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Thermal protection performance (TPP) is an important index to evaluate the
performance of firefighting clothing. The purpose of this work is to build a
model to predict the TPP values of fabrics with fewer variables. Two properties
of flame-retardant cotton were tested with TPP values under different air gaps,
and the correlations between these properties were also analyzed. A combined
model was established by integrating multivariate nonlinear regression model
and gradient boosting regression tree model. Then the combined model
was compared with these two single models. The results showed that the
correlation coefficients between gram weight and thickness of fabric and TPP
value were 0.833 and 0.837, respectively, indicating a strong correlation. The
correlation coefficient between air gap and TPP value was 0.304, indicating a
weak correlation. In predicting the thermal protective performance of flame-
retardant cotton, this study employed amultivariate nonlinear regressionmodel,
a Gradient Boosting Regression Tree (GBRT) model, and a combined model.
After comparing various evaluation metrics, it was finally decided to adopt
the combined model for predicting the thermal protective performance values
of flame-retardant cotton. This method improved the prediction accuracy of
thermal protective performance, facilitating the promotion and application of
the combined model. Furthermore, when exploring the thermal protective
performance of flame-retardant cotton, the use of fewer variables to establish
the prediction model can not only significantly simplify the complex structure
of the model but also greatly enhance the analysis efficiency, ensuring the
efficiency and precision of the research process.

KEYWORDS

flame-retardant cotton, thermal protection performance, multivariate nonlinear
regression, gradient boosting regression tree, combined model

1 Introduction

Firefighters frequently work in high temperatures while performing their duties
and are subject to a variety of thermal hazards, such as flash fires, intense thermal
radiation, hot gases, hot objects, hot liquid splashes and hot steam, etc. The heat

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2024.1454935
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2024.1454935&domain=pdf&date_stamp=2024-09-12
mailto:lihaihang@cjlu.edu.cn
mailto:lihaihang@cjlu.edu.cn
https://doi.org/10.3389/fmats.2024.1454935
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2024.1454935/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1454935/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1454935/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1454935/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Zhang et al. 10.3389/fmats.2024.1454935

flux can be as high as 200 kW/m2 (Su et al., 2016; Udayraj et al.,
2017). Therefore, fire protection clothing must have good flame
retardant, heat insulation and heat stability (Xu et al., 2020).

TPP experiment and burning dummy experiment are two
commonly used methods to evaluate the thermal protection
performance (TPP) at present. TPP experiment is simple and low
cost, but it is limited to measure the TPP of small fabric samples.
The burning dummy experiment can simulate the second and third
degree of human burns and their distribution to evaluate the TPP
of clothing, but it has high technical requirements, high cost and
complex operation (Li et al., 2015).

Factors influencing the thermal protective performance of
fabrics include weight per unit area, thickness, air permeability,
and air gap. Li et al. (2008) conducted TPP experiments with
13 fabrics that can be used for the outer layer of firefighting
suits and found that there was a linear positive correlation
between fabric thickness, areal density, and thermal protective
performance, with thickness having a more significant impact
on thermal protective performance. Liu et al. (2018) tested the
thermal protective performance of different fabrics and found
a positive correlation between areal density, thickness, and TPP
values. Zong et al. (2009) compared and studied materials such as
aramid, polysulfonamide, and flame-retardant cotton fabrics for
outer layers and found that the thermal protective performance
of various fabrics increased with their areal density and thickness.
Based on previous research, it can be concluded that there was a
positive correlation between fabric thickness, weight per unit area,
and thermal protective performance, and that the thermal protective
performance of fabrics increased with increasing thickness and
weight per unit area (Yang et al., 2014).

