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Intermetallic titanium aluminides, leveraging the ordered γ-TiAl phase, attract
increasing attention in aerospace and automotive engineering due to their
favorable mechanical properties at high temperatures. Of particular interest
are γ-TiAl-based alloys with a Niobium (Nb) concentration of 5–10 at.%. It is
a key question how to model such ternary alloys at the atomic scale with
molecular dynamics (MD) simulations to better understand (and subsequently
optimize) the alloys. Here, we present a comparative analysis of ternary TiAlNb
interatomic potentials developed by the moment tensor potential (MTP) and
deep potential molecular dynamics (DeePMD) methods specifically for the
above mentioned critical Nb concentration range. We introduce a novel dataset
(TiAlNb dataset) for potential training that establishes a benchmark for the
assessment of TiAlNb potentials. The potentials were evaluated through rigorous
error analysis and performance metrics, alongside calculations of material
properties such as elastic constants, equilibrium volume, and lattice constant.
Additionally, we explore finite temperature properties including specific heat and
thermal expansion with both potentials. Mechanical behaviors, such as uniaxial
tension and the calculation of generalized stacking fault energy, are analyzed to
determine the impact of Nb alloying in TiAl-based alloys. Our results indicate that
Nb alloying generally enhances the ductility of TiAl-based alloys at the expense
of reduced strength, with the notable exception of simulations using DeePMD
for the γ-TiAl phase, where this trend does not apply.

KEYWORDS

TiAlNb alloy, machine-learning interatomic potentials, deep learning, moment tensor,
molecular dynamics, density functional theory

1 Introduction

Gamma titanium aluminide (γ-TiAl) intermetallic alloys attract increasing attention
in aerospace and automotive engineering as high-performance lightweight structural
materials. This growing interest is primarily due to their unique combination of low
density, remarkable oxidation resistance, and superior strength and creep resistance at
elevated temperatures Appel et al. (2011). Key to these alloys are the primary intermetallic
phases: γ-TiAl, with its ordered face-centered tetragonal structure (L10, P4/mmm) and
α2-Ti3Al, noted for its ordered hexagonal structure (D019, P63/mmc). The advancement of
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γ-TiAl based alloys, particularly those tailored for higher service
temperatures, such as TNM (TiAl-Nb-Mo) and TNB (TiAl-Nb-
B) alloys, has been significant (Appel et al., 2011; Clemens and
Mayer, 2012; Li et al., 2014; Klein et al., 2016; Zhang et al., 2016).
These alloys typically contain 5–10 at.% Nb, along with small
amounts of other elements like Mo, B, C, Si, W, Cr, Ta. Extensive
research highlights Nb’s crucial role in boosting mechanical
properties, notably increasing the strength and ductility of TiAl
alloys (Appel et al., 2011; Clemens and Mayer, 2012; Liu et al., 2002;
Song et al., 2020; Cheng et al., 2016; Liu et al., 2022; Zhang et al.,
2023). Despite these improvements, the specific contribution of
Nb to the enhancement of strength and ductility in TNB and
TNM alloys has remained somewhat unclear. In our previous
work (Chandran et al., 2024), we addressed this gap by examining
the effects of Nb on the thermo-mechanical properties of TiAl-
based alloys through atomistic simulations. Utilizing Farkas’ ternary
interatomic potential (Farkas and Jones, 1996), we scrutinized
various TiAl-based models, ranging from single-phase structures
to single lamellar interfaces, and progressing to more complex
microstructure-informed atomistic models (MIAMs) with nano-
polycolonies. However, it became evident that it is a limitation
of Farkas’ potential that it could not adequately handle Nb
concentrations above 1 at.% in MIAMs and 2 at.% in certain types
of single lamellar interfaces. This limitation is significant, as higher
Nb concentrations (5–10 at.%) are known to be most interesting for
improving strength and ductility. To overcome this challenge, we
pursue in this article the direction of developing machine learning
(ML) -based interatomic potentials for molecular dynamics (MD)
simulations.

Generally, MD simulations offer profound insights into the
behavior of atomic systems, ranging in scale from around 103–109

atoms. These simulations are instrumental in capturing a wide
array of interactions, including thermal, mechanical, chemical,
and microstructural dynamics. However, the accuracy of MD
simulations is contingent upon the selection of appropriate
interatomic potentials or force fields, as well as the boundary
conditions implemented. In recent years, the integration of
machine learning with MD simulations has emerged as a
rapidly evolving field. This integration primarily focuses on the
modeling of interatomic potential energy surfaces (PES) using
reference data derived from ab initio simulations. Various ML
methodologies have made significant contributions to the study
of condensed matter systems and can be broadly categorized into
linear regression [e.g., moment tensor potentials (Shapeev, 2016;
Podryabinkin and Shapeev, 2017; Gubaev et al., 2019)], kernel
methods [e.g., gaussian approximation potential (Bartók et al.,
2013; Szlachta et al., 2014; Dragoni et al., 2018), spectral neighbor
analysis (Thompson et al., 2015; Chen et al., 2017; Li et al., 2018;
Deng et al., 2019)], and deep neural network-based techniques
(Behler and Parrinello, 2007; Behler, 2011; Zhang et al., 2018a),
respectively.

Recent comparative studies have evaluated the effectiveness
of these diverse techniques, as seen in the works of Zuo et al.
(2020); Deringer et al. (2019); Unke et al. (2020, 2021). Among
these, deep neural network-based potentials, particularly the deep
potential (DP) and neural network potential (NNP), stand out
due to their successes in modeling both ordered and disordered
systems. The flexibility of the descriptor proposed by Zhang et al.

(2018a) for DP potentials is particularly noteworthy. The DP
method has demonstrated its efficacy in various systems, such as
LiF and FLiBe (Rodriguez et al., 2021), MgCl2-NaCl and MgCl2-
KCl (Xu et al., 2023), AlN (Li et al., 2024), Cu (Du et al., 2022) and
several others (Niu et al., 2020; Nguyen et al., 2022). In comparison,
the moment tensor potential (MTP) is notable for its efficiency,
derived from a polynomial basis of interatomic distances and
angles. MTP not only outpaces the other methods in terms of
speed but has also demonstrated equivalent accuracy in modeling
various material systems, as shown in studies by Novikov et al.
(2018); Podryabinkin et al. (2019); Novoselov et al. (2019). MTP
has been recognized for its optimal balance between accuracy and
computational efficiency, a comparison elucidated in Zuo et al.
(2020) performance analysis. Tasnádi et al. (2021) developed an
MTP potential for efficiently predicting the elastic properties of
Ti0.5Al0.5N. Furthermore, the work by Lu et al. (2023) deserves
attention, where the authors generated a DeePMD potential for
TiAlNb. They assert that this potential successfully validates the
bulk material properties of TiAl-based alloys and provides accurate
evaluations of the stacking fault energy and tensile properties
of γ-TiAl. It is also worth mentioning that the neuroevolution
potential (NEP) method, as used in the study by Zhao et al.
(2024), was applied to train a general-purpose Ti-Al-Nb potential.
The authors claim that this trained potential not only explains
the high-temperature mechanical properties of TiAl-based
alloys but also accurately reproduces the fundamental material
properties.

