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The thermal power industry, as a major consumer of hard coal, significantly
contributes to harmful emissions, affecting both air quality and soil health
during the operation and transportation of ash and slag waste. This study
presents the modeling of aerated concrete using local raw materials and
ash-and-slag waste in seismic areas through machine learning techniques.
A comprehensive literature review and comparative analysis of normative
documentation underscore the relevance and feasibility of employing non-
autoclaved aerated concrete blocks in such regions. Machine learning
methods are particularly effective for disjointed datasets, with neural networks
demonstrating superior performance in modeling complex relationships for
predicting concrete strength and density. The results reveal that neural networks,
especially those with Bayesian Regularisation, consistently outperformed
decision trees, achieving higher regression values (Rstrength = 0.9587 and Rdensity

= 0.91997) and lower error metrics (MSE, RMSE, RIE, MAE). This indicates
their advanced capability to capture intricate non-linear patterns. The study
concludes that artificial neural networks are a robust tool for predicting concrete
properties, crucial for producing non-autoclaved curing wall blocks suitable for
earthquake-resistant construction. Future research should focus on optimizing
the balance between density and strength of blocks by enhancing the properties
of aerated concrete and utilizing reliable models.

KEYWORDS

aerated concrete, seismic region, compressive strength, ash and slag waste, machine
learning methods

1 Introduction

Advanced Concrete Technology encompasses the science of designing civil
engineering projects that are efficient, economical, and safe. Engineers and concrete
designers often encounter challenges due to slight changes in project conditions
or objectives, complicating the selection of the optimal design. Foamed concrete,
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TABLE 1 Cement test results.

Indicator name Actual value of the
indicator

Fineness of grinding by specific
surface, cm3/g

2961

True density, kg/m3 3191

Setting time, min Beginning −160

Ending - 240

Uniformity of volume change, mm 7.2

Flexural strength, MPa

2 days 6.1

28 days 9.9

Compressive strength, MPa

2 days 26.4

28 days 64.5

TABLE 2 Results of physical and mechanical tests of ash and slag wastes.

Name of indicator Actual value of the
indicator

Uniformity of volume change, mm 4.5

Humidity, % 01,140

Bulk density (specific gravity), kg/m3 2112

True density, kg/m3 2530

Specific surface (cm2/g) 1.2

Total residues, % on sieves (mm)

0.63 2.6

0.315 5.0

0.16 89.5

0.08 98.7

0.06 100

<0.06

known for its versatility, can be utilized for various construction
purposes and, when appropriately formulated, can serve as a
structural element. The production of environmentally friendly
lightweight foamed concrete (LWFC) necessitates a meticulous
selection of the mix composition to achieve the desired physical and
mechanical properties.

TABLE 3 Results of physical and mechanical tests of the sand.

Name of indicator Actual value of the
indicator

Bulk density, kg/m3 1557

True density, kg/m3 2874

Humidity, % 0

Volume of intergranular voids, % by
volume

35

Total residues, in%, on sieves (mm)

1.250.63 0.0

0.315 1.0

0.16 10.5

<0.16 91.0

Modulus of sand fineness, Mk 100.0

Sand group 1.025

Total residue on sieve with mesh No.
063, in % by weight

very fine, closer to thin

Content of grains with particle size
over 5; 10 mm,% by weight

1.0

Content of grains finer than 0.16 mm,
%

0

Content of dust and clay particles, % 9.0

Clay content in lumps, % 0

The most advanced studies include issues of wide variation of
the concrete composition by including various wastes from fuel
and energy and metallurgical industries, including by reducing
the amount of cement or replacing it completely (Wu et al., 2024).
Thus, the study (Akor et al., 2023) investigates the suitability of
using crushed sandcrete block (CSB) as a partial replacement
for fine aggregate in concrete, examining the physical and
mechanical properties of the material and its impact on concrete’s
density and compressive strength at varying mix proportions.
The authors (Ahmad and Shokouhian, 2024) study the use of
recycled steel fibers as a reinforcing material in concrete.

The paper (Fang et al., 2024) investigated how industrial by-
products, mineral admixtures, can improve the crack resistance of
concrete mixed with ternary minerals (steel slag powder, mineral
powder and fly ash). In this study, the mechanical properties and
crack resistance characteristics of each group were preliminarily
investigated using the plate method. Then, the G52 group and
the control group were selected for comparative analysis based on
the temperature stress testing machine (TSTM) and the analytical
hierarchy process (AHP) method. The results show that the ternary
mineral admixtures reduced the early strength and increased the
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TABLE 4 Sample set composition of the experimental concrete mixtures.

Set no. Cement (g) ZShM (g) Sand (g) Soda ash (g) Aluminum powder (g) Water (g) Water-solid ratio

1 380 210 60 2.5 0.25 330 0.58

2 370 200 55 2.3 0.23 320 0.56

3 390 220 65 2.6 0.26 340 0.59

4 385 215 62 2.4 0.24 335 0.57

5 375 205 58 2.2 0.22 325 0.55

6 380 210 60 2.5 0.25 330 0.58

7 370 200 55 2.3 0.23 320 0.56

8 390 220 65 2.6 0.26 340 0.59

9 385 215 62 2.4 0.24 335 0.57

10 375 205 58 2.2 0.22 325 0.55

11 380 210 60 2.5 0.25 330 0.58

12 370 200 55 2.3 0.23 320 0.56

13 390 220 65 2.6 0.26 340 0.59

14 385 215 62 2.4 0.24 335 0.57

15 375 205 58 2.2 0.22 325 0.55

16 380 210 60 2.5 0.25 330 0.58

17 370 200 55 2.3 0.23 320 0.56

18 390 220 65 2.6 0.26 340 0.59

19 385 215 62 2.4 0.24 335 0.57

20 375 205 58 2.2 0.22 325 0.55

21 380 210 60 2.5 0.25 330 0.58

22 370 200 55 2.3 0.23 320 0.56

23 390 220 65 2.6 0.26 340 0.59

24 385 215 62 2.4 0.24 335 0.57

25 375 205 58 2.2 0.22 325 0.55

26 380 210 60 2.5 0.25 330 0.58

27 370 200 55 2.3 0.23 320 0.56

28 390 220 65 2.6 0.26 340 0.59

29 385 215 62 2.4 0.24 335 0.57

30 375 205 58 2.2 0.22 325 0.55

31 380 210 60 2.5 0.25 330 0.58

32 370 200 55 2.3 0.23 320 0.56

(Continued on the following page)
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TABLE 4 (Continued) Sample set composition of the experimental concrete mixtures.