Most of the studies that have been carried out to predict
the TPP of fabrics through properties of fabrics. Table 1 lists the
various prediction models for TPP, which can be categorized
as numerical model, neural network model and fitted model.
As can be seen from Table 1, (Onofrei et al., 2014; Ghazy, 2014;
Su et al., 2018) established numerical models for predicting the
TPP of clothing. Although the numerical model had a high
accuracy, there were many difficulties to measure the parameters
(including impact jet between the steam nozzle and the fabric,
blood perfusion rate between the dermis and subcutaneous
tissue, etc.). Cui Z. and Zhang W. (2008), (Mandal and Song,
2014; Mandal et al., 2018a; Mandal et al., 2021a; MÜGe et al.,
2019) established neural network models that can predict the
TPP of fabrics, while (Mandal et al., 2018a) also established a
model to predict the thermal physiological comfort performance.
However, the accuracy of machine learning is contingent upon
the sample size, with higher numbers of samples yielding
greater precision. Besides, (Mandal et al., 2021b; Xu et al., 2020;
He et al., 2020) built fitting models to predict the TPP of fabrics.
Crown et al. (2002), Xu et al. (2020), He et al. (2020) established
fitting models to predict the TPP of clothings. Furthermore, most
of the above scholars predicted the TPP of fabrics and garments
through gram weight, thickness, air gap, thermal resistance, etc.
Bates and Granger first proposed the system of combinatorial
prediction theory, which combined different prediction models
to reduce the prediction errors caused by parameters or models
(Andrawis et al., 2011).

Investigating the performance of flame-retardant cotton is
of great importance in improving product quality and meeting
market demands. Studying the TPP of flame-retardant cotton is not
only in line with current trends in environmental protection and
sustainable development, but also contributes to the advancement
of green and safe protective materials. In order to improve the
prediction accuracy, this work used a combined model that
integrating the strengths of multivariate nonlinear regression
and gradient boosting regression trees to more effectively
capture nonlinear relationships and multidimensional features in
complex data.

2 Materials and methods

2.1 Flame-retardant cotton fabric

Cotton fabrics are favored by people due to their good moisture
absorption, breathability, skin-friendliness, and comfortable
wearing experience. However, cotton fibers have a limited oxygen
index of only 17%–19%, making them flammable and highly
combustible, which limits the application range of cotton fabrics.
Therefore, it is extremely necessary to conduct flame-retardant
finishing on cotton fabrics (Yang et al., 2012).

Flame-retardant cotton is a type of new fire-resistant material
made by adding flame retardants or using flame-retardant
modification technology to 100% cotton fabric (Jin et al., 2020).
It is a type of fabric that is difficult to ignite, and once removed
from the source of ignition, it will automatically extinguish and not
reignite. It belongs to the category of post-finishing flame-retardant
fabrics. The principle behind its flame-retardant properties is that
when the flame retardant encounters high temperatures or heat, it
rapidly generates gases that hinder the combustion process, reducing
the released thermal energy and preventing the combustion from
continuing, thereby actively contributing to the flame retardancy of
the fabric (Yang et al., 2012).The sample diagram of flame-retardant
cotton fabric is shown in Figure 1.

Flame-retardant cotton materials have found widespread
applications in various fields such as industrial safety, personal
protective clothing, thermal insulation in transportation, and
household textiles due to their superior fire-retardant and
thermal insulation properties. They not only significantly
enhance safety but also improve the comfort of use (Yang,
2015). With the continuous increase in safety requirements
from all sectors of society, the application prospects of flame-
retardant cotton materials are exhibiting even broader development
opportunities.

Fire-fighting clothing follows the standards of “Firefighter’s
Protective Clothing for Fire Fighting”, consisting of four layers:
flame-retardant outer layer, waterproof and breathable layer, thermal
insulation layer, and comfort layer. Each layer performs specific
functions of flame retardancy and high-temperature resistance,
waterproofness and breathability, thermal insulation, and comfort,
collectively enhancing thermal protective performance (Zhou,
2021). In this study, the flame-retardant cotton fabric was used
as the outer layer of fire-fighting clothing to effectively exert its
flame-retardant properties.
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TABLE 1 Thermal protection performance prediction models.

Year Literature source Model Type Scope of application Parameters

2014 Onofrei et al. (2014) Numerical models TPP of clothing Temperature, air gap,
thickness, density, thermal
conductivity, specific heat

capacity

2014 Ghazy (2014) Numerical model TPP of clothing Heat shrinkage

2018 Su et al. (2018) Numerical model TPP of clothing Impact jet between the steam
nozzle and the fabric, steam

flow in the fabric caused by the
pressure gradient

2019 Su et al. (2018) Numerical model TPP of clothing air gap, specific heat capacity
of skin tissue, density of skin
tissue, blood perfusion rate for

dermis and subcutaneous
tissue, blood temperature,
average metabolic heat

production of human body

2008 Cui and Zhang (2008a) Neural network model Thermal protection properties
of fabrics

Fabric weight, thickness,
structure, warp density, weft
density, warp count, weft

count, LOI, damaged length

2014 Mandal and Song (2014)
Neural network model

Fabric TPP
Thermal resistance, thickness

Fitting model Thermal resistance, thickness

2018 Mandal and Song (2014) Neural network model Thermal protection properties
and thermal physiological

comfort properties of fabrics

Weight, thickness, thermal
resistance

2019 MÜGe et al. (2019) Neural network model Fabric TPP Fabric structure, weight, warp
and weft density, thickness
LOI, water vapor resistance