In this paper, we initially create essential datasets for
training TiAlNb-based interatomic potentials using ab initio
molecular dynamics (AIMD) simulations. These datasets (TiAlNb
datasets) are intended to serve as a benchmark for evaluating
TiAlNb-based interatomic potentials. Utilizing them, we train
the TiAlNb interatomic potentials using both MTP and DP
methods. Subsequently, we conduct a comparative evaluation
of these potentials through error analysis and performance
metrics, in addition to calculating material properties such as
elastic constants, equilibrium volume, and lattice constants.
We further compute finite temperature properties, including
specific heat capacity and thermal expansion. Furthermore,
we assess the mechanical properties by performing simulated
uniaxial tension tests and calculations of generalized stacking
fault energy.

2 Materials and methods

2.1 Dataset generation

We performed a large number of AIMD simulations with
the Vienna ab initio simulation package (VASP) Kresse and
Furthmüller (1996a); Kresse and Furthmüller (1996b). These
simulations employed projector augmented wave (PAW) Blöchl,
(1994) method to intricately model the interactions between
electrons and ions. We incorporated the generalized gradient
approximation (GGA) (Perdew et al., 1996, Perdew et al., 1997) for
addressing exchange and correlation effects, specifically using the
Perdew–Burke–Ernzerhof (PBE) functional. Our computational
framework was rigorously set up with a significant cut-off energy of
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510 eV, which was crucial for ensuring the accuracy and precision
of our calculations. Furthermore, a Γ-centered k-point mesh of
dimensions 1× 1 × 1 was employed to efficiently sample the
Brillouin zone, striking a balance between computational efficiency
and temporal resolution with a time step of 0.5 femtoseconds in all
AIMD simulations.

For the development of the interatomic potential, we curated
a comprehensive dataset encompassing a wide spectrum of Nb
concentrations in γ-TiAl and α2-Ti3Al alloys, ranging from 1 at.%
to 14 at.%. This compilation resulted in an extensive array of
28 unique structural configurations, featuring 108 atoms in γ-
TiAl and 128 atoms in α2-Ti3Al. Our primary focus was on the
Nb concentration range of 1–10 at.%, although we extended our
dataset to include concentrations up to 14 at.% Nb to enhance
the training process. Among these 28 configurations, a subset
was reserved and excluded from training to assess the potential’s
predictive accuracy. The introduction of Nb atoms into titanium
lattice sites in both phases was carefully executed, taking into
account the preferential site occupancy of Nb in these alloys. For a
more detailed exposition of this methodology, readers are referred
to our previous work (Chandran et al., 2024) and other pertinent
literature (Holec et al., 2016; Ouadah et al., 2020; Ouadah et al.,
2021; Song et al., 2000; Wei et al., 2012). The Atomsk tool (Hirel,
2015) was utilized for the precise generation of these datasets,
ensuring an accurate representation of the structural configurations.
It should be noted that defect configurationswere not included in the
training process.

Subsequent AIMD simulations were conducted with
meticulous care across all these structures, using the NVT
and NPT ensemble over a period of nearly 10 ps. To
comprehensively analyze thermal behaviors, these simulations
spanned a range of temperatures including 1 K, 300 K,
500 K, 700 K, and 900 K. In the NVT ensemble, particular
attention was given to selecting frames post-equilibration
for analysis. The snapshots derived from these AIMD
simulations provided a rich and diverse data source for
training both MTP and DeepMD potentials. The snapshots
were partitioned in an 80:20 ratio between the training and
test sets to optimize the learning process. More details of the
training database are provided in the Supplementary Material,
in Section 1.

The TiAlNb dataset developed for this research is now available
for public access. It includes the initial structural files in VASP
format, essential for generatingAIMD frames, alongside the training
and validation datasets for DeePMD, and the training and testing
datasets for MTP. Additionally, input files necessary for model
training are provided, ensuring that users can replicate the results.
Access to the dataset is facilitated through the link: TiAlNb
dataset offering comprehensive resources for further exploration
and validation.

For training the DeePMD potential, we utilized the DeePMD
kit (Wang et al., 2018) along with its corresponding library designed
for integration with the LAMMPS package (Thompson et al., 2022)
for executing MD simulations. Similarly, the training of the MTP
potential was conducted using the MLIP package (Novikov et al.,
2021), employing its library specifically developed for compatibility
with the LAMMPS package (Thompson et al., 2022) to facilitateMD
simulations.

2.2 MTP

MTP is a type of machine learning-developed interatomic
potential, implemented using the MLIP package (Novikov et al.,
2021). In MTP, the energy of each atomic configuration (denoted
as c fg) is expressed as the sum of contributions from the local
atomic neighborhoods ni for N atoms. This is mathematically
represented as,

Emtp (c fg) =
N

∑
i=1

V(ni) , (1)

where each contribution V is linearly expanded via a set of basis
functions Bα,

V(ni) =
Nlin

∑
α=1

ξαBα (ni) . (2)

In the above equation, the set of parameters ξ = {ξα} are
derived during the training process and Nlin is the number of
these parameters. The atomic environments are characterized using
moment tensor descriptors or moments, which include both radial
and angular components.Themoment tensor descriptor for the i-th
atom is defined as,

Mμ,ν (ni) =
Nnbh

∑
j=1

fμ (|rij|,zi,zj) rij ⊗⋯⊗ rij⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ν times

, (3)

where rij is the position of j-th atom relative to i-th atom and |rij|
is the corresponding interatomic distance. Nnbh is the number of
atoms in neighborhood. The descriptor consists of the angular part,
rij ⊗⋯⊗ rij⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ν times

(the symbol ‘⊗’ represents the outer product of vectors

and, hence, the angular part is the tensor of order v) and the radial
part, fμ(|rij|,zi,zj) having the following form,

fμ (|rij|,zi,zj) =
NQ

∑
β=1

c(β)μ,zi,zjQ
(β) (|rij|) , (4)

where {cμ,zi,zj} and Q(β)(|rij|) represents the set of radial
parameters and radial basis functions, respectively.

