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Strength characteristics of
cement stabilized construction
waste slurry modified by
polyacrylamide with different
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Waste slurry is a major component of construction waste, and its resource
utilization can effectively reduce its environmental impact. The effect
of polyacrylamide (PAM) content and moisture content on the strength
characteristics of PAM modified cement stabilized construction waste slurry
(PCMS) was studied using unconfined compressive strength (UCS) and triaxial
tests. It can be concluded that, 1) The UCS of PCMS increases with the increase
of curing age and significantly decreases with the increase of moisture content.
As the content of PAM increases, it first increases and then decreases, with
UCS reaching its maximum at a PAM content of 0.5%. 2) When the moisture
content is 50%, PAM can increase the elastic modulus of PCMS. When the
content of PAM is 0.5%, the elastic modulus reaches its maximum value. When
the moisture content is 80% and 100%, the effect of PAM on the elastic modulus
of PCMS is not significant. 3) The addition of PAM can improve the shear
strength of PCMS. Under the same confining pressure, the shear strength of
PCMS increases first and then decreases with the increase of PAM content,
and the optimal content is 0.5%. 4) The variation pattern of PCMS cohesion is
basically consistent with the shear strength. PAM improves the shear strength
of PCMS by enhancing its cohesion. The addition of PAM has a relatively small
impact on the internal friction angle of PCMS. These findings provide valuable
insights for research into modification technology and the resource utilization
of construction waste slurry.
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construction waste slurry, polyacrylamide, moisture content, unconfined compressive
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1 Introduction

In recent years, with the advancement of urbanization, numerous construction
projects have begun. However, the amount of engineering waste generated has
also increased significantly. These engineering wastes not only cause serious waste
of resources, but also pollute the environment, which is a difficult problem to
be solved in future urban construction. Construction waste slurry is a serious
engineering waste in construction, which is a suspended system composed
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of water, bentonite particles, cohesive soil particles, and additives
(Sun et al., 2023; Sun et al., 2024). Slurry as an auxiliary material
in engineering, plays an indispensable role in the construction
process of foundation engineering. However, after multiple cycles
of use, a large amount of waste slurry will inevitably be generated.
Waste slurry on construction sites often occupies construction
land, affecting the environment and progress of the construction
site. Unreasonable discharge treatment can also lead to serious
environmental pollution (Chen et al., 2022; Wang D. et al., 2023).

Although slurry plays a significant role in engineering
construction, the disposal of excess mud andwaste slurry has always
been a major challenge for people. At present, the methods for
treating waste slurry include direct discharge method, incineration
method, chemical solidification method, mechanical treatment
method, and chemical flocculation precipitation method (Ye et al.,
2023; Jiang et al., 2021a; Jiang et al., 2021b; Jiang et al., 2019;
Jiang et al., 2022). The direct discharge method and incineration
method cannot recycle and reuse slurry and cause pollution to
the environment. The mechanical processing method has limited
processing scope and can only handle the separated soil. The
chemical flocculation precipitation method has poor treatment
effect on high-density slurry, and the solid phase of the slurry is
not easy to coagulate and precipitate. The chemical solidification
treatment method directly adds a solidification agent to the slurry,
improving its properties and facilitating the resource utilization
of waste slurry (Grohs, 2002; Li et al., 2019; He et al., 2020). In the
initial research on curing agents, only ordinary Portland cement was
generally added as the curing agent. However, adding cement alone
as a curing agent poses issues such as carbon dioxide emissions
and adverse effects on the strength and durability of the solidified
material (Ma et al., 2019; Craeye et al., 2011; Lin and Zhang, 2016).