Set no. Cement (g) ZShM (g) Sand (g) Soda ash (g) Aluminum powder (g) Water (g) Water-solid ratio

33 390 220 65 2.6 0.26 340 0.59

34 385 215 62 2.4 0.24 335 0.57

35 375 205 58 2.2 0.22 325 0.55

36 380 210 60 2.5 0.25 330 0.58

37 370 200 55 2.3 0.23 320 0.56

38 390 220 65 2.6 0.26 340 0.59

39 385 215 62 2.4 0.24 335 0.57

40 375 205 58 2.2 0.22 325 0.55

41 380 210 60 2.5 0.25 330 0.58

42 370 200 55 2.3 0.23 320 0.56

43 390 220 65 2.6 0.26 340 0.59

44 385 215 62 2.4 0.24 335 0.57

45 375 205 58 2.2 0.22 325 0.55

46 380 210 60 2.5 0.25 330 0.58

47 370 200 55 2.3 0.23 320 0.56

48 390 220 65 2.6 0.26 340 0.59

49 385 215 62 2.4 0.24 335 0.57

50 375 205 58 2.2 0.22 325 0.55

28th day strength of concrete. Meanwhile, they reduced the early
adiabatic temperature rise, maximum compressive stress and creep
effect on the crack resistance characteristics of concrete, thereby
enhancing the tensile cracking stress of concrete. Overall, this study
provided new information on the mixing proportions of ternary
mineral concrete, but the interactions between these components
were not fully understood.

Nafees et al. (Nafees et al., 2021) explored the use of silica fume
(SF) in concrete, emphasizing its benefits in reducing CO2 emissions
and enhancing concrete durability and mechanical properties. They
developed predictive machine learning (ML) models, specifically
decision tree (DT) and support vector machine (SVM), to forecast
the compressive strength of SF concrete, demonstrating high
prediction accuracy and highlighting the effectiveness of these
techniques in promoting sustainable concrete solutions.

Compared with traditional concrete materials, high-plasticity
concrete, which is also called engineering cementitious composite,
has superior properties such as exceptional plasticity, tensile
strength with ultimate tensile strain exceeding 3% and excellent
workability (Chen et al., 2024). To study the influence of axial
compression ratio, torsion-bending ratio and eccentricity on
the mechanical performance of reinforced concrete columns

under combined loads, a numerical analysis based on ABAQUS
was implemented, which is in good agreement with the
experimental results (Huang et al., 2021).

In (Song et al., 2024), a data-driven modeling methodology is
proposed that combines proven finite element (FE) simulations with
machine learning (ML) algorithms to investigate the penetration
resistance of RC slabs against projectiles. The methodology uses
an extreme learning machine (ELM) network to identify extreme
conditions that characterize the penetration resistance, reducing
data requirements and improving the prediction performance.
The predicted outputs from the ELM network are then used
as input to a recurrent neural network (RNN) to predict the
residual velocity curves over time, which is an essential metric for
evaluating the penetration resistance. To cover different loading
scenarios, 64 sets of FE models with different drop velocities,
caliber-radius-head (CRH), and projectile masses are developed
based on available experimental studies. The Johnson-Holmquist II
model and Johnson-Cook model are used for concrete and steel,
respectively, to describe the material behavior at high strain rates.
The FE prediction results form the training set database, and ML
models are fitted using CRH, impact velocity and projectile mass
as input layers and residual projectile velocity as output layer. The
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TABLE 5 Results of Kruskal–Wallis statistic for selected input variables.

Input variable Density Strength

Kruskal–wallis
statistic

p-value Kruskal–wallis
statistic

p-value

Cement 1,76 0,624 7,14 0,068

ZSHM 15,45 0,0039 27,61 0,000,015

Sand 16,01 0,003 28,85 0,000,008

Soda ash 16,83 0,000,765 8,3 0,04

Aluminum Powder 11,51 0,021 12,03 0,017

Water, g 22,05 0,024 16,24 0,132

Water solid ratio 10,41 0,238 13,85 0,086

FIGURE 1
Schematic representation of the analyzed models, where nn–strength or density of concrete.

TABLE 6 Quality indicators for the evaluation of the received models.

Quality indicator Formula Meaning of symbols

Regression value (R) R(y′,y∗ ) = cov(y′,y∗ )
σy′σy∗
,Rϵ < 0,1 > σy′—standard deviation of

reference values of the
analyzed indicator

σy∗—standard deviation
of predicted values the
analyzed indicator,

yi is the actual value of the
analyzed indicator,

ŷi denotes the value of the
analyzed indicator for the
i-th observation obtained

from the model

Mean Squared Error (MSE) MSE = 1
n

n
∑
n=1
(ŷi − yi)

2

Root Mean Square Error (RMSE) RMSE = √ ∑
n
i=1(yi− ̂yi)

2

n

Relative Importance of Errors (RIE) RIE = ‖y
′−y‖
‖y‖

Mean Absolute Error (MAE) MAE = = 1
N

N
∑
i=1
(|yi − ̂yi|)

results show high Pearson correlation coefficients of 0.984 and
0.991 for the ELM and RNN prediction results, respectively, with
the numerical simulation results. The proposed networks provide
accurate and efficient alternatives to time-consuming FE modeling
for predicting projectile penetration performance. This strategy

offers a new ML-based method for fast evaluation, especially for in
situ applications.

Conducting experimental investigations on all possible
compositions is both time-consuming and costly. Attempts have
been made to develop unified strength criteria for evaluating
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FIGURE 2
Regression statistics for the total set for Decision Trees model for
concrete strength.

the performance of concrete mixtures. They are usually based
on a mechanistic approach with adjustable failure planes and
complex expressions. The authors of (Lu et al., 2017) presented
an alternative mechanistic approach to develop a simple unified
strength theory with adjustable characteristic stress based on the
Drucker-Prager strength theory. The strength curves of this theory
are a series of continuous and smooth conical loci, which are
located between the Drucker-Prager and Matsuoka-Nakai strength
curves in the deviatoric plane in the principal stress space. Another
major advantage of the developed strength theory is that its three
parameters (σ0, φc, and φe) have clear physical meanings and can be
determined based on simple laboratory tests. Verifications between
the developed theory and experimental triaxial test data available
in the literature show that this theory is capable of reasonably
representing the three-dimensional (3D) strength properties of
various geomaterials.

Thus, the use of Artificial Intelligence (AI) techniques is an
effective approach to predict and optimize real-world problems in
specific technologies. Currently, AI technologies are emerging as
a strategic development vector for companies in the construction
sector. The implementation of “smart solutions” across all stages
of the life cycle of building materials, products, and structures
is becoming increasingly prevalent. AI technology offers ultra-
high-dimensional non-linear computational capabilities, intelligent
functions for complex analysis and judgement, and the capacity for
self-learning and knowledge accumulation.