The basis functions Bα are constructed using the
level of moments:

levMμ,ν = 2+ 4μ+ ν, (5)

These coefficients have been found to be optimal for
many datasets Gubaev et al. (2019). The basis functions Bα are
invariant to rotations, reflections, and permutations. For defining a
functional form of MTP, we choose the maximum level, levmax, and
include all the basis functions whose level is less or equal to levmax,
i.e., levBα ≤ levmax.

The MTP parameters θ comprise of the radial parameters c and
ξ, which are obtained during the fitting procedures. The fitting and
learning procedure of MTP consists of finding parameters θ by
minimizing the optimization problem,

K

∑
k=1
[we(Emtp (c fgk;θ) −E

qm (c fgk))
2

+w f

Nk

∑
i=1
| f mtp

i (c fgk;θ) − f
qm
i (c fgk)|

2

+ws|σmtp (c fgk;θ) − σ
qm (c fgk)|

2] →minθ

(6)
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where the training set contains configurations c fgk, k = 1,….,K and
Eqm(c fgk), fqmi (c fgk) and σqm(c fgk) are the quantum mechanical
energy, forces and stress tensors, respectively. Nk is the number of
atoms in configuration k and we, w f and ws are the non-negative
weights of energies, forces and stresses during the optimization.
Equations 1–6 pertains to MTP formulation.

2.3 DeePMD

TheDPmethodused in this studywas developedusingDeePMD
kit (Wang et al., 2018). In DeePMD, the total energy of the system is
represented as sum of energies of all the atoms. Suppose a system
contains N atoms, then the total energy of the system according to
DeePMDmodel can be represented as,

E =
N

∑
i=1

Ei. (7)

Each atomic energy Ei is obtained by the position of i-th atom and
its neighbours,

Ei = Es(i) (Ri, {Rj|j ∈ NRc (i)}) , (8)

where si denotes the chemical specie of atom i and NRc(i) denotes
the set of neighbour atoms that are at a cut-off radius of Rc
from atom i. The cut-off radius of the neighbouring atoms should
be such that Rij = | Ri −Rj | ≤ Rc. In order to map the atomic
positions, descriptors that guarantee translational, rotational and
permutational symmetries are used.We have used the deep potential
smooth edition (DeepPot-SE) Zhang et al. (2018b) suggested in
DeePMD Kit that includes the radial and angular information of
atomic configurations. These symmetry preserving descriptors are
set up using an embedding net and are later passed to the fitting
net to obtain the energy of each atom. Parameter optimization is
performed by minimizing the loss function L where,

L(pϵ,p f ,pξ) =
pϵ
N
|ΔE2| +

p f
3N
∑|ΔF|2 +

pξ
9N
‖ΔΞ‖2, (9)

where ΔE, ΔF and Δ Ξ correspond to the root mean square
(RMS) error of energy, force and stress, respectively. During the
optimization process, the prefactors of energy (pϵ), force (p f) and
stress (pϵ) are changed. The prefactors are formulated as

p (t) = plimit[1−
rl (t)
r0l
]+ pstart[

r1 (t)
r0l
], (10)

where r0l and rl(t) denotes the learning rate at the beginning and at
the training step t, respectively. pstart shows the starting prefactor,
which goes to plimit at the end of the learning. Here, an exponential
learning rate is considered as,

rl (t) = r
0
l × d

t/ds
r , (11)

where dr and ds denote the decay rate and decay steps, respectively.
Equations 7–11 pertains to DeePMD formulation.

2.4 Potential training

2.4.1 MTP
Our investigation commenced with an analysis of the

convergence of the MTP towards density functional theory (DFT)

energy and force metrics. A key aspect of this study involved
conducting a grid search to optimize the MTP parameters. This
search varied the potential levels from 6 to 24 and the rcut values
from 5 Å to 8 Å at 1 Å intervals. This strategic approach enabled us
to explore a wide range of potential configurations to ascertain the
most effective one. This analysis was conducted using a selection of
1800 datasets that were not included in the fitting of the potential, as
illustrated in Figure 1. A pivotal aspect of the convergence test was
the assignment of greater weight to energy, reflecting its critical role
in the overall accuracy of the potential.

The convergence analysis revealed that the energy per atom
began showing signs of convergence at level 16. This was a key
observation, indicating that the MTP was effectively capturing the
energy characteristics consistent with DFT calculations from this
level. Similarly, the force values also demonstrated significantly
low root mean square error (RMSE) commencing at the same
level, further affirming the reliability of the potential from level
16 onwards.

Given these findings, and to ensure a conservative and robust
approach, we ultimately selected level 18, for the final model. This
level was deemed to provide an optimal balance between complexity
and accuracy. Additionally, rcut was set to 7 Å, for ensuring sufficient
interaction range while maintaining computational efficiency. The
minimum radius (rmin) was chosen to be 2 Å. This parameter is
crucial for determining theminimumdistance at which interactions
are considered in the potential, thereby influencing the model’s
sensitivity to shorter-range forces.

For the MTP’s training objective function, weights were
thoughtfully assigned as follows: we = 1 for energy, w f = 0.01
for force, and ws = 0.001 for stress, with a priority on energy
precision. This weighting strategy ensured a nuanced consideration
of both force and stress, albeit with a lesser priority compared to
energy, essential for crafting a nuanced and precise interatomic
potential. The dataset leveraged for this purpose contained 40,000
frames, distributed in an 80:20 ratio between training and
validation sets, to support effective model training and subsequent
validation.

2.4.2 DeePMD
In our study, the DeePOT-SE model, as implemented in the

DeePMD-kit package, was employed. The cut-off radius for the
model was set to 6 Å, with the smoothing function commencing at
4 Å, ensuring a smooth transition and reducing potential artifacts in
the force calculations.

Themodel’s architecture included radial and angular embedded-
atom neural networks, each featuring three hidden layers. These
layers were composed of 10, 20, and 40 nodes, respectively,
providing a robust framework for capturing the complex interatomic
interactions. Additionally, the fitting networks were designed with
three hidden layers, each containing 100 nodes.

Regarding the training parameters, the initial learning rate
was set at 0.001, gradually decreasing to a final rate of 3.51 ⋅
10−8. This gradual reduction in the learning rate allowed for finer
adjustments as the training progressed, leading to more accurate
model predictions. The weighting factors for energies and forces
were also carefully calibrated. Initially, the weights for energies
were set at 0.02, increasing to 1 in the final stages, whereas the
weights for forces started at 1,000 and were reduced to 1. This
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FIGURE 1
Convergence of MTP with respect to RMSE energy/atom (A) and RMSE force (B) with increasing MTP levels and cut-off radius (Rcut).

approach prioritized force accuracy in the initial stages of training
and gradually shifted the focus towards energy accuracy.