At present, there has been a continuous emergence of research
on the modification of slurry by adding curing agents, and many
research results have been achieved. Wang et al. (Wang Q. et al.,
2023) usedwater glass solution and carbide slag as activators to study
the solidification effect of fly ash onwaste slurry.The research results
indicate that when the ratio of carbide slag to water glass is 6:4, the
strength of the cured product after 28 days can reach 2.2 MPa.Wang
et al. (Wang et al., 2024) used kaolin, slag, and carbide slag to solidify
waste slurry in engineering projects. This composite curing agent
can achieve a 7-day strength of 3 MPa for cured specimens. Katsioti
et al. (Katsioti et al., 2008) found that when cement: bentonite =
0.6:0.4, the best solidification effect of waste slurry was achieved,
with a compressive strength of 350 kPa at 28 days. Xu H. et al.,
2023) mixed slag and carbide slag to solidify the slurry soil and
found that the compressive strength of the modified slurry soil after
7 days could reach 3.73 MPa when the mixed amount of binder
was as high as 25%. However, they found that as the wet dry
cycle progressed, the strength loss of modified slurry soil with a
longer curing period was actually faster. Cao et al. (Cao et al., 2006)
conducted indoor experiments by adding different proportions
of lime, soil, and fly ash to slurry, and studied the engineering
properties of solidified slurry under different mix ratios. The study
found that under appropriate mix ratios, the strength of solidified
slurry met the requirements of landfill, and the permeability was
also greatly improved. Yang et al. (Yang et al., 2017) used lime as the
main agent and cement and gypsum as auxiliary agents to improve
Tianjin coastal soft soil. The experimental results showed that using

unconfined compressive strength as the standard for determining
the solidification effect, the optimal cement content only changed
with different lime content. For example, in 12% lime solidified soil,
a cement content of no more than 3% can best improve the strength
of lime solidified soil. Gypsum cannot improve the strength of soil
and can lead to poor water stability and cracking when exposed
to water. Although inorganic curing agents have been effective in
solidifying waste slurry, due to the high moisture content of waste
slurry, direct addition of inorganic curing agents not only increases
the proportion of cured materials, but also the strength of cured
products is usually not high (Shao et al., 2018; Zhang et al., 2022).

Flocculation and dehydration of waste slurry is usually an
economically reasonable approach. It is crucial to choose efficient
flocculants in order to reduce the moisture content of waste slurry.
Therefore, many researchers have made tremendous efforts to find
suitable flocculants. Xiao et al. (Xiao et al., 2021) prepared three
flocculants with different functional groups to coagulate wastewater
containing heavy metal ions. The research results indicate that the
magnetic carboxymethyl chitosan flocculant (MCAA) grafted with
2-acrylamide-2-methylpropane sulfonic acid copolymer has a good
flocculation effect. Patra et al. (Patra et al., 2020) used branched
starch as a flocculant to treat coal suspension and found that this
flocculant has a good effect and helps with rapid settling. Flocculants
can not only promote the settling of suspended particles and achieve
solid-liquid separation, but also have the effect of solidification
enhancement. Tong et al. (Tong et al., 2021) added ion curing agents
to iron tailings and natural soil, and found that the compressive
strength of the mixed material first increased and then stabilized
with the increase of ion curing agent dosage.

Polyacrylamide (PAM) is a water-soluble polymer, white
powder, insoluble in most organic solvents, and is a relatively
new type of curing agent. It is often used in combination with
other traditional inorganic curing agents in soft soil solidification
technology or soft soil foundation treatment methods. At present,
there are also studies on its incorporation into cement. PAM is
mainly used as an additive to play a flocculation role and also has
a good reinforcement effect. Qin et al. (Qin et al., 2023) utilized
industrial solid waste such as construction waste powder and slag
powder, and introduced PAM as a flocculant to solidify waste slurry
with different moisture contents. The superiority of this curing
agent combination in solidifying waste slurry was verified through a
combination of macroscopic and microscopic experiments. Zhang
et al. (Fengjun et al., 2020) prepared a new type of flocculant by
combining three flocculants to solidify waste slurry. The results
showed that the best flocculation effect was achieved when the ratio
of polyacrylamide, joint branch powder, and flocculation settling
promoter was 1:0.75:0.5. Xu et al. (Xu S. et al., 2023) studied the
flocculation and dehydration of kaolin slurry treated with single
and double polymer flocculants. The research results indicate that
non-ionic PAM has the best flocculation effect. This is attributed to
the strongest adsorption and bridging ability of PAM. Deng et al.
(Deng et al., 2022) found through a series of indoor experiments
that adding PAM to cement soil can improve the plastic deformation
ability of solidified soil. An appropriate content of PAM can
significantly increase the ultimate strain of solidified soil at shear
failure. The permeability of cement soil decreases with the increase
of cement content and curing age, but adding a certain amount
of PAM to cement soil can effectively improve its permeability.
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Chang et al. (Chang and Chang, 2010) pointed out that adding a
certain amount of cement to hydraulic fill sand can significantly
improve its liquefaction resistance, but the cement hydraulic fill sand
is easily dispersed when soaked in water. Adding PAM can enhance
the aggregation force between cement hydraulic fill sand particles.
Under the condition of constant cement addition, the unconfined
compressive strength of solidified soil initially increases with the
increase of PAM content. After reaching its peak, the unconfined
compressive strength gradually decreases with the increase of
PAM content, and PAM has the most optimal addition amount.
Kim et al. (Kim, 2016) jointly used aluminum chloride and PAM to
treat wastewater. Research has shown that this composite flocculant
has better performance and faster settling speed. According to these
researches, the use of polyacrylamide can improve the mechanical
properties of high water content (≥50%) slurry, and the appropriate
dosage of polyacrylamide is less than 1%.