The application of machine learning (ML) in concrete
technology has seen substantial growth, with numerous studies
highlighting its potential to enhance concrete mixture design
and optimization. Researchers have demonstrated that ML
algorithms can effectively predict key properties of concrete,

such as compressive strength, workability, and durability, thereby
simplifying the formulation process. In this paper (Zhou et al.,
2019), a model capable of capturing the complex mechanical
behavior of concrete is developed which is evaluated using
monotonic and cyclic test data from the literature. Additionally,
ML models have been utilized to optimize mix component
proportions, improving both efficiency and sustainability in
concrete production (Yi et al., 2023). The integration of ML in
concrete research has also led to the development of intelligent
systems capable of autonomous decision-making and real-time
adjustments, showcasing the transformative impact of ML in
this field (Li et al., 2022; Moradi et al., 2022; Yang et al., 2022;
Haq et al., 2024). As the construction industry increasingly
adopts digital technologies, the role of ML in advancing concrete
technology continues to expand (Raju et al., 2023; Ullah et al., 2022;
Akeke et al., 2023). This review aims to synthesize existing research
on ML applications in concrete science, highlighting significant
findings, methodological approaches, and future directions.
Previous studies have laid a solid foundation for understanding and
leveraging ML in concrete research (Qian et al., 2023; Chen et al.,
2023; Anjum et al., 2022; Hu et al., 2021).

AI can unlock the potential of multidimensional nonlinear
relationship between material components and performance
indicators compared to the empirical formula derived from classical
statistical approaches. The authors (Razveeva et al., 2023) show
that artificial intelligence technology has obvious advantages
in measurement accuracy in predicting specific performance
indicators compared to traditional statistical methods. It is
recommended to use multiple algorithms to cross-validate the
model prediction results. Traditionally, support vector machines
are used for small datasets. Decision tree evolution methods should
be used in model algorithms that require feature optimisation
or dispersed index prediction. Artificial neural networks should
be used to solve such problems as improving the forecasting
model, increasing the forecasting accuracy, increasing the sample
data set, etc.

Among the variety of applications of AI methods, a special
place is occupied by the development of theory and technology
for creating artificial systems that process information from images
obtained during constructionmonitoring of the structural condition
of objects. The paper (Elhishi et al., 2023) deals with the process
of developing an innovative method for analysing the presence of
cracks that appeared after the application of load and delamination
as a result of the technological process, with subsequent estimation
of the length of cracks and delamination using convolutional neural
networks (CNN) in the assessment of the condition of aerated
concrete products. Four convolutional neural network models are
applied in solving a problem in the field of construction. Defect
detection using computer vision is demonstrated.

Elhishi et al. (Farooq et al., 2021) investigated the application
of machine learning to predict the strength of high-performance
concrete, essential for optimizing performance and safety in
construction. Their study evaluated eight machine learning models,
including regression methods and tree-based models, finding that
ensemble techniques like XGBoost achieved the highest accuracy
with an R-Square of 0.91. They also utilized the SHAP technique to
provide valuable insights for concrete mix design and construction
practices.
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FIGURE 3
The structure of a neural network.

TABLE 7 Results of neural network training for concrete strength.

Network number 1 2 3

Training algorithm Lavenberg-Marquardt Scaled Conjugate Gradient Bayesian Regularization

Epoch 29 23 587

Performance 0.0545 0.1837 0.0838

Best validation performance 0.07799 at epoch 23 0.94392 at epoch 17 0.083782 at apoch 22

Gradient 0.007 0.2744 0.0239

Collectively, these studies underscore the significant
advancements and diverse applications of machine learning in
concrete technology. The integration of ML not only enhances
predictive accuracy for key concrete properties but also optimizes
material usage, contributing to more sustainable and cost-effective
construction practices (Zheng et al., 2023; Wang et al., 2024;
Hameed et al., 2022; Alaneme et al., 2023). As the field progresses,
ongoing research and development of innovativeML techniques will
be crucial in further advancing concrete technology (Wang et al.,
2022; Moein et al., 2023; Gamil, 2023). This review highlights the
importance of adopting sophisticated AI models, such as neural
networks and ensemble methods, to tackle complex challenges in
concrete formulation and performance prediction. Future research
should continue to explore and refine these methods, ensuring
their effective implementation in real-world construction scenarios,
particularly in enhancing the durability and sustainability of
concrete in various environmental conditions.

The primary objective of this study is to develop and validate
machine learning models for optimizing the properties of aerated
concrete using local raw materials and ash-and-slag wastes,
specifically for applications in seismic regions.This research aims to
address the environmental concerns associated with thermal power
plants by promoting the use of sustainable materials in concrete
production. By leveraging advanced AI techniques, this study seeks
to achieve the following goals:

1. Develop robust machine learning models, particularly neural
networks, to accurately predict the strength and density of
aerated concrete.

2. Identify the optimalmix proportions of local rawmaterials and
ash-and-slag wastes to enhance the physical and mechanical
properties of non-autoclaved aerated concrete.

3. Assess the suitability of the optimized aerated concrete for use
in seismic regions, ensuring it meets the required standards for
seismic resistance.

4. Demonstrate the environmental benefits of using ash-
and-slag wastes in concrete production, contributing
to the reduction of harmful emissions from thermal
power plants.

5. Highlight the advantages of using AI for modeling
complex relationships between material components
and performance indicators, surpassing traditional
empirical methods.

These objectives are designed to advance the understanding
and application of machine learning in the field of concrete
technology, ultimately contributing tomore sustainable and resilient
construction practices.

2 Materials and methods

2.1 Raw materials

An attempt was made to produce aerated concrete blocks
with the required density and strength for use in seismically
hazardous areas at minimal cost by selecting locally available raw
materials. Portland cement of grade CEM I 52.5H from Bukhtarma
Cement Company (East Kazakhstan), which complies with the
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FIGURE 4
Network training process for concrete strength - best validation performance of predictive model: (A) L-M, (B) SCG and (C) BR.

TABLE 8 Results of neural network quality indicators.

Training
algorithm

Lavenberg-
marquardt

Scaled
conjugate
gradient

Bayesian
regularization

R (all data) 0.9587 0.938 0.9587

MSE 0.2624 0.3105 0.2499

RMSE 0.5122 0.5572 0.4999

RIE 0.2208 0.2403 0.2155

MAE 0.2527 0.4034 0.2458

relevant standard (EN 197-1, 2014), was used as the binder. The
chemical composition of the cement includes 19.95% silicon dioxide
(SiO₂), 5.58% aluminum oxide (Al₂O₃), 4.98% ferric oxide (Fe₂O₃),
63.07% calcium oxide (CaO), 4.5% magnesium oxide (MgO), and
0.36% sulfur trioxide (SO₃). The results of the cement tests are
presented in Table 1.

