed materials to broaden the horizon of the
3D printing applications.
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