It is noteworthy that virial data was not included in the training
process. This decision was made to streamline the training and
focus on the most critical aspects of the potential. The training was
conducted over a substantial number of epochs, totaling 2,00,0000,
to ensure comprehensive learning and optimization of the model
parameters.The utilized dataset comprised 3,33,340 frames, divided
into a training and validation set following an 80:20 ratio, facilitating
effective model training and validation.

3 Results and discussion

3.1 Error analysis

The correlation between predictions from ML models and
DFT calculations is pivotal in ascertaining the models’ accuracy,
particularly in simulating potential energy surfaces and material
dynamics. Our study methodically evaluates this correlation for
Nb-alloyed γ-TiAl and α2-Ti3Al phases using both MTP and DP
models. Figures 2, 3 are instrumental in this analysis, showcasing the
comparison of MTP and DP model predictions against DFT data,
respectively.

The primary metrics for this comparison are energy per atom
and the three components of force. For theMTPmodel, the recorded
rootmean square errors (RMSEs) are 0.0031 eV/atom for energy and
0.1285 eV/Å for the x-direction force (fx), 0.1329 eV/Å for the y-
direction force (fy), and 0.1292 eV/Å for the z-direction force (fz).
Conversely, the DP model exhibits RMSEs of 0.0011 eV/atom for
energy, 0.0783 eV/Å for fx, 0.0795 eV/Å for fy, and 0.0820 eV/Å for
fz. The DP model’s RMSEs are notably lower than those of the MTP
model, suggesting amarginally superior precision. Nevertheless, the
energy and force RMSEs for both models are within acceptable
ranges, confirming their effectiveness in reflecting DFT outcomes.

Additionally, the RMSEs for energy per atom, fy, fy, and fz were
computed for the training datasets and are presented in Table 1.

Both models’ predictions exhibit a close alignment with the y
= x line, highlighting their capacity to accurately reproduce the
test dataset energies and atomic forces. This congruence is a robust
indicator of the models’ exceptional accuracy, which extends to
untrained test data, suggesting their effectiveness in generalizing
beyond the configurations they were trained on. The considered
test data encompasses structures over a complete temperature range
(1 K, 300 K, 500 K, 700 K and 900 K) and varyingNb concentrations
(1–14 at.%).The lower RMSEs for both energy and force underscore
the DP model’s superior ability to achieve DFT-level accuracy
compared to the MTP model. This indicates the potential of the
DP model as a more precise tool for simulating the behaviors of
Nb-doped γ-TiAl and α2-Ti3Al phases, backed by its comparative
closeness to DFT calculations.

3.2 MD simulations

3.2.1 Energy volume curve
To augment the validity of the DeePMD and MTP potentials,

this study meticulously examines the energy-volume relationships
obtained using the Murnaghan fit in Nb-alloyed α2-Ti3Al and
γ-TiAl phases. Illustrations of these relationships are effectively
depicted in Figure 4. Remarkably, the outcomes from MD
simulations employing DeePMD and MTP exhibit exceptional
congruence with those derived from DFT calculations. This
alignment highlights the adeptness of the trained potentials in
precisely capturing the energy-volume characteristics inherent to
these materials.

Table 2 shows the equilibrium volume predicted by DFT, MTP
andDeePMD for α2-Ti3Al and γ-TiAl. For the α2-Ti3Al, equilibrium
volumes predicted by DFT, MTP, and DeePMD are respectively
15.88 Å3, 16.40 Å3 and 14.52 Å3. In a similar vein, for γ-TiAl
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FIGURE 2
Parity plots of MTP predicted energy per atom (A), x-component of force (B), y-component of force (C) and z-component of force (D) against the
corresponding DFT values.

phase, the corresponding values are 16.22 Å3, 15.76 Å3 and 15.46
Å3. Notably, the equilibrium volume predictions by MTP align
more closely with those from DFT than do those by DeePMD for
both phases.

The lattice constants predicted by DFT, MTP and DeePMD for
α2-Ti3Al and γ-TiAl are compared to corresponding experimental
values (PEARSON, 1958;He et al., 1997) in Table 2. For the α2-Ti3Al
phase, MTP predicts lattice constants of a = 5.683 Å and c = 4.633
Å. These closely match the DFT-calculated values of a = 5.625 Å
and c = 4.586 Å and experimental values (PEARSON, 1958) of a =
5.770 Å and b = 4.620 Å. Conversely, DeePMD predicts a = 5.453 Å
and c = 4.446 Å, slightly diverging from the DFT lattice parameters.
The equilibrium lattice constants for γ-TiAl as forecasted by MTP–a
= 3.910 Å and c = 4.099 Å – exhibit a striking resemblance to the
DFT-determined values of a = 3.950 Å and c = 4.140 Å whereas the
experimental values (He et al., 1997) are a = 3.998 Å and c = 4.067 Å.
The DeePMD predictions, a = 3.910 Å and c = 4.099 Å, are identical
to those of MTP, showcasing their close alignment with DFT values.

Accurate energy prediction in competitive phases is vital to avert
unphysical phase segregation during MD simulations. Therefore,
the integration of machine learning potentials like DeePMD and
MTP notably enhances the structural analysis and prediction
capabilities in Nb-alloyed α2-Ti3Al and γ-TiAl phases, underscoring

their significance in the realm of advanced materials research. In
terms of equilibrium volume and lattice constant prediction, MTP
demonstrates superior performance compared to DeePMD.

3.2.2 Elastic constants
Next we assessed the elastic constants of α2-Ti3Al and γ-TiAl

alloys utilizing the different computational methodologies DFT,
MTP, and DeePMD.The outcomes, quantified in gigapascals (GPa),
provide a detailed comparison of themechanical attributes predicted
by thesemodels against established experimental values (Tanaka and
Koiwa, 1996; Tanaka, 1996) in Table 2.

For the α2-Ti3Al alloy, notable discrepancies emerge in the
elastic constants across the computational approaches compared to
experimental standards (Tanaka and Koiwa, 1996). Specifically, the
DeePMD’s C11 prediction of 339 GPa significantly overshoots the
figures from DFT (157 GPa), MTP (147 GPa), and experimental
data (183 GPa), indicating an overestimation of longitudinal
stiffness by DeePMD. The variations in C12 and C33, which
reflect differences in predicted interatomic bond strengths and
compressibility along distinct crystallographic directions, are
particularly striking, with DFT (103 GPa and 219 GPa) and
experimental (89 GPa and 225 GPa) benchmarks. The DeePMD’s
divergence in C13, which measures axial-longitudinal strain
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FIGURE 3
Parity plots of DeePMD predicted energy per atom (A), x-component of force (B), y-component of force (C) and z-component of force (D) against the
corresponding DFT values.