2021 Mandal et al. (2021b) Neural network model Fabric TPP Thermal resistance,
evaporation resistance

2002 Crown et al. (2002) Fitting model Clothing thermal protection
properties

Air gap, TPP value

2018 Mandal et al. (2018b) Fitting model Thermal protection properties
and thermal physiological
comfort properties of fabric

Weight, thickness, thermal
resistance

2019 Xu et al. (2020) Fitting model Fabric thermal protection
properties

Thickness, weight, air gap

2019 Xu et al. (2020) Fitting model Clothing thermal protection
properties

Thickness, weight, air gap,
shrinkage

2020 He et al. (2020) Fitting model Thermal protection properties
of clothing and fabrics

Maximum attenuation factor
for second-degree burn of

clothing, thickness of air layer
under clothing, heat exposure

time

2021 Mandal et al. (2021b) Fitting model Fabric thermal protection
properties

Thermal resistance,
evaporation resistance
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FIGURE 1
The sample diagram of flame-retardant cotton fabric.

2.2 Fabric TPP experiment

The TPP test is currently the most commonly used test
method to measure the thermal protection properties of
fabrics. In this work, a thermal protection performance tester
(model type: DR255) was used to measure TPP value of
flame-retardant cotton fabrics. The experiments were carried
out according to the Protective clothing—Thermal protective
performance test method (Textile Protection and Comfort Center,
2019). During the experiment, the total heat flux was set
to 84 kW/m2, and the sample size was 150 mm × 150 mm.
The TPP value is the total heat flux multiplied by the time
to cause second degree burn, and the higher the TPP value,
the better the TPP values (Shalev and Barker, 1984; Stoll and
Chianta, 1968). Figure 2 shows the schematic diagram of the TPP
experimental device.

According to previous studies, convective heat transfer begins to
occur when the air gap exceeds 6.4 mm in the TPP tests (Deng et al.,
2018).Therefore, in this experiment, spacers of 3.2 mm and 6.4 mm
were made to create different air gap layer thicknesses to measure
the thermal protection properties of the fabrics. Table 2 shows the
performance of fabrics and TPP experimental results.

The samples used in the experimental results presented in
this study, as well as those from the experiments conducted by
other researchers, were all flame-retardant cotton materials. The
key differences lie in the weight, thickness, and air gaps of the

experimental samples.The purpose of selecting these samples was to
expand the data set in order to improve the accuracy of the gradient
boosting regression tree (GBRT).

3 Results and discussion

3.1 Correlation analysis between fabric
properties and TPP value

From the previous studies, it is known that the prediction of
fabric’s thermal protective performance involves factors such as
gram weight, thickness, air gap, and thermal resistance. In this
experiment, gram weight, thickness, and air gap were used to
predict the TPP value.The Pearson correlation analysis method was
employed to analyze the correlation between fabric’s gram weight,
thickness, air gap, and thermal protective performance (TPP). The
calculation formula of correlation coefficient is shown in Formula 1:
(Zhou et al., 2023):

r =

n

∑
i
(xi − x)(yi − y)

√
n

∑
i
(xi − x)

2
n

∑
i
(yi − y)

2

, (1)

where r is the correlation coefficient. The calculated results
are shown in Table 3. The correlation coefficients between gram
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FIGURE 2
TPP experimental device.

weight and thickness of fabric and TPP value were 0.833 and
0.837 respectively, both greater than 0.8, indicating that gram
weight, thickness and TPP value had high linear correlations. The
r between air gap and TPP value was 0.304, indicating that there
was a weak linear correlation between air gap and TPP value.
Meanwhile, gram weight, air gap and thickness were positively
correlated with the TPP value, indicating that the TPP value
would increase with the increase of these variables. Correlation
analysis of each variable showed that the r between gram weight
and thickness was 1 and that there was a perfect positive linear
correlation.