For studies involving animals or humans, or other research
requiring ethical approval, the authority that granted approval and
the corresponding ethical approval code must be listed.

Ash-and-slag waste from the coal-fired thermal power plant of
Ust-Kamenogorsk (East Kazakhstan) was used as silica aggregate.
Preliminary ash and slag waste was sieved on a sieve with a
mesh size of 1.25 mm. The chemical composition of the ash
and slag waste includes 35.3%–45.6% silicon dioxide (SiO₂) in
quartz form, 53.9%–64.0% mullite (3Al₂O₃·2SiO₂), 0.3%–1.8%
hematite (Fe₂O₃), and 0.2%–1.1% magnetite (Fe₂O₃). The results
of physical and mechanical tests of ash and slag waste are
given in Table 2.

The question of partial replacement of ash-and-slag aggregate
with natural local raw material - very fine sand of II class according
to GOST 8736 (GOST 8736-2014, 2015), with SiO2 content more
than 90% was investigated. The results of physical and mechanical
tests of sand are given in Table 3.

As a pore-forming agent, in the work we used gas-forming
aluminium powder of PAP-1 grades, corresponding to the
normative requirements (GOST 5494-95, 2006). Calcined soda ash
was also used as an additive.
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FIGURE 5
Network training process for concrete strength - validation checks: (A) L-M, (B) SCG and (C) BR.

To study the influence of the components on the strength and
density of aerated concrete, a series of samples were made with
different variations in the content of components. In a number of
samples the cement content was changed (from −10 to +20%). Some
samples were made with the same amount of cement, but different
content of aluminium powder from 0.15 to 0.65 g). The ash and
slag component was partially replaced by traditional sand (from
10% to 100%).

2.2 Study of the characteristics of the initial
materials of experimental samples

Chemical and phase compositions of initial materials were
determined using an Agilent ISP-MS inductively coupled plasma
mass spectrometer (Agilent Technologies, USA). The specific

surface area was determined on a PSX-10a device using the Kozeny
and Karman gas permeability method according to the instructions
for the device. Physical and mechanical tests were carried out
according to standard techniques.

2.3 Manufacture of experimental samples

The experimental samples (Table 4) were produced in the
laboratory of the Center of Competence and Technology Transfer
in Construction of EKTU named after D.Serikbayev. The amount of
dry components was selected so that the volume of finished aerated
concrete was at least 0.01 m³.The solid components were used in the
dry state. Dosing of dry constituents was carried out by weight. First,
cement and aggregate were mixed. Mixing was carried out using
a construction drill-mixer. Soda ash was separately dissolved in a
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FIGURE 6
Regression statistics for individual sets and the total set for neural network model for concrete strength: (A) L-M, (B) SCG and (C) BR.

small amount of water (50 mL). Water for making aerated concrete
was heated to 50°C. Heated water and soda ash solution were added
to the dry mixture and mixed for 3 min. After that, aluminum
powder was added to the obtained solution and stirring was carried
out for 2 min.The readymixture was poured into themolds to 2/3 of
their height.Thepulling of aerated concrete took place under normal
conditions, then the samples were demolded and placed for storage
into a moist chamber for 28 days.

Table 4 Sample set composition of the experimental concrete
mixtures. To investigate the influence of the components on the
strength and density of aerated concrete, a set of samples were made

with different variations in the content of components. In a number
of samples, the cement content was changed (from −10 to +20%).
Some of the samples were made with the same amount of cement
but different content of aluminum powder (from 0.15 to 0.65 g).The
ash-and-slag component was partially replaced by traditional sand
(from 10% to 100%).

The Kruskal–Wallis test was applied to determine the statistical
significance of differences between the input variables and the
output variables, namely, Strength andDensity.This non-parametric
test was selected due to the non-normal distribution of the data
and the presence of small group sizes in many categories. The
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TABLE 9 Comparison of ElasticNet and neural network models for
concrete strength.

Quality
indicators

Decision
trees
model

NN model
with
bayesian
regularization

R (all data) 0.7549 0.9587

MSE 1.2989 0.2499

RMSE 1.1397 0.4999

RIE 0.4914 0.2155

MAE 0.5936 0.2458

Kruskal–Wallis test does not require the assumption of normality
and is used to compare the median ranks of three or more
independent groups. The assumptions of the Kruskal–Wallis test
include the independence of samples and the assumption that
the dependent variable is at least ordinal. The test is particularly
well-suited for this dataset, where normality and equal variances
are difficult to ensure due to small sample sizes. However, the
Kruskal–Wallis test only determines whether there is a statistically
significant difference among the groups, and does not specify which
groups differ from one another.

The Table 5 presents the results of the Kruskal–Wallis test for
each input variable, detailing the test statistics and p-values for both
Strength and Density. The analysis indicates significant differences
in the influence of some input variables, such as ZSHM, Sand,
Soda ash, and Aluminum powder on both Strength and Density.
Other variables, such as Cement andWater-solid ratio, did not show
significant differences.

The Kruskal–Wallis test identified significant differences
for several input variables with respect to both Strength and
Density. Specifically, ZSHM, Sand, Soda ash, and Aluminum
powder were found to significantly influence both Strength and
Density. Conversely, Cement and Water-solid ratio did not exhibit
statistically significant effects on either output variable. Water
significantly affected Density, but not Strength. These results
underscore the importance of material composition in influencing
the mechanical properties of the samples, particularly in terms of
density, which appears to be more sensitive to variations in input
variables than strength.

2.4 Mechanical testing of aerated concrete

To measure compressive strength and average density, cubic
shaped samples with 150 mm rib were used in the amount of 3
pieces per each composition at the age of 28 days. A correction
factor was applied to account for themoisture content of the samples
at the time of testing. The volume of the samples was calculated
from their geometric dimensions, the mass of the samples was
determined by weighing. Strength measurements were made on a
2 PG-10 automatic press machine with two ranges of 500/1000 kN.

2.5 Modelling properties of aerated
concrete blocks using machine learning
methods

The modeling process was executed employing decision trees
and artificial neural networks through the use of Matlab 2023b
software. The hardware setup included an Intel Core i7 CPU with
16 GB of RAM, which was sufficient for the computational needs
of this study. The input parameters comprised cement, ZShM,
sand, soda ash, aluminum powder, water, and the water-solid
ratio, whereas the output parameters were focused on assessing
concrete strength and concrete density. Given the investigation of
two distinct output parameters, the study analyzed two variations
of models. The schematic representation of these models is
illustrated in Figure 1.