TABLE 1 Comparison of RMSE values of energy/atom, fx, fy, and fz for MTP and DeePMD using training data.

Potential RMSE

Energy/atom (eV/atom) fx (eV/Å) fy (eV/Å) fz (eV/Å)

MTP 0.00303 0.13365 0.13705 0.13188

DeePMD 0.00107 0.06463 0.06947 0.06886

interactions, sharply contrasts with DFT’s 74 GPa and the
experimental value of 63 GPa. Additionally, the C44 constant, crucial
for evaluating resistance to shear deformation, shows variation, with
MTP predicting 34 GPa against DFT’s 46 GPa and experimental
findings of 64 GPa. It is noteworthy that the C66 constant is not
applicable for the α2-Ti3Al phase in this analysis.

In the analysis of the γ-TiAl alloy, the elastic constants
exhibit significant variances across the computational techniques,
juxtaposed with experimental findings (Tanaka, 1996). The C11
constant, indicative of the material’s longitudinal rigidity, shows a
broad range of values, with DFT’s prediction of 179 GPa closely
mirroring the experimental value of 187 GPa, in contrast to
the lower estimations of 146 GPa by both MTP and DeePMD.
Conversely, the shear-related C44 constant demonstrates minimal

variation among the models, aligning closely with the experimental
measure of 109 GPa and DFT value of 102 GPa.

Table 3 presents a comparison of the elastic constants for α2-
Ti3Al and γ-TiAl at 300 K, 500 K, 700 K, and 900 K. As expected,
the elastic constants for both α2-Ti3Al and γ-TiAl decrease with
increasing temperature, consistent with findings reported inQi et al.
(2023). Our calculated values have been compared to available
experimental data (He et al., 1997; Tanaka, 1996) for γ-TiAl;
(Tanaka et al., 1996) forα2-Ti3Al), though it is important to note that
experimental values are not available for γ-TiAl at 900 K and for α2-
Ti3Al at 500 K, 700 K, and 900 K. Moreover, the C66 constant does
not apply to the α2-Ti3Al phase in this analysis. The discrepancies
observed in the elastic constants in Table 2 are also present here;
however, the overall trend of decreasing elastic constants with
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FIGURE 4
Energy-volume curve of α2-Ti3Al (A–C) and γ-TiAl (D–F) phases computed using DFT, MTP and DeePMD methods.

TABLE 2 Comparison of lattice constants (a, c), equilibrium volume (V0) and elastic constants for γ-TiAl and α2-Ti3Al using DFT, MTP, and DeePMD
methods along with the experimental values. Lattice constants are in Å, equilibrium volume in Å

3
, and elastic constants are in GPa.

Quantities α2-Ti3Al γ-TiAl

DFT MTP DeePMD Expa,b DFT MTP DeePMD Expc,d

a 5.625 5.683 5.453 5.770 3.950 3.910 3.910 3.998

c 4.586 4.633 4.446 4.620 4.140 4.099 4.099 4.067

V0 15.88 16.40 14.52 N/A 16.22 15.76 15.46 N/A

C11 157 147 339 183 179 146 146 187

C12 103 63 204 89 121 48 111 75

C33 219 165 261 225 177 279 65 182

C13 74 10 155 63 94 111 124 75

C44 46 34 50 64 102 88 96 109

C66 N/A N/A N/A N/A 75 81 109 81

aTanaka and Koiwa, 1996.
bPEARSON, 1958.
cTanaka, 1996.
dHe et al., 1997.

increasing temperature for both phases remains consistent with the
previous studies mentioned.

The observed disparities in elastic constants among the DFT,
MTP, and DeePMD methodologies, relative to experimental data
(Tanaka and Koiwa, 1996; Tanaka, 1996), highlight the intricate
challenges of accurately simulating material behaviors. These
differences can be attributed to the unique features of each

approach, including DFT’s detailed electron correlation handling,
MTP’s potential function structure, and DeePMD’s reliance on
extensive training datasets and neural network designs. Our
analysis underscores the critical importance of selecting appropriate
computational strategies tailored to specific material characteristics
and the need for cautious interpretation of computational findings
in materials science. This study reinforces the indispensable role of
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TABLE 3 Comparison of elastic constants of α2-Ti3Al and γ-TiAl at 300 K, 500 K, 700 K and 900 K using MTP, DeePMD and experimental methods. Elastic
constants are measured in GPa.

Elastic constants Temperature (K) α2-Ti3Al γ-TiAl

MTP DeePMD Expa MTP DeePMD Expb,c

C11

300 135.3 314.5 156.9 145.5 134.8 181.8

500 119.4 287.0 N/A 143.3 130.1 177.2

700 109.6 251.0 N/A 140.6 126.0 170.5

900 106.4 246.6 N/A 139.4 119.5 N/A

C12

300 57.3 203.2 87.4 46.8 107.9 73.5

500 54.2 190.7 N/A 44.3 91.5 74.9

700 48.6 189.3 N/A 43.3 88.9 73.5

900 39.4 182.7 N/A 42.3 80.1 N/A

C13

300 9.3 140.4 61.5 110.9 118.8 73.5

500 8.0 120.4 N/A 110.4 117.6 72.5

700 6.5 100.2 N/A 110.3 116.6 71.7

900 6.2 103.0 N/A 108.3 112.7 N/A

C33

300 164.2 218.7 216.3 46.8 64.7 174.0

500 163.4 211.5 N/A 46.5 63.8 170.0

700 161.7 202.4 N/A 44.3 62.0 163.1

900 161.3 193.9 N/A 43.3 60.6 N/A

C44

300 33.5 46.8 61.5 87.7 95.9 103.1

500 32.4 45.9 N/A 86.6 95.9 98.0

700 32.3 42.1 N/A 85.6 94.1 94.2

900 31.3 38.6 N/A 83.3 92.2 N/A

C66

300 N/A N/A N/A 80.6 109.5 71.6

500 N/A N/A N/A 80.6 107.0 66.1

700 N/A N/A N/A 78.3 106.4 62.9

900 N/A N/A N/A 75.0 104.9 N/A

aTanaka et al., 1996
bHe et al., 1997
cTanaka, 1996.

experimental validation in confirming the veracity of computational
predictions.