In summary, PAM can improve the deformation ability of
cementitious soil, enhance the polymerization force between cement
and slurry, and thus enhance the strength of cementitious soil.
Therefore, PAM was added to improve the strength of cement
modified slurry. But the strength characteristics of polyacrylamide
modified waste slurry (PCMS) under axial and triaxial loads
under different moisture contents and curing ages need further
investigation. So the strength characteristics of PAM modified
cement stabilized construction waste slurry (PCMS) were studied
through unconfined compressive strength (UCS) tests and triaxial
tests, providing reference for the resource utilization of slurry.

2 Materials and methods

2.1 Materials

2.1.1 Slurry
The slurry used in the experiment comes from a construction

site in Shaoxing City, China, and the slurry is dark brown in color, as
shown in Figure 1. After drying, as shown in Figure 2, it appears light
brown.Themain physical andmechanical indicators include specific
gravity, liquid plastic limit, plasticity index, water moisture, and
organicmatter content, as shown in Table 1.The drying temperature
is 105°C and the drying time is 24 h. After drying, the slurry
was subjected to XRF testing, and the compound composition was
obtained as shown in Table 1.

It can be seen that the mud is mainly composed of sheet-like
particles, with the main elemental components being Si, Al, Ca, and
O. The main compounds are SiO2, Al2O3, CaO, Fe2O3, and K2O.

2.1.2 Cement
The cement used in the experiment is M32.5, sourced

from Shaoxing Zhaoshan Building Materials Co., Ltd. China,
as shown in Figure 3. M32.5 cement has the characteristics of
high later strength, moderate setting time, low hydration, good
workability, low water bleeding, and high water retention rate.

2.1.3 Polyacrylamide
Polyacrylamide (PAM) is a water-soluble polymer material

with the chemical formula (C3H5NO)n. The PAM used in
this study is produced by Xinlida Water Treatment Company

FIGURE 1
Slurry.

FIGURE 2
Dehydrated slurry.

in Zhengzhou City, China, and appears as white particles,
as shown in Figure 4. Molecular weight of PAM is 1800 × 104,
pH value is five to eight, solid content is 8.5% and insoluble
substances is 26.5%.

2.2 Sample production and curing

According to Chinese code GBT 50123–2019 (GB/T 50123,
2019), both the unconfined compression strength (UCS) and triaxial
samples in this test are cylindrical, with a diameter of D = 39.1 mm
and a height of H = 80 mm.The specific steps for sample production
are as follows:

(1) Prepare the raw materials for the sample. Before the
experiment, put the air dried slurry into an oven for
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TABLE 1 Basic index of mechanical properties and XRF test results of slurry.

Specific gravity Liquid limit/% Plastic
limit/%

Plasticity index/% Water
solubility
content/%

Organic matter content/%

2.65 46.4 25.4 21.0 0.23 1.03

Type of compound SiO2 Al2O3 CaO Fe2O3 K2O MgO Na2O Other

Content/% 61 16.5 7.7 5.9 3.2 2.4 1.1 2.2

FIGURE 3
Cement.

further drying, and sieve the impurities in the slurry soil
through a 2 mm aperture standard sieve to obtain fine
powder soil.