Two machine learning techniques, decision trees (DT) and
neural networks (NN), were adopted for the prediction of concrete
strength and density. The choice of these methods was motivated by
the need to determine the most effective approach for forecasting
concrete characteristics using a limited dataset of 50 samples.
Decision trees were favored for their straightforward structure and
ease of interpretation, which is crucial for enabling stakeholders to
understand the basis for predictions. Neural networks were chosen
for their ability to discern intricate, non-linear relationships in data,
making them well-suited for capturing the complexities involved in
concrete behavior. The employment of both DT and NN allows for
a comprehensive assessment of predictive capabilities, ensuring the
models are robust and precise despite the constraints of small data
quantity.This side-by-side evaluation is instrumental in establishing
which method yields the most reliable and accurate predictions of
concrete strength and density.

In the domain of statistics, data mining, and machine
learning, decision trees emerge as a predictive modeling algorithm
characterized by its versatility and efficacy in addressing both
classification and regression problems. These algorithms construct
a structured hierarchy of logical “if, then” statements, leading
to accurate classification or value estimation. Decision trees are
distinguished by their predictive capacity and straightforward
interpretability, segmenting datasets into a branched tree structure.
This structure facilitates the differentiation between classification
trees, which assign categorical labels, and regression trees,
which forecast continuous outcomes. The iterative construction
of decision trees entails the analysis of each variable and its
potential divisions to optimize selection, focusing on enhancing
predictive accuracy based on the mean-squared error (MSE)
optimization criterion.

The development of Decision Tree (DT) models was rigorously
orchestrated, with a focal emphasis on minimizing the mean-
squared error (MSE) as the pivotal optimization criterion. This
criterion was chosen to improve the accuracy of node splits
and reduce prediction errors relative to the training dataset. Key
parameters, such as the tree’s maximum depth (ranging from 5
to 50), the minimum number of samples required to initiate a
node split (tested between 2 and 20), and the minimum number
of samples required for a leaf node (ranging from 1 to 10), were
carefully adjusted. These adjustments were essential to strike a
balance between model complexity and mitigating the risk of
overfitting. Additionally, the number of predictors sampled at each
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FIGURE 7
The network performance results for trained NN model with Bayesian Regularization depending on water-solid ratio and cement (A) depending on
ZShM and sand (B) depending on ZShM and cement (C).

split was set to 7, in alignment with the number of features in the
dataset. This parameter, known as NumPredictorsToSample, was
chosen to optimize the model’s performance without introducing
unnecessary complexity. The structural configuration of the model
was systematically evaluated by varying the number of trees from
50 to 500, in increments of five, to identify the optimal model
configuration. Each combination of these parameters was evaluated
using MSE, while cross-validation was employed to ensure that the
chosen parameters generalized well to unseen data.The dataset used
for model training was split into training and testing sets in an 80/20
ratio, with a fixed random seed applied to ensure repeatability. This

random split ensured a consistent division of the data between the
training and testing sets.

Neural networks represent a fundamental category within
the domain of machine learning, extensively utilized for both
classification and regression challenges.The architecture of artificial
neural networks (ANNs) is intricate, featuring multiple layers
that transition from input to hidden stages, composed of densely
interconnected neurons. These neurons process inputs by applying
specific weights and biases, utilizing activation functions to
introduce non-linearity - a key aspect for discerning complex
patterns in data. Within the structure of a neural network, each
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TABLE 10 Results of Decision Trees model quality indicators for
concrete density.

Quality indicators Decision trees model

R (all data) 0.86314

MSE 7512.87

RMSE 86.6768

RIE 0.1185

MAE 66.6475

FIGURE 8
Regression statistics for the total set for Decision Trees model for
concrete density.

neuron in a given layer computes a summation of inputs. This
calculation involves the aggregation of each input multiplied by
its respective weight, plus a bias unique to the neuron. Activation
functions play a critical role by enabling neurons to encode and
represent complex data patterns through non-linear dynamics.
This capability significantly enhances the network’s performance
in tasks that surpass linear discrimination, pivotal for addressing
complex challenges in machine learning. Neural networks excel in
processing intricate and non-linear patterns, essential for complex
applications such as visual and auditory recognition, and predictive
analysis. They evolve through iterative optimization, fine-tuning
connection weights to minimize discrepancies between actual and
predicted outputs, thereby reducing error in the training dataset.
This adaptability and advanced learning capacity are crucial for
advancements in machine learning and artificial intelligence.

An experiment involving a neural network with a single hidden
layer, varying neuron counts from 2 to 15, was conducted to
determine the optimal balance between model complexity and

predictive accuracy. This selection was based on iterative testing of
various neuron configurations. The study assessed three learning
algorithms: Levenberg-Marquardt (L-M), Bayesian Regularization
(BR), and Scaled Conjugate Gradient (SCG), selected for their
respective efficiencies. The L-M algorithm is fast but memory-
demanding, halting when validation errors no longer decrease to
prevent overfitting. In contrast, BR, though slower, offers better
generalization, particularly for complex datasets, by adjusting to
prevent overfitting. SCG, efficient in memory usage, also ceases
training upon no further reduction in validation error. The dataset
comprised 50 observations, with a 75% allocation for training and
the remainder equally split between validation and testing.

For both DT and ANN models, the dataset was split into
training, validation, and testing sets. The DT models used an 80/20
(training/testing) split, while the ANN models used a 70/15/15
(training/validation/testing) split. A fixed random seed was applied
to ensure repeatability of the results, and although stratified sampling
was not used, the random split was sufficient to maintain statistical
consistency (e.g., mean and standard deviation) across the sets .

The evaluation of the quality of the models was carried out using
specific metrics, as shown in Table 6. The adoption of these quality
indicators is justified by their effectiveness in assessing the robustness
of predictive models. The Regression Value (R) quantifies both the
magnitude and the direction of the linear correlation between observed
and predicted values. MSE and RMSE are essential for assessing the
average severity of prediction errors, with RMSE emphasizing larger
discrepancies due to its squaring operation. RIE provides a normalized
evaluation of the errors, allowing analysis of the relative magnitude of
the prediction errors. MAE, on the other hand, calculates the mean of
the absolute discrepancies, providing valuable insight into the practical
implications of prediction errors, particularly in the area of energy
recovery. Together, these indicators provide a holistic view of model
effectiveness, balancing the magnitude of error with the consistency of
the model’s predictive accuracy.