3.2 Regression analysis and prediction
model

3.2.1 Influence of air gap on TPP
Figure 3 shows the TPP values of flame-retardant cotton with

different air gaps. It was evident that the TPP values with various
weights decreased when the air gap was 9.6 mm. This is because
the air’s ability to act as a thermal insulation is weakened when
the air gap is more than 6.4 mm (Deng et al., 2018; Talukdar et al.,
2010; Torvi et al., 1999). As the air gap continued to increase, the
heat decreased, and the thermal protective performance increased
(Deng et al., 2018). Subsequently, as the air gap continued to
increase up to 16.0 mm, the TPP gradually improved. With the
further increase of air gap, a large amount of smoke and tar were
found to be produced. A significant amount of hot gas, hot tar,
smoke, etc. was released when the flame-retardant cotton came into
contact with the heat source and the flame-retardant gas and flame
retardant in the fabric were exhausted (Zong et al., 2009).Therefore,
the thermal protective performance decreased when the air
gap was 19.2 mm.

Correlation analysis showed that the r between TPP values
and air gaps was 0.304, indicating that there might be a nonlinear
relationship between them. In this experiment, with the increase of
air gap, the TPP first increased and decreased, and then increased
and decreased again. The TPP values of fabrics with gram weight of
220 g/m2, 260 g/m2 and 320 g/m2 under different air gapswere fitted
by polynomial. Formula 2 is the TPP fitting equation for fabrics with

a weight of 220 g/m2, Formula 3 is for 260 g/m2, and Formula 4 is
for 320 g/m2:

z1 = − 0.0034x
5
1 + 0.165x

4
1 − 2.764x

3
1 + 18.445x

2
1 − 36.654x1 + 352,

(2)

z2 = − 0.004x
5
1 + 0.174x

4
1 − 2.486x

3
1 + 12.373x

2
1 − 5.465x1 + 388.47,

(3)

z3 = − 0.0072x
5
1 + 0.338x

4
1 − 5.520x

3
1 + 36.013x

2
1 − 69.915x1 + 439.21,

(4)

where x1 is the air gap, z1 is the TPP value with a gram weight of
220 g/m2, z2 is the TPP value of 260 g/m2, and z3 is the TPP value of
320 g/m2.

Figure 4 shows the comparison between the measured TPP
values and the predicted TPP values of the above three models.
It can be seen from the figure, the R2 of the three models were
0.754, 0.913, and 0.984, respectively. Therefore, these three models
can respectively predict the TPP value of flame-retardant cotton
of 220 g/m2, 260 g/m2 and 320 g/m2 in the air gap between 0
and 19.2 mm.

3.2.2 Multivariate nonlinear regression
Through the above analysis and previous studies, it can be seen

that there was a high linear correlation between gram weight and
thickness andTPP (Mandal and Song, 2014; Sawcyn andTorvi, 2009;
Torvi and Dale, 1999). Hence, a model can be established to relate
TPP to weight, thickness, and air gap, as shown in Formula 5:

z4 = ax
5
1 + bx

4
1 + cx

3
1 + dx

2
1 + ex1 + fx2 + gx3 + h, (5)

where x1 is the air gap (mm), x2 is the thickness (mm) and x3 is the
gram weight (g/m2). Substituting data from Table 1 into model (5),
yielded a = −0.005, b = 0.234, c = −3.769, d = 24.029, e = −45.119, f
= 0.193, g = 402.12, h = 127.694.

Figure 5 shows the comparison between the measured values
and the predicted values of the multivariate nonlinear regression
model. It can be seen from the figure that most of the relative errors
between the predicted values and the measured values were less
than 5%, and the model had a good fitting effect (R2 was 0.932).
Therefore, model (5) can predict the TPP value of flame-retardant
cotton between 0 and 19.2 mm.
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TABLE 2 Fabric properties and TPP results.