(2) Assemble the test mold. First, tighten the clamp sleeve of the
mold with a screwdriver, then evenly apply Vaseline inside
the mold barrel, seal one end of the mold with a plastic film
and tighten it with a rubber band. Finally, use the rubber
band to fix the two end bearing plates with the mold and
assemble it into a vibrator. The assembled mold is shown
in Figure 5A.

(3) Prepare the mixture. According to the predetermined
experimental plan, weigh the corresponding masses of slurry
soil, water, cement, PAM, and put each material into a mixing
pot. First, manually mix until it is initially uniform, and then
place it on a mixer for secondary mixing. The mechanical
mixing time is about 5 min. As shown in Figure 5B, obtain the
experimental mixture.

(4) Injecting and compacting. Pour themixedmaterial evenly into
the compactor in three parts, and vibrate for about 40 s each
time to make it compact. After the compaction is completed,
let it stand for about 4–6 h.

(5) Sample trimming and curing. After the sample is left to
stand, remove the two end bearing samples, scrape the two
ends flat, as shown in Figure 5C, and fix the filter paper

FIGURE 4
PAM.

with rubber rings at both ends of the mold cylinder, as
shown in Figure 5D. Then immerse the sample in water
for curing to simulate an environment of air isolation and
saturated curing, as shown in Figure 5E. Finally, place it in a
standard curing room with a temperature of 20°C ± 2°C and
a humidity of 95%.

(6) Sample demolding. After curing the sample to the testing
age, remove the mold cylinder and shape the sample,
as shown in Figure 5F.

2.3 Test plan

Compressive strength and shear strength are the two most basic
strength indicators of geotechnical materials, so this study adopts
unconfined compressive strength test and triaxial test to study the
strength performance of PCMS. The influence of different PAM
content and moisture content on the strength characteristics of
modified mud was studied using unconfined compressive strength
tests and triaxial tests. The specific test plan is shown in Table 2.
Moisture content refers to the ratio of the mass of water to the mass
of dry slurry.

To ensure the authenticity and reliability of the measured
test data, the UCS test is repeated in groups of five specimens.
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FIGURE 5
Sample preparation procedures: (A) Assembled mold; (B) Mixer; (C) Sample trimming; (D) Sample binding; (E) Sample curing; (F) Samples.

TABLE 2 Test plan.

PAM/% Cement content/% Moisture content/% Curing age/d Test method

0, 0.2, 0.5, 0.8 20 50, 80, 100 7, 28 UCS test, triaxial test

Using triaxial tests to obtain the mechanical properties of PCMS
under different stress conditions. The study primarily considers the
influence of confining pressures of 50 kPa, 100 kPa, 150 kPa, and

200 kPa. In both the UCS and triaxial tests, the shear rate of the
sample is set to 1 mm/min, and the test is haltedwhen the axial strain
reaches 15%.
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3 Results and analysis

3.1 Unconfined compressive performance

3.1.1 Unconfined compressive stress-strain curve
Conduct UCS tests on PCMS and obtain 24 sets of unconfined

stress-strain curves. As shown in Figure 6.
From Figure 6, it can be seen that: The stress-strain curves of

PCMS all have similar curve patterns and are all softening type
curves. With the increase of PAM content, the peak stress of PCMS
first increases and then decreases, and the peak strain continues to
increase. When the moisture content is 50% and 80%, regardless of
whether it is at the curing age of 7 days or 28 days, the slope of the
stress-strain curve in the elastic stage is the highest when the content
of PAM is 0.5%, which means that the rate of stress increasing with
strain is the highest. When PAM content is 0.5%, the stress growth
rate of PCMS is the fastest.When themoisture content is 100%, at the
curing age of 7 days, the slope of the stress-strain curve in the elastic
stage is the highest when the content of PAM is 0.5%. At the curing
age of 28 days, the slope of the stress-strain curve in the elastic stage
is the highest when the content of PAM is 0.2%.This indicates that as
curing age increases and PAM content rises, the effect on the stress
growth rate becomes less significant. This is because, with longer
curing, the hydration products in the PCMS continue to increase,
making PAM’s modifying effect on PCMS less pronounced.