3.2.3 Radial distribution function
Theradial distribution function (RDF) serves as an instrumental

tool for analyzing the structural properties of materials. In
our study, illustrated in Figures 5, 6, we present a comparative
analysis of RDFs predicted by MTP and DeePMD against

those obtained from AIMD for Nb in α2-Ti3Al. Additionally,
Figures 7, 8 show a similar comparison for Nb in γ-TiAl. It is
important to note that the structural instances used for RDF
analysis with DFT were not part of the training sets for either
the MTP or DeePMD models. The agreement between the
outcomes underscores the dependability of DeePMD and MTP
models in probing the structure of Nb-alloyed α2-Ti3Al and
γ-TiAl phases.
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FIGURE 5
RDF curves for α2-Ti3Al obtained using MTP potential for 2.3 at.% Nb (A–D) and 6.3 at.% Nb (E–H) models.

FIGURE 6
RDF curves for α2-Ti3Al obtained using DeePMD potential for 2.3 at.% Nb (A–D) and 6.3 at.% Nb (E–H) models.

Notably, the RDFs for γ-TiAl from AIMD exhibited a
closer match with the ML potentials compared to those for α2-
Ti3Al. This could be attributed to the ML models encountering
challenges in accurately replicating structures when two different
phases are present. In the case of α2-Ti3Al, we observed a
diminishing correlation between the RDFs from AIMD and
ML potentials with increasing temperature, as demonstrated in
Figure 5G (6.3 at.% Nb) and 6G (6.3 at.% Nb). Furthermore,

at 300 K, the RDF for 7.4 at.% Nb in γ-TiAl (Figure 8E)
showed a discrepancy between AIMD and DeePMD, while
the MTP model maintained a good correlation for the same
scenario. These observations highlight the nuanced performance
of ML potentials in different phase contexts and temperature
conditions.

Additionally, we examined the scalability of the
developed potentials with system sizes, as detailed in
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FIGURE 7
RDF curves for γ-TiAl obtained using MTP potential for 1.9 at.% Nb (A–D) and 7.4 at.% Nb (E–H) models.

FIGURE 8
RDF curves for γ-TiAl obtained using DeePMD potential for 1.9 at.% Nb (A–D) and 7.4 at.% Nb (E–H) models.

Supplementary Figures S1–S4 in the Supplementary Material in
Section 2. For further insights, please refer to this section in the
Supplementary Material. Our study also extended to comparing
RDFs calculated by DFT, MTP, and DeePMD for a specific
case of 14.8 at.% Nb concentration, which exceeds the training
data’s Nb concentration range. These results are documented
in the Supplementary Material in Section 3, providing valuable
perspectives on the models’ performance beyond their initial
training scope.

3.2.4 Specific heat capacity and thermal
expansion

To assess the predictive capability of trained MTP and
DeePMD potentials at finite temperatures, this section reports the
computation of specific heat capacity (CV) for 3.1 at.%Nb structures
of α2-Ti3Al and γ-TiAl and thermal expansion coefficients (αa
and αc) for α2-Ti3Al and γ-TiAl as the temperature increases. For
the computation of specific heat capacity we have used phonopy
(Togo et al., 2023; Togo, 2023).
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FIGURE 9
Comparison of specific heat capacity computed using MTP, DeePMD and MTP for 3.1 at.% Nb cases for α2-Ti3Al (A) and γ-TiAl (B).

Figures 9A, B illustrate the comparisons of CV values calculated
using DeePMD and MTP against those derived from DFT for 3.1
at.% Nb of α2-Ti3Al and γ-TiAl, respectively. It is observed that
CV progressively increases with temperature across all methods,
reflecting the system’s access to more degrees of freedom at higher
temperatures. For α2-Ti3Al, the alignment of the curves from
the three methods is notably good. Specifically, the DeePMD
results closely mirror the DFT outcomes, whereas the MTP results
show minor deviations between 177 K and 777 K, aligning better
at temperatures beyond this range. For quantitative clarity, at
200 K, CV values are 0.045 J/g.K, 0.099 J/g.K, and 0.082 J/g.K for
DeePMD,MTP, andDFT, respectively; at 600 K, they are 0.401 J/g.K,
0.449 J/g.K, and 0.392 J/g.K; and at 1000 K, they are 0.647 J/g.K,
0.595 J/g.K, and 0.608 J/g.K. It should be noted that the training
set for these potentials only included structures up to 900 K. For γ-
TiAl, although the MTP and DeePMD predictions initially closely
match, they begin to diverge slightly beyond 288 K. Quantitative
values at 200 K are 0.104 J/g.K for both DeePMD and MTP, and
0.355 J/g.K for DFT; at 600 K, the values are 0.525 J/g.K, 0.473 J/g.K,
and 0.352 J/g.K; and at 1000 K, they are 0.765 J/g.K, 0.655 J/g.K, and
0.554 J/g.K.

In terms of thermal expansion, we computed the coefficients αa
and αc corresponding to lattice parameters a and c at temperatures
up to 900 K (Figure 10) for α2-Ti3Al and γ-TiAl. These values were
compared with experimental results for γ-TiAl (He et al., 1997) and
DFT calculations for α2-Ti3Al (Holec et al., 2019). It is important to
note that low-temperature behaviors, often influenced by quantum
effects, are not typically well captured by classical interatomic
potentials. Both αa and αc typically increase with temperature,
aiming to stabilize at higher temperatures. Experimental and
DFT reference values are only available up to 750 K. At higher
temperatures, αa and αc calculated usingDeePMDare closer to these
reference values, whereas MTP underpredicts these coefficients
for both phases. Thus, DeePMD proves to be more accurate in
predicting thermal expansion coefficients than MTP.

3.2.5 Tension test
Here, we aimed to assess the capabilities of the MTP

and DeePMD potentials in capturing the thermo-mechanical
characteristics of specific materials. To achieve this, we simulated
uniaxial tension tests on chosen samples, applying a strain rate
of 109 s−1. The stress-strain curves obtained from these tension
tests, utilizing both MTP and DeePMD potentials for the α2-Ti3Al
and γ-TiAl phases, are illustrated in Figure 11. Table 4 presents a
comparative analysis of ultimate tensile strength (UTS) values for
these materials.

We focused on comparing the UTS of the intermetallic phases to
gauge the accuracy of mechanical property predictions. For the α2-
Ti3Al phase, MTP demonstrated consistency in UTS with increase
in Nb concentration. Conversely, with the DeePMD potential, the
UTS decreased as the Nb concentration increased. In the γ-TiAl
phase, an increase in Nb concentration typically led to a rise in
UTS with DeePMD, whereas with MTP, a decrease in UTS was
observed with increasing Nb, except for the 7.4 at.% Nb scenario.
The results of tension curves for γ-TiAl with Nb introduction
using DeePMD shows a discrepancy with that presented in
Lu et al. (2023).