No. Source Gram weight
(g/m2)

Thickness (mm) Gap size (mm) Second-degree
burn time (s)

TPP value
(kW∙s/m2)

1

Experiments of this
work

220 0.454 0 4.2 352.8

2 220 0.454 3.2 4.1 344.4

3 220 0.454 6.4 4.8 400.4

4 220 0.454 9.6 4.3 361.2

5 220 0.454 12.8 4.5 373.8

6 220 0.454 16 4.6 386.4

7 220 0.454 19.2 4.5 378

8 260 0.551 0 4.6 389.2

9 260 0.551 3.2 5.1 428.4

10 260 0.551 6.4 5.6 467.6

11 260 0.551 9.6 4.9 411.6

12 260 0.551 12.8 5.2 434

13 260 0.551 16 5.7 478.8

14 260 0.551 19.2 5.2 436.8

15 320 0.682 0 5.2 439.6

16 320 0.682 3.2 5.2 434

17 320 0.682 6.4 6.1 515.2

18 320 0.682 9.6 5.7 478.8

19 320 0.682 12.8 5.7 476

20 320 0.682 16 6.5 543.2

21 320 0.682 19.2 5.9 495.6

22 Zhai et al. (2018) 310 0.66 0 5.25 441.1

23

Zong et al. (2009)

343 0.76 0 6.3 528

24 109.2 0.56 0 4.4 364

25 352.4 0.86 0 6.3 532

26 164.6 0.43 0 4.2 352

27 Cui and Zhang (2008b) 220 0.67 0 5.3 445.2

28
Liu et al. (2018)

400 0.89 0 6.7 562.8

29 285 0.62 0 5.3 445.2

3.3 Gradient boosting regression tree
(GBRT)

Gradient boosting regression tree is a type of ensemble
learning algorithm, whose core lies in that each tree

learns from the residuals of all previous trees, uses
the negative gradient value of the loss function in the
current model as an approximation of the residuals in the
progressive tree algorithm, and then fits a regression tree
(Friedman, 2001).
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TABLE 3 Correlation coefficients between TPP values and variables of
flame-retardant cotton.

Gram weight Thickness Air gap TPP

Gram weight 1 1.000a 0.000 0.833a

Thickness 1.000a 1 0.000 0.837a

Air gap 0.000 0.000 1 0.304

TPP 0.833a 0.837a 0.304 1

aCorrelation is significant at 0.01 level (two-tailed).

Gram weight, thickness and air gap were set as input parameters
and TPP value was set as output parameter. 70% of the data was
randomly chosen for training of the model, 15% of the data was for
validated, and the remaining 15% was for tested. When the model
parameters were set as default, the training set R2 was 0.999 and the
test set R2 was 0.862, and overfitting occurred.The parameters known
to have great influence on the accuracy of GBRTmodel aremaximum
depth of regression tree (max_depth),maximumnumber of iterations
(n_estimators), subsample and learning rate (Song, 2019).

Due to the small number of data set samples, the single random
chance results in too small data for model training, and it is
impossible to obtain data information comprehensively (Liu et al.,
2021). Cross-validation is often used when data sets are small. The
principle of K-fold cross-validation was used to divide the whole
data sample set into K groups, taking the K-1 group in the data
set as the training set in turns, and the remaining 1 group as the
test set. A corresponding score will be obtained for each model
training, and the average score value will be calculated as the model
evaluation standard (Arlot and Celisse, 2010).

In order to avoid overfitting and the appearance of local optimal
solutions, random search was first used to narrow the search scope,
and grid search and cross-validationwere then used to automatically
find the optimal of hyperparameters. After adjustment, max_depth
= 16, n_estimators = 220 and subsample = 0.2 were set finally. The
training set R2 as 0.983 and the test set R2 as 0.931. Figure 6 shows
the comparison of the predicted and measured GBRT values. The
figure shows that the model fitted well (R2 = 0.953). The average
relative error between predicted values and measured values was
less than 5%, and only three predicted values had relative error
greater than 5%.

3.4 Combined model

3.4.1 Establishment of combined model
Model combination is a method of weighting the prediction

results of different models according to a certain proportion
to obtain a brand-new prediction data that combining all the
results (Wu et al., 2022). It improves the accuracy of multi-step
prediction by combining several models with different domains and
high variability to achieve complementary prediction results. In
Section 2.2 and 2.3, a multivariate nonlinear regression model as
well as a gradient boosting regression tree model were developed
to predict the TPP of fabrics, respectively. In order to improve
the accuracy of the prediction results, a combined model was

used to predict the TPP, and the model can be expressed
as shown in Formula 6:

z6 = w1z4 +w2z5 (6)

where z6 is the predicted TPP value obtained by the combined
model, z4 is the predicted value obtained by the multivariate
nonlinear regressionmodel, z5 is the predicted value obtained by the
gradient boosting regression tree, w1 and w2 are the weights of the
multivariate nonlinear regression model and the gradient boosting
regression tree in the combined model respectively.