3.1.2 Unconfined compressive strength analysis
In order to facilitate the analysis of the modification effect

of PAM on the compressive performance of PCMS, the UCS
of each proportion of PCMS varies with the content of PAM,
as shown in Figure 7.

From Figure 7, it can be seen that: (1) When the moisture
content is 50%, whether at the curing age of 7 days or 28 days,
only when the content of PAM is 0.5%, the UCS of PCMS can
be improved. The remaining PAM content has a negative effect
on the UCS of PCMS. When the moisture content is 80%, the
UCS of PCMS at 7d and 28d curing ages increases first and then
decreases with the increase of PAM content. When the content is
0.5%, the optimal values are 531 kPa and 1,036 kPa, respectively,
with an increase of 31% and 53%. The moisture content is 100%,
and its variation pattern is consistent with that at 80% moisture
content. When the PAM content is 0.5%, the optimal strength
values are reached at 7 days and 28 days curing age, which are
349 kPa and 495 kPa, respectively, with an increase of 35% and 28%.
When the moisture content is 50%, the moisture content is low,
the PAM introduces closed bubbles into PCMS, thereby reducing
the strength of PCMS. When the moisture content is greater than
50%, PAMmakes the hydration products of the cementmatrix more
dense, thereby increasing the strength of PCMS. Therefore, when
the moisture content of PCMS is high, the strengthening effect of
PAM on PCMS is greater than the weakening effect. (2) When the
moisture content and PAM content of PCMS are constant, the UCS
of PCMS increases with curing age. When the moisture content is
50%, the UCS of PCMS with a curing age of 28 days increased by
81%, 85%, 96%, and 119% at PAM’s content of 0%–0.8% compared
to the UCS at 7 days curing age, respectively. When the moisture
content is 80%, the UCS of PCMS with a curing age of 28 days
increased by 66%, 87%, 95%, and 107% at PAM’s content of 0%–0.8%

compared to the UCS at 7 days curing age, respectively. When the
moisture content is 100%, the UCS of PCMS with a curing age of
28 days increased by 51%, 48%, 42%, and 46% at PAM’s content of
0%–0.8% compared to the UCS at 7 days curing age, respectively.
From this, it can be seen that when the moisture content is 50%,
PCMS is most affected by the curing age, and the effect of curing age
is most significant when the content of PAM is 0.8%. (3) When the
curing age of PCMS and the content of PAMare constant, theUCS of
PCMS decreases significantly with the increase of moisture content.

3.1.3 Elastic modulus
Select the linear elastic stage on the stress-strain curve of UCS

test, and fit the data of the linear elastic stage with a straight line.The
slope of the straight line is the elastic modulus. The elastic modulus
of each mix proportion of PCMS is shown in Figure 8.

FromFigure 8, it can be seen that: (1)When themoisture content
is 50%, PAM cannot increase the elastic modulus of PCMS at the
curing age of 7 days. At 28 days curing age, the elastic modulus
of PCMS increases with the increase of PAM content, reaching the
optimal value of 304 MPa at a content of 0.5%, with an increase
of 18.2%. When the moisture content is 50%, PAM can effectively
improve the elastic modulus of PCMS at 28 days of curing age.
(2)When the moisture content is 80%, at the curing age of 7 days,
only when the content of PAM is 0.2%, the elastic modulus of PCMS
can be improved, but the increase is not significant. At 28 days curing
age, the addition of 0.5% PAM can significantly improve the elastic
modulus of PCMS. When the moisture content is 80%, PAM can
still improve the elastic modulus of PCMS. (3) At a moisture content
of 100% and a 7-day curing age, PAM cannot increase the elastic
modulus of PCMS. At 28 days of curing age, the addition of 0.2%
PAM can increase the elastic modulus of PCMS.