To ensure the reproducibility of the results, all code and scripts
used in this study are available in a public repository at https://
doi.org/10.5281/zenodo.13755460. The repository includes detailed
documentation on how to run the code, as well as a list of
dependencies and instructions for replicating the experiments.

2.6 Manufacturing of experimental samples

Experimental samples were produced in the laboratory of the
Centre of Competence and Technology Transfer in the field of
construction ofD.Serikbayev EKTU.Theamount of dry components
was selected so that the volume of finished aerated concrete was
not less than 0.01 m3. Solid components were used in a dry state.
Dosing of dry components was carried out by weight. At the first
stage cement and aggregate were mixed. Mixing was carried out
using a construction drill-mixer. Separately, soda ash was dissolved
in a small amount of water (50 mL). The water for making aerated
concrete was heated to 500C.The heatedwater and soda ash solution
was added to the dry mixture and mixed for 3 min. After that,
aluminium powder was added to the obtained solution and stirred
for 2 min. The ready mixture was poured into the moulds to 2/3 of
the height.The aerated concrete was lifted under normal conditions,
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TABLE 11 Results of neural network training for concrete density.

Network number 1 2 3

Training algorithm Lavenberg-Marquardt Scaled Conjugate Gradient Bayesian Regularization

Epoch 17 40 178

Performance 2927.86 4740.52 4238.18

Best validation performance 9158.92 at epoch 11 5753.69 at epoch 34 4665.42 at apoch 15

Gradient 731 3471.71 1345.02

FIGURE 9
Network training process for concrete density - best validation performance of predictive model: (A) L-M, (B) SCG and (C) BR.

then the specimens were demoulded and placed for storage in a
normal curing chamber for 28 days.

3 Results

3.1 Results for concrete strength

The first analyzed method for modeling the concrete strength
is decision trees (DT). The process involved varying the number of

trees within a range from 50 to 500 trees, with a step of 5 trees. The
best DT modeling results were obtained for 55 trees. The model’s
consistent predictive ability was underscored by a Mean Absolute
Error (MAE) of 0.5936, along with a Mean Squared Error (MSE) of
1.2989, indicating its ability to accurately fit the dataset. The Root
Mean Squared Error (RMSE) was 1.1397, capturing the spread of
prediction errors, while the Relative Importance of Errors (RIE)
was 0.4914, further highlighting the model’s prediction accuracy.
The regression analysis of the entire dataset with the DT model
is shown in Figure 2.
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TABLE 12 Results of neural network quality indicators for
concrete density.

Training
algorithm

Lavenberg-
marquardt

Scaled
conjugate
gradient

Bayesian
regularization

R (all data) 0.91879 0.8972 0.91997

MSE 4487.43 5329.91 4238.18

RMSE 66.98 73.006 65.101

RIE 0.0916 0.0998 0.089

MAE 46.453 57.692 51.597

The second method of analysis was neural networks (NN).
The ANN, when utilizing the Levenberg-Marquardt (L-M) learning
algorithm, demonstrated optimal performance with a configuration
of 6 neurons in the hidden layer, a milestone achieved following
29 iterations. Subsequent to establishing the efficacy of a 6-
neuron hidden layer configuration, the training regimen was
expanded to incorporate two additional learning algorithms: the
Scaled Conjugate Gradient (SCG) and Bayesian Regularization
(BR). The training structure of the neural network is shown in
Figure 3.The Table 7 displays the results of neural network training,
including network numbers, training algorithms used, number of
epochs, performance outcomes, best validation performances along
with the epochs they were achieved in, and gradients.

The Figure 4 shows three graphs corresponding to the training
process of different neural networks, illustrating the mean square
error in different numbers of epochs for the training, validation and
test sets, highlighting the best validation results for each network for
different training algorithms: L-M (Figure 4A), SCG (Figure 4B) and
BR (Figure 4C). Indicators for assessing the quality of the network are
delineated in Table 8.

To mitigate the risk of overfitting, a condition wherein the
model exhibits high accuracy on training data but fails to generalize
effectively to new data, the training regimen was closely monitored.
The cessation of training was triggered upon the identification of six
consecutive increases in error rates during the validation phase, or
in the absence of any amelioration in error metrics. This strategy,
commonly known as “early stopping,” aims to forestall overfitting by
discontinuing the training at the juncture where a decrement in the
model’s validation performance is observed. Figure 5 delineates the
evolution of the network’s training progression.

The graph in Figure 6 shows the correlation between observed and
predicted values through regression analysis for various data sets using
three different model training algorithms, each shown in sub-figures a,
b, and c. Each graph plots actual target values on the horizontal axis
against model predictions on the vertical axis, and includes a best-fit
line demonstrating model performance. The ideal prediction scenario,
where predictions and targets are equal, is represented by a dashed
diagonal line labeled Y = T.The degree to which the scatter points and
best fit line approach theY=T line indicates the accuracy of themodel’s
predictions. The graph indicates that each model has a commendable
level of predictive ability.

For models trained with the Levenberg-Marquardt algorithm,
the calculated regression coefficients (R values) for various data
partitions were: 0.984 for training, 0.914 for validation, 0.99
for testing, and 0.9587 for all data combined. Models utilizing
the Scaled Conjugate Gradient algorithm displayed R values of
0.954 for training, 0.97 for validation, 0.956 for testing, and
0.938 for the combined data sets. Lastly, models employing
Bayesian Regularization algorithm showed R values of 0.954 for
training, 0.966 for validation, and 0.9587 for the combined data
sets. All models yielded R values exceeding the 0.9 benchmark,
indicating a high fidelity in the models’ ability to echo the actual
data trends.

When considering the regression coefficient (R) and the
network performance measures—MSE, RMSE, RIE, and MAE - it
is evident that the network utilizing the Bayesian Regularization
training algorithm achieved the most favorable outcomes (Table 9).
In comparison to the Decision Tree (DT) model, the neural
network with Bayesian Regularization surpassed the DT across all
mentioned performance metrics. The neural network demonstrated
enhanced accuracy with a greater R-value (0.9587 compared
to 0.7549) and notably reduced error indices, including MSE,
RMSE, RIE, and MAE. This indicates that, within the given
scenario, the neural network employing Bayesian Regularization
has a higher proficiency in modeling the intricacies of the
dataset and delivering predictions with greater precision than
the DT model.

As a result of the modeling, it was possible to predict the
concrete strength using the trained NN model with Bayesian
regularization by entering the input data into Statistica.The results of
the networks are shown in the following figures, for the NN model
with Bayesian regularization as a function of water-solid ratio and
cement (Figure 7A), as a function of ZShM and sand (Figure 7B),
and as a function of ZShM and cement (Figure 7C).