Further insights into the nanomechanical behavior during
uniaxial tension tests in the α2-Ti3Al and γ-TiAl phases are provided
in Figure 12. These figures employ color coding to depict the
centrosymmetry parameter (CSP), which helps identify local lattice
distortions and hence, defects. For the α2-Ti3Al phase, the strain
levels at which defects appeared remained relatively constant across
different Nb concentrations with MTP, but showed a decrease with
increasing Nb concentration in DeePMD, except in the case of 7
at.% Nb. These findings are in agreement with the stress-strain
curves of depicted in Figures 11A, B. In the γ-TiAl phase, the
strain threshold for defect formation decreased with increasing Nb
concentration using MTP, while it increased with increasing Nb
concentration in DeePMD. This observation aligns with the stress-
strain data shown in Figures 11C, D.
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FIGURE 10
Thermal expansion coefficient (TEC) computed using DeePMD and MTP compared with the DFT values (Holec et al., 2019) and
experimental values (He et al., 1997) for α2-Ti3Al (A, B) and γ-TiAl (C, D) respectively.

FIGURE 11
Stress-strain curves for α2-Ti3Al (A, B) and γ-TiAl (C, D) with varying Nb concentration computed using MTP and DeePMD potentials.

3.2.6 Generalized stacking fault energy
This section evaluates the generalized stacking fault energy

(GSFE) of γ-TiAl and α2-Ti3Al using both DeePMD and MTP
potentials. Our analysis compares these findings with results derived
from DFT and other referenced studies. Specifically, we examine
studies such as Qi et al. (2023), which utilized the MTP potential,
and (Lu et al., 2023), which employed the DeePMD method, where
the values are available only for γ-TiAl.We used atomman (atomistic
manipulation toolkit) (Becker et al., 2013; Hale et al., 2018) for the
computation of stacking fault energy.

For γ-TiAl, dislocation glide occurs on the {111} close-packed
planes, which are susceptible to three distinct types of stacking
faults: intrinsic stacking fault (SISF), antiphase boundary (APB),
and complex stacking fault (CSF). CSF is associated with ordinary
⟨110]/2 dislocations, while SISF and APB are linked to ⟨110] and
⟨112]/2 super-dislocations. Figures 13A–D shows the γ-lines along
[112] direction for γ-TiAl using both MTP and DeePMD. The
energy values are documented in Table 5. MTP models generally
align with the DFT and other referenced values for CSF, though
MTP tends to overestimate SISF energy, in agreement with findings
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TABLE 4 Comparison of UTS values for α2-Ti3Al and γ-TiAl using MTP and DeePMD potentials.

α2-Ti3Al γ-TiAl

Model (at.%) MTP (GPa) DeePMD
(GPa)

Model (at.%) MTP (GPa) DeePMD
(GPa)

2.3 Nb 13.48 13.47 1.9 Nb 13.86 10.06

3.1 Nb 13.50 11.36 3.7 Nb 12.05 10.78

5.5 Nb 13.25 8.41 5.6 Nb 11.09 11.23

7.0 Nb 13.07 7.47 7.4 Nb 12.82 12.11

10.2 Nb 13.42 3.14 10.2 Nb 10.21 13.13

FIGURE 12
α2-Ti3Al (first and second rows) and γ-TiAl (third and fourth rows) phases deformed at 300 K under uniaxial tension tests performed using the MTP
potential and DeePMD potential.

from Qi et al. (2023). Conversely, DeePMD tends to align the SISF
values more closely with DFT, while both models underpredict APB
energy. Notably, the sequence SISF < CSF < APB remains consistent
across both computational approaches as reported in Qi et al.
(2023) and Lu et al. (2023). Generally, a higher GSFE indicates
increased resistance and reduced mobility of dislocations, which
directly contributes to the strengthening behavior in nanomaterials,
whereas a lower GSFE suggests higher mobility of dislocations and
improved ductility. With an increase in Nb concentration, there

is a noticeable decline in the energies for SISF, CSF, and APB for
MTP, whereas DeePMD shows an increase (except for 4 at.% Nb
case for CSF). Zhao et al. (2024) reported that an increase in Nb
concentration reduced the stacking fault energies in the γ-TiAl
phase. Similar findings were reported by Dumitraschkewitz et al.
(2017), suggesting that MTP predicts this trend well. However,
DeePMD presents a discrepancy where Nb alloying has increased
the stacking fault energy for γ-TiAl, although this aligns with the
tension curves in Figures 11C, D.
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FIGURE 13
The generalized stacking fault energy (GSFE) on the {111} plane of γ-TiAl (A–D) and {0001} plane of α2-Ti3Al (E–F) predicted by MTP and DeePMD. (A, C)
The γ-line along the ⟨112] direction passing through the SISF. (B, D) The γ-line along the ⟨112] direction passing through the APB and CSF. (E, F) The
γ-line along the [1010] direction passing through SISF, CSF and APB.

Turning to the α2-Ti3Al phase, characterized by hexagonal
symmetry and various slip systems, our analysis primarily focuses
on the fundamental {0001} plane. Figures 13E, F shows the γ-line
along [0110] direction obtained using MTP and DeePMD and the
corresponding energy values are listed in Table 5. The results for
α2-Ti3Al show less consistency with DFT and referenced values
(Qi et al., 2023) compared to γ-TiAl. MTP predictions for SISF align
with DFT and referenced data (Qi et al., 2023), whereas DeePMD
tends to slightly overestimate SISF and notably overpredict APB
energy. However, DeePMD predictions for CSF energy are closer to
DFT and reference values. With an increase in Nb concentration,
SISF, APB, and CSF energies decrease with DeePMD, consistent
with Figures 11A, B. However, MTP shows minimal change in APB
and SISF values, with only a slight decrease in SISF upon Nb
introduction, indicating a minimal impact of Nb alloying on the
material’s strength, as corroborated by the data in Table 4.

We have observed that, except for DeePMD for γ-TiAl, Nb
alloying generally reduces the stacking fault energy in both phases,
indicating improved ductility. Our previous work (Chandran et al.,
2024) demonstrated that Nb alloying enhances dislocation density
and thus overall ductility, albeit at the expense of reduced strength.
The stacking fault energy computations presented here align with
this finding except for DeePMD for γ-TiAl.