When the moisture content is 50% and 100%, at the curing
age of 7 days, PAM cannot increase the elastic modulus of CMS.
This is because PAM introduces closed bubbles into PCMS, thereby
reducing the elastic modulus of PCMS. At the age of 28 days,
when the PAM content is 0.2%, the elastic modulus of CMS can
be increased because the particles in the PCMS also have a strong
adsorption effect on PAM molecules. When these PAM molecules
adsorb on the surface of the particles, they will greatly improve the
surface characteristics of these microparticles. Forming a water film
on the surface of the cement particles ensures sufficient hydration of
the cement. This allows for more complete contact between water
and cement, leading to a more compact structure. Consequently,
this increases the stiffness and improves the elastic modulus of
the cement.

3.2 Triaxial shear performance

3.2.1 Triaxial shear stress-strain curve
Part of the triaxial test stress-strain curves of the PCMS sample

are shown in Figure 9. They are first classified into three categories
based on different moisture contents, and then classified according
to different PAM content.

From Figure 9, it can be seen that: (1)When the confining
pressure is between 50 kPa and 200 kPa, the shear strength and peak
strain of PCMS increase with the increase of confining pressure
under differentmoisture content conditions.The stress-strain curves
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FIGURE 6
Unconfined compressive stress-strain curves of PCMS: (A) 50% moisture content and 7d curing age; (B) 50% moisture content and 28d curing age. (C)
80% moisture content and 7d curing age; (D) 80% moisture content and 28d curing age. (E) 100% moisture content and 7d curing age; (F) 100%
moisture content and 28d curing age.

of PCMS are all softening type, and the smaller the confining
pressure, the more obvious the softening trend of PCMS. (2)Under
high moisture content (80% and 100%) and high confining pressure

(200 kPa), the stress-strain curve of PCMS exhibits a weak softening
curve. With the addition of PAM, the softening trend of the stress-
strain curve of PCMS first increases and then decreases. (3)With
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FIGURE 7
UCS of PCMS at 7d and 28d curing age.

FIGURE 8
Elastic modulus of PCMS at 7d and 28d curing age.

the increase of curing age, the softening trend of the stress-strain
curve of PCMS at 50% moisture content increases, all of which
become strong softening curves. When the moisture content is
high, the form of the stress-strain curve of PCMS does not change
significantly, and it still remains a weak softening curve under high
confining pressure.

3.2.2 Triaxial shear strength analysis
The shear strength of the PCMS corresponds to the maximum

deviatoric stress in the deviatoric stress-strain curve. The
relationship curve between the content of PAM and the shear
strength of PCMS is shown in Figure 10.

According to Figure 10, the addition of PAM can improve the
shear strength of PCMS. Under the same confining pressure, the
shear strength of PCMS increases first and then decreases with the
increase of PAM content.

When the moisture content is 50% and the curing age is 7
days, the effect of PAM on the shear strength of PCMS is relatively
small. Under confining pressures of 50 kPa, 100 kPa, 150 kPa, and
200 kPa, the corresponding shear strength of PCMS is 606 kPa,
657 kPa, 711 kPa, and 758 kPa, respectively. The shear strength of
PCMS with 0.2% and 0.5% PAM content increased by 4%–8% and

5%–9% compared with PCMS without PAM (CMS), respectively.
When the confining pressure is between 50 kPa and 200 kPa, with
a negative increase at 0.8% content of PAM. When the curing age is
28 days, the modification effect of PAM on shear strength increases,
and the best modification effect is achieved at a 0.2% content.
Under confining pressures of 50 kPa, 100 kPa, 150 kPa, and 200 kPa,
the corresponding shear strength of PCMS is 950 kPa, 1,063 kPa,
1,158 kPa, and 1,234 kPa, respectively. The shear strength of PCMS
with 0.2%, 0.5%, and 0.8% PAM content increased by 38%–61%,
38%–49%, and 23%–37% compared with CMS, respectively.