3.2 Results for concrete density

Modeling was performed using the Decision Trees (DT)
algorithm, with the number of trees adjusted in increments of 5 in
the range from50 to 500.Themost effectiveDTmodel was identified
with a configuration of 85 trees, which had a Mean Absolute Error
(MAE) of 66.6475, indicating reliable prediction quality. The model
also showed an impressive ability to fit the data set with a Mean
Squared Error (MSE) of 7512.87. The Root Mean Squared Error
(RMSE) of 86.6768 reflected the distribution of prediction errors,
while themodel’s accuracy in prediction was evident from a Relative
Importance Error (RIE) of 0.1185. These metrics are detailed in
Table 10, and the regression analysis applying the DT model to the
entire dataset can be observed in Figure 8.

For the NN and the Levenberg-Marquardt (L-M) learning
algorithm, the best results were achieved using a 8-neuron hidden
layer, culminating in optimal performance within 17 iterations.
The investigation proceeded to evaluate the network under two
additional algorithms: Bayesian Regularization (BR) and Scaled
Conjugate Gradient (SCG). Details of the neural network’s training
outcomes, are systematically documented in Table 11.

Figure 9 presents a series of plots that chart the evolution
of the mean square error across various epochs in the training,
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FIGURE 10
Network training process for concrete density - validation checks: (A) L-M, (B) SCG and (C) BR.

testing, and validation datasets of neural networks.These plots serve
to accentuate the optimal validation performances attained using
different training algorithms: BR (Figure 9C), SCG (Figure 9B), and
L-M (Figure 9A). The parameters used for evaluating the quality of
the network’s training are specified in Table 12. Figure 10 illustrates
the development of the network’s training over time.

Figure 11 contains a graphs that illustrates the relationship
between actual and forecasted data points, determined by regression
analysis across multiple data sets. This relationship is visualized
using three distinct model training algorithms. For the L-M
algorithm (Figure 11A), the training set displays an R-value of
0.91495, indicating a strong positive linear relationship, which is
slightly lower in the validation set with an R-value of 0.8659, and
shows a notable decrease in the test set with an R-value of 0.95937.
The overall R-value across all data sets is 0.91879, signifying high
predictive accuracy of the model. The SCG algorithm (Figure 11B)
exhibits a similar trend with the training set having an R-value of
0.91325, the validation set at 0.91183, and the test set at 0.92481.The
composite R-value for all data is slightly less compared to the L-M
at 0.89724. Figure 11C, depicting the BR algorithm, shows a training

R-value of 0.91824, which is comparable to the other algorithms.The
test set performs better than both L-M and SCG with an R-value
of 0.97588. The overall R-value for the BR algorithm is the highest
among the three at 0.91997, indicating the most consistent and
closest predictions to the actual values across all sets. The analysis
of these R-values indicates that while all three models perform well,
the BR algorithm seems to provide amarginally better fit for the data
across all subsets, as reflected in the composite R-value, which is the
highest among the algorithms evaluated.

Examining the regression coefficient (R) along with various
indicators of network performance such as MSE, RMSE,
RIE, and MAE, it can be seen that the networks trained
with Bayesian regularization produced the most advantageous
results (see Table 13). Compared to the Decision Tree (DT)
model, the performance of the Bayesian Regularized neural
network is superior in all evaluated metrics. This neural network
exhibits significantly higher accuracy, as evidenced by an R-
value of 0.91997 compared to 0.86314 for the DT, and significant
reductions in error measures, including MSE, RMSE, RIE,
and MAE. These results suggest that, for the specific case at
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FIGURE 11
Regression statistics for individual sets and the total set for neural network model for concrete density: (A) L-M, (B) SCG and (C) BR.

hand, neural networks applying Bayesian regularization have
an enhanced ability to capture the complexity inherent in the
data, thereby providing predictions with increased accuracy
compared to those of the DT model.

As a result of the modeling, it was possible to predict the
concrete density using the trained NN model with Bayesian

regularization by entering the input data into Statistica. The
results of the networks are shown in the following figures,
for the NN model with Bayesian regularization as a function
of water-solid ratio and aluminum powder (Figure 12A), as a
function of ZShM and aluminum powder (Figure 12B), and as a
function of ZShM and sand (Figure 12C).
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TABLE 13 Comparison of ElasticNet and neural network models for
concrete density.

Quality
indicators

Decision trees
model

NN model with
bayesian
regularization

R (all data) 0.86314 0.91997

MSE 7512.87 4238.18

RMSE 86.6768 65.101

RIE 0.1185 0.089

MAE 66.6475 51.597

4 Discussion

This study focused on modeling the properties of aerated concrete
using local rawmaterials and ash-and-slagwastes, employing advanced
machine learning techniques with the aim of achieving an optimal
balance between compressive strength and density. This balance is
especially important for applications in seismic regions, where building
materials must meet high standards of performance and safety. The
results obtained from this investigation provide substantial insights
with implications forboth theconstruction industry andenvironmental
sustainability. The comparative analysis conducted between Decision
Trees (DT) and Artificial Neural Networks (ANN) highlighted a
significant advantage in using neural networks for predicting concrete
properties. While Decision Trees offered reasonable accuracy, ANN
models, particularly those incorporating Bayesian Regularization,
consistently outperformedDT across all evaluatedmetrics. Specifically,
ANN models yielded a regression value (R) of 0.9587 for compressive
strength and 0.91997 for density, indicating far more reliable and
accurate predictions when compared to Decision Tree models.

The superior performance ofANNmodels can largely be attributed
to their ability to model complex non-linear relationships between
input variables and the target outcomes. In concrete technology,
interactions between materials such as cement, ZSHM, sand, soda
ash, aluminum powder, and water are highly intricate and non-linear.
Traditional models like Decision Trees often struggle to capture these
complexities, while ANNmodels are adept at generalizing and learning
from such non-linear relationships, making them more effective in
predicting concrete properties. BayesianRegularizationplayed apivotal
role in enhancing the generalization capacity of ANN models. This
technique mitigates overfitting by introducing regularization terms
in the optimization process, which penalize excessive weights and
biases within the network, ensuring that the model captures general
patterns in the data rather than merely memorizing the training data.
The improved performance metrics, such as lower Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Relative Information
Entropy (RIE), and Mean Absolute Error (MAE), highlight the
robustness of the Bayesian Regularized ANNmodels in predicting the
properties of aerated concrete.