3.3 Comparison of performance of MTP
and DeePMD

Here, we conducted a thorough assessment of the computational
efficiency in MD simulations, focusing on DeePMD and MTP
potentials. Figure 14 provides a graphical representation of
simulation performance measured in hours per nanosecond
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TABLE 5 Comparison of generalized stacking fault energies values for γ-TiAl and α2-Ti3Al using MTP and DeePMD potentials.

Phases Fault energy Nb conc (at.%) DFT MTP Refa DeePMD Refb

γ-TiAl

SISF (mJ/m2)

0Nb 182a, 194c 312 322 149 129

4Nb — 285 — 193 —

8Nb — 251 — 294 —

APB (mJ/m2)

0Nb 560d, 623b 461 611 280 649

4Nb — 451 — 288 —

8Nb — 428 — 397 —

CSF (mJ/m2)

0Nb 356a, 372e 324 372 239 439

4Nb — 281 — 201 —

8Nb — 247 — 338 —

α2-Ti3Al

SISF (mJ/m2)
0Nb 93a, 104b 97 84 206 —

6Nb — 103 — 132 —

APB (mJ/m2)
0Nb 256a, 257f 160 213 471 —

6Nb — 166 — 388 —

CSF (mJ/m2)
0Nb 320a 212 309 327 —

6Nb — 172 — 190 —

aQi et al., 2023
bLu et al., 2023
cSeko, 2020
dYoo and Fu, 1998
eWoodward and Rao, 2004
fKoizumi et al., 2006.

FIGURE 14
Comparison of performance (hours/ns) of DeePMD and MTP potentials in performing MD simulations.

(hours/ns) for varying numbers of atoms, specifically 4, 32, 108,
256, 864, 1,372, and 2048, in systems composed of γ-TiAl. These
evaluations were conducted through short NPT simulations over a
duration of 1 picosecond.

Our results demonstrate a linear correlation between
computational time and atom count for both MTP and DeePMD
potentials, highlighting the scalability of each potential with
increasing system size. This aspect is crucial for simulations that
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TABLE 6 Comparison of the timing breakdown for MPI tasks in MD
simulations using DeePMD versusMTP potentials.

Tasks MTP (seconds) DeePMD
(seconds)

Force computation 44.81 205.67

Inter-processor
communication

1.15 4.33

Output 0.93 2.86

Modify 0.03 0.08

Other 1.41 2.73

involve large numbers of atoms.The “hours/ns” performancemetric
offers crucial insights into the computational demands, quantifying
the time needed to complete 1 nanosecond of MD simulation. A
significant efficiency disparity is evident from Figure 14, with MTP
potential-based simulations exhibiting markedly superior speed
compared to those employing DeePMD potential.

For a granular quantitative comparison, Table 6 details the
message passing interface (MPI) task timings in an NVT simulation
with 108 atoms over a span of 4 picoseconds (ps) for both potentials.
Notably, MD simulations (NVT ensemble at 300 K for 4 ps on a
system of 108 atoms) with DeePMD potential required 14.978 h/ns,
whereas those with MTP potential required only 3.356 h/ns. This
finding indicates that the MTP potential is approximately 4.5 times
more efficient than the DeePMD potential. Furthermore, Table 6
delineates the time distribution across different simulation processes
such as force computation, interprocessor communication, output
generation, modifications via fixes, and other related tasks. These
tests were carried out on a high-performance computing (HPC)
cluster utilizing a single node equipped with 48 processors. This

detailed breakdown unequivocally shows that simulations with the
DeePMD potential consume more computational time than those
with the MTP potential for identical simulation conditions.

4 Conclusion

In our study, we conducted a comparative analysis of the
interatomic potentials for TiAlNb alloys, developed through
both MTP and deep learning approaches. We introduced a
comprehensive dataset for TiAlNb alloys, aimed at serving as a
benchmark for studying the Nb-alloyed phases of α2-Ti3Al and γ-
TiAl.Through our evaluation of the errors and performancemetrics
of these generated potentials, we concluded that MTP potentials
offer a viable alternative in scenarios with limited computational
resources. This is attributed to the lower computational cost of
MD simulations relying on MTP, alongside its lower dataset
requirements for effective training. However, it is important to
note a slight compromise in accuracy when opting for MTP over
DeePMD, despite the error margins remaining within acceptable
bounds. MTP emerges as a preferable choice for applications
where precise energy and force calculations are not paramount.
Conversely, for endeavors requiring very high fidelity in energy
and force predictions, and where it is possible to allocate more
computational resources and training data, DeePMD stands out as
the preferred choice. The entire workflow, encompassing dataset
generation, method comparison, and the resulting conclusions, is
comprehensively illustrated in Figure 15.

Our study analyzed material parameters like equilibrium
volume, lattice constants, and elastic constants, revealing MTP’s
equilibrium volume predictions were closer to DFT results than
DeePMD’s for both α2-Ti3Al and γ-TiAl phases. MTP also provided
more accurate lattice parameters for the α2-Ti3Al phase, while both
methods agreed on the γ-TiAl phase. Elastic constant predictions
of both deviated from DFT, but were more accurate for γ-TiAl.
RDF curves from both models correlated well with DFT, especially

FIGURE 15
Comparison of MTP and DeePMD methods for interatomic potential generation for TiAlNb alloys.
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for γ-TiAl. Finite temperature properties such as specific heat and
thermal expansion coefficients were in good agreement with their
corresponding DFT and experimental data. Simulations of uniaxial
tension tests indicated that Nb alloying decreases the strength of
TiAl-based alloys, with the exception of the results from DeePMD
for γ-TiAl. Additionally, computations of stacking fault energy
revealed that Nb alloying enhances the ductility of TiAl-based alloys
at the expense of strength, except in simulations using DeePMD
for γ-TiAl. These findings align with the outcomes of our prior
work (Chandran et al., 2024). Moreover, the results for generalized
stacking faults—except for the DeePMD simulations of γ-TiAl—are
consistent with those reported in Dumitraschkewitz et al. (2017)
for Nb-alloyed systems and in Lu et al. (2023); Qi et al. (2023)
for Nb-free systems, where the sequence SISF < CSF < APB has
been accurately reproduced. This succinct analysis highlights the
advantages and limitations of MTP and DeePMD in simulating
TiAlNb alloys, guiding researchers towards the most suitable
computational strategy in view of a trade-off between accuracy and
resource needs.

During the model training phase, we encountered difficulties
in accurately capturing the α2-Ti3Al phase characteristics using
both models. To address this and enhance model performance,
our future work will incorporate advanced learning techniques,
like active learning, into our methodology. This strategy aims to
significantly improvemodel accuracy while reducing the reliance on
extensive datasets.
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