When the moisture content is 80% and the curing age is 7
days, the corresponding shear strength of PCMS under confining
pressures of 50 kPa, 100 kPa, 150 kPa, and 200 kPa is 184 kPa,
209 kPa, 242 kPa and 268 kPa, respectively. The shear strength
of PCMS with 0.2%, 0.5%, and 0.8% PAM content increased
by 16%–22%, 35%–42%, and 24%–33% compared with CMS,
respectively. The maximum increase was observed at 0.5% content
of PAM. When the curing age is 28 days, the corresponding shear
strength of PCMS under confining pressures of 50 kPa, 100 kPa,
150 kPa and 200 kPa is 251 kPa, 290 kPa, 365 kPa, and 403 kPa,
respectively. The shear strength of PCMS with 0.2%, 0.5%, and
0.8%PAMcontent increased by 55%–70%, 60%–98%, and 55%–92%
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FIGURE 9
Deviatoric stress-strain curve of PCMS: (A) 50% moisture content and 7d curing age with 0% PAM content; (B) 50% moisture content and 7d curing age
with 0.2% PAM content. (C) 50% moisture content and 7d curing age with 0.5% PAM content. (D) 50% moisture content and 7d curing age with 0.8%
PAM content. (E) 80% moisture content and 7d curing age with 0% PAM content; (F) 80% moisture content and 7d curing age with 0.2% PAM content.
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FIGURE 10
Relationship between the content of PAM and PCMS Shear strength: (A) 50% moisture content and 7d curing age; (B) 50% moisture content and 28d
curing age. (C) 80% moisture content and 7d curing age; (D) 80% moisture content and 28d curing age. (E) 100% moisture content and 7d curing age;
(F) 100% moisture content and 28d curing age.
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FIGURE 11
Shear strength envelope of PCMS: (A) 50% moisture content and 7d curing age with 0% PAM content; (B) 50% moisture content and 7d curing age with
0.2% PAM content. (C) 50% moisture content and 7d curing age with 0.5% PAM content. (D) 50% moisture content and 7d curing age with 0.8% PAM
content. (E) 80% moisture content and 7d curing age with 0% PAM content; (F) 80% moisture content and 7d curing age with 0.2% PAM content.

compared with CMS, respectively. The best improvement effect was
achieved with 0.5% PAM content.

When the moisture content is 100% and the curing age is 7
days, the corresponding shear strength of PCMS under confining

pressures of 50 kPa, 100 kPa, 150 kPa, and 200 kPa is 147 kPa,
172 kPa, 198 kPa, and 225 kPa, respectively. The shear strength
of PCMS with 0.2%, 0.5%, and 0.8% PAM content increased
by 26%–41%, 53%–69% and 28%–49% compared with CMS,
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FIGURE 12
Cohesion of PCMS.

FIGURE 13
Internal friction angle of PCMS.

respectively. The maximum increase was observed at 0.5% content.
When the curing age is 28 days, the corresponding shear strength of
PCMS under confining pressures of 50 kPa, 100 kPa, 150 kPa, and
200 kPa is 183 kPa, 211 kPa, 240 kPa, and 278 kPa, respectively. The
shear strength of PCMS with 0.2%, 0.5%, and 0.8% PAM content
increased by 15%–58%, 52%–60% and 34%–55% compared with
CMS, respectively. The best improvement effect was achieved with
0.5% PAM content.

The porosity of PCMS increase with the increase of
moisture content. According to references [(He and Lu, 2023;
He et al., 2023; Chen et al., 2021a; Chen et al., 2021b)], the
strength change of PCMS is mainly due to the increase of
its porosity.

In summary, the addition of PAM can improve the shear
performance of PCMS, and the improvement rate of PAM on
the shear strength of PCMS increases with the increase of curing
age. The optimal PAM content of PCMS for shear strength at
50% moisture content is 0.2%, and the optimal PAM content of
PCMS for shear strength at 80% and 100% is 0.5%. It can be
seen that moisture content has a certain influence on the optimal
content of PAM.