Future work in this area could greatly benefit from the inclusion
of interpretability techniques such as SHAP (Shapley Additive
Explanations) or LIME (Local Interpretable Model-agnostic
Explanations) to better understand the contributions of individual

input variables to the model’s predictions. These techniques would
enhance the transparency of the model, allowing for practical
applications in construction scenarios where understanding the
decision-making process is crucial. One of the most significant
contributions of this study is the successful integration of ash-and-
slagwaste from thermal power plants into aerated concretemixtures.
This innovation not only addresses waste management issues but
also significantly reduces the environmental footprint of concrete
production. By replacing traditional raw materials like cement with
industrial by-products, the study contributes to lowering the carbon
footprint associated with cement production, which is one of the
largest contributors to greenhouse gas emissions in the construction
industry. This use of waste materials, without compromising the
mechanical properties of aerated concrete, highlights the feasibility
of adopting sustainable construction practices on a larger scale.

The reduction in greenhouse gas emissions, combined with
the diversion of waste materials from landfills, aligns with global
sustainability objectives anddemonstrates the potential for eco-friendly
innovations in construction. By optimizing the mix proportions of
local raw materials and ash-and-slag waste, the study presents a viable
path for producing non-autoclaved aerated concrete blocks that are
suitable for earthquake-resistant structures.The lightweight nature and
increased compressive strength of these blocks make them particularly
beneficial for use in seismic regions, where structural resilience is
critical. The findings indicate that these aerated concrete blocks could
serve as a sustainable and cost-effective alternative to traditional
building materials, offering both safety and environmental benefits
in earthquake-prone areas. This research opens several promising
directions for future work. One essential area is the continuous
enhancement of machine learning models by incorporating larger,
more diverse datasets. Expanding the dataset size would improve the
models’ accuracy and reliability, while also helping to mitigate the risk
of overfitting, especially in complex models such as neural networks.
Incorporating data from different geographical regions and varying
material compositions could further broaden the applicability of these
models, ensuring they generalize well across different conditions.

Exploring more advanced machine learning techniques, such as
ensemble methods like Random Forests, Gradient Boosting, or deep
learning architectures such as Convolutional Neural Networks, could
potentially provide even better predictive capabilities. Additionally,
future research should focus on the long-term durability and
performance of aerated concrete blocks under real-world conditions,
particularly in seismic regions. Testing these materials under various
environmental factors such as moisture, temperature fluctuations, and
seismic loads would provide more comprehensive insights into their
real-world applicability. Another significant direction for future studies
is investigating the use of additional sustainable materials that could
be incorporated into concrete mixtures. Incorporating other types of
waste materials could further reduce the environmental impact of
concrete production, while maintaining or even improving material
performance. Such innovations would contribute to the development
ofmore environmentally friendly buildingmaterials that not onlymeet
structural requirements but also align with sustainability objectives.

Despite the promising results of this study, several limitations
must be acknowledged. The relatively small sample size (50
observations) limits the generalizability of the findings.While cross-
validation was employed to mitigate the risk of overfitting, a larger
dataset is needed to fully validate the predictive power of the models
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FIGURE 12
The network performance results for trained NN model with Bayesian Regularization depending on water-solid ratio and aluminum powder (A)
depending on ZShM and aluminum powder (B) depending on ZShM and sand (C).

across different material compositions and contexts. Expanding the
dataset in future studieswould provide amore robust basis formodel
generalization and accuracy. Another limitation is the inherent risk
of overfitting in theANNmodels. Although techniques like Bayesian
Regularization and early stoppingwere implemented tomitigate this
issue, the complexity of neural networks can still lead to overfitting,
particularly when working with small datasets. Future research
should focus on expanding the dataset and exploring additional
interpretability techniques to furtherminimize the risk of overfitting
and improve model transparency.

The interpretability of ANNmodels remains a challenge, despite
their superior predictive capabilities. Unlike simpler models such

as Decision Trees, which offer clear and understandable decision
paths, ANN models often function as black boxes, making it
difficult to directly explain the contributions of individual input
variables to the predictions. Incorporating interpretability tools
such as SHAP or LIME in future studies could provide valuable
transparency, allowing for a deeper understanding of how input
variables influence the model’s outcomes. Finally, implementing
these machine learning models in real-world applications presents
additional challenges. The variability in local raw materials and
environmental conditions could affect the accuracy and applicability
of these models in different regions. Further validation across
various geographic regions and material compositions is necessary
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to ensure that these models generalize well in practical construction
scenarios. Addressing these challenges will be crucial for confidently
applying machine learning models in the construction industry.

In conclusion, this study successfully demonstrated the potential
of advanced machine learning techniques for modeling the
properties of aerated concrete using local raw materials and ash-
and-slag waste. The results show that Bayesian Regularized ANN
models are particularly effective for optimizing concrete mixtures
for seismic regions. The environmental benefits, coupled with the
enhanced mechanical properties of the concrete, underscore the
importance of sustainable construction practices and highlight
the role of AI in advancing concrete technology. Future research
should continue exploring new materials and innovative modeling
techniques to further enhance the sustainability and resilience of
concrete structures.

5 Conclusion

The conducted research demonstrates the appropriateness of
employing machine learning methods for disjointed datasets. A
comparative analysis between Decision Trees and Neural Networks,
particularly those using Bayesian Regularization, clearly indicates the
superiority of Neural Networks in modeling complex relationships
involved in predicting concrete strength and density. Neural Networks
consistently outperformed Decision Trees across all performance
metrics, achieving higher regression values (Rstrength = 0.9587 and
Rdensity = 0.91997) and significantly lower error indices (MSE, RMSE,
RIE,MAE).Thisshowcases theiradvancedcapability tocapture intricate
non-linearpatternsinthedata.Theintricatearchitectureandapplication
of Bayesian Regularization in Neural Networks have proven highly
effective in understanding and predicting concrete properties, making
them the preferred choice over simpler Decision Trees.

The comprehensive evaluation metrics solidified the
understanding that Neural Networks offer a more accurate and
reliablemodeling approach. Robust validation techniques, including
early stopping, effectivelymitigated overfitting, ensuring themodels’
reliability and applicability to new data.

The results of the analysis indicate that producing non-
autoclaved aerated concrete blocks for construction in seismic
regions is feasible; however, the use of local materials alone is
insufficient. Future research should focus onmaintaining the correct
ratio between density (weight) and strength of the blocks through
a combination of methods to improve the properties of aerated
concrete and the application of reliable models. The results of the
work made it possible to identify key characteristics that could
potentially provide unique advantages in modeling the properties of
aerated concrete (containing various components, including ash and

slag waste) and other building mixtures using the machine learning
paradigm for a wide range of applications.
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