3.2.3 Analysis of shear strength indicators
In order to further investigate the modification effect of PAM

on the shear strength of CMS, the strength envelope diagram of
PCMS was drawn based on the Mohr Coulomb theory. According
to Figure 9, the peak value of deviatoric stress is taken as the failure
point. When there is no peak value, the difference in principal stress
at 15% axial strain is taken as the failure point. Using normal stress
σ as the x-axis and shear stress τ as the y-axis, draw a failure stress
diagram on the τ - σ stress plane with (σ1+σ2)/2 as the center and
(σ1-σ2)/2 as the radius, and plot the envelope of the Mohr stress
circle under different confining pressures. Some strength envelope
diagrams were as shown in Figure 11.

Based on the above shear strength envelope diagram, the shear
strength indicators of PCMS with different moisture content and
PAM content, such as cohesion c and internal friction angle φ, are
obtained. The variation of the shear strength index of PCMS with
the content of PAM was obtained under different moisture contents
and different curing age, as shown in Figures 12, 13, respectively.

From Figures 12, 13, it can be seen that: When the moisture
content is 50%, the addition of PAM cannot increase the c of PCMS
at 7 days of curing age, but it has a certain improvement in the φ
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of PCMS. The maximum improvement is achieved at a 0.5% PAM
content, which is 17% higher than CMS. At 28 days of curing age,
the c of PCMS increases first and then decreases with the increase
of PAM content. The optimal content is 0.2%, which is 88% higher
than CMS. This is consistent with the shear strength of PCMS at a
50%moisture content. But theφonly increased by 4%when the PAM
content was 0.5%.

When the moisture content is 80%, PAM can improve the c of
CMS at both 7d and 28d curing ages, and it first increases and then
decreases with the increase of PAM content. The maximum value is
reached at 0.5% PAM content, which is 41% and 137% higher than
the c of CMS at 7d and 28d curing age, respectively. It can be seen
that the improvement of c at 28d curing age is significant and still
consistentwith the change lawof PCMS shear strength. At the curing
age of 7 days, the variation pattern of φ and c is consistent, reaching
itsmaximumat 0.5%PAMcontent and increasing by 16%.At 28 days
of curing age, the φ only increased by 31%with a 0.2% PAM content.

When the moisture content is 100%, at the 7d curing age, the c
of PCMS increases first and then decreases with the increase of PAM
content, reaching its maximum value at 0.5% PAM content, which is
74% higher than CMS. At this point, the φ is also at its maximum,
increasing by 16%, while the φ decreases under other doping levels.
At 28d curing age, the c of PCMS was improved at a PAM content
of 0.5% and 0.8%, with the maximum increase at a 0.5% content,
which was 29%.The φ was improved with the addition of PAM, and
the maximum increase was observed at a 0.2% PAM content, with
an increase of 87%.

4 Conclusion

By conducting unconfined compressive strength tests and
triaxial shear tests on PCMS, the effects of factors such as
moisture content, curing age, and PAM content on the unconfined
compressive and shear properties of PCMS were studied. The
following conclusions can be drawn:

(1) Under axial stress, the stress-strain curves of PCMS are all
softening curves.TheUCS of PCMS increaseswith the increase
of curing age and significantly decreases with the increase of
moisture content. As the content of PAM increases, it first
increases and then decreases, with UCS reaching its maximum
at a PAM content of 0.5%.

(2) When the moisture content is 50%, PAM can increase the
elastic modulus of PCMS. When the content of PAM is 0.5%,
the maximum elastic modulus is achieved at 304 MPa. When
the moisture content is 80% and 100%, the effect of PAM on
the elastic modulus of PCMS is not significant, and the range
of elastic modulus variation is 22–105 MPa.

(3) The stress-strain curves of PCMS under triaxial stress are all
softening type curves. The addition of PAM can improve the
shear strength of PCMS. Under the same confining pressure,
the shear strength of PCMS increases first and then decreases
with the increase of PAM content.

(4) The variation pattern of PCMS cohesion is basically consistent
with the shear strength. The maximum cohesion is achieved
at 50% moisture content and 0.5% PAM content, with a
maximum cohesion of 476.1 kPa. The variation range of
internal friction angle withmoisture content and PAM content
is 10.9°–30.5°. The improvement of shear performance of
PCMS by PAM is mainly achieved by enhancing the cohesion
of PCMS, and the addition of PAMhas a relatively small impact
on the friction between particles inside PCMS.
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