Figure 7 shows the establishment process of the weighted
combined model. Firstly, multivariate nonlinear regression and
gradient boosting regression tree were used to build the prediction
models. Secondly, weights were assigned to these two single models.
Finally, a combined model was established.

3.4.2 Determination of weight coefficients
The key to the combined model is to determine the weight

coefficient in the model. In this work, the inverse variance method
was used for weight assignment.The formula of the inverse variance
method is as follows:

wi =
S−1i
k

∑
i=1

S−1i

, (7)

where Si is the variance of a single model. S1 and S2 are the variances
of the prediction results of the multivariate nonlinear regression
model and GBRT respectively. Here, S1 was 5079.7 and S2 was
7355.6 after calculation. By substituting S1 and S2 into Formula 7,
w1 was 0.41 and w2 was 0.59. So the weighted combined model
was shown in Formula 8.

Figure 8 shows a comparison of the predicted values from the
combined model and the actual measured values, R2 value of 0.958,
indicating a good fit.

y6 = 0.41y4 + 0.59y5 (8)

3.5 Model evaluation

In this analysis, root mean square error (RMSE), mean relative
error (MRE) and determination coefficient R2 were used to
evaluate the models. The RMSE can directly quantify the prediction
error (LeCun et al., 2015). The formulas for root mean square
error (RMSE), mean relative error (MRE), and R2 are shown in
Formulas 9–11:

RMSE = √ 1
n

n

∑
i=1
(zk − zi)

2 (9)

MRE = 1
n

n

∑
i=1
|
zk − zi
zk
| (10)

R2 = 1−

n

∑
i=1
(zk − zi)

n

∑
i=1
(zk − z)

(11)
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FIGURE 3
TPP values of flame-retardant cotton with different air gaps.

FIGURE 4
Comparison of measured values and predicted values.
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FIGURE 5
Measured values versus predicted values from multivariate nonlinear regression model.

FIGURE 6
Comparison of measured values and predicted values by GBRT.
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FIGURE 7
Establishment process of the combined model.

FIGURE 8
Measured values versus predicted values of the combined model.

where zk is the measured value, zi is the predicted value, n is the
total number of the measured values, and z is the average value of
the actual value.

Table 4 shows the values of these three evaluation indexes.
Judging from the R2, the fitting effect of the combined

model was optimal (R2 = 0.958). According to MRE, the
average relative error of the combined model was the
smallest. Compared with the RMSE, it can be seen that
the root-mean-square error of the combined model was
smallest. According to all these evaluation indexes, the
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TABLE 4 Model evaluation indexes.

Multivariate nonlinear regression GBRT Combined model Instructions (combined model vs
other models)

R2 0.932 0.953 0.958 R2 increases by 0.026 and 0.005

MRE 12.763 9.607 9.856 The error was reduced by 0.54% and 0.04%

RMSE 15.926 13.235 12.587 The error was reduced by 3.339 and 0.648

FIGURE 9
Comparison of prediction results of the three models.

combined model was optimal in predicting the TPP of flame-
retardant cotton.

Figure 9 shows the comparison between the measured TPP and
the predicted results of the three models. It can be seen that both of
the two singlemodels predicted theTPP relativelywell. However, the
multivariate nonlinear regression model was better than the GBRT
in some prediction results, while the latter model was better in other
prediction results. Comparing the combined model with the single
models, it can be seen that the combined model took the advantages
of themultivariate nonlinear regressionmodel and theGBRTmodel.
Hence, the prediction results of the combined model were better
than these of the single models on the whole.

Figure 10 shows the relative errors of the prediction results of the
threemodels. It can be seen that the relative errors of themultivariate
nonlinear regression model and the combined model were all less
than 9%, and the average relative errors were 2.99% and 2.36%
respectively. Most of the relative errors of the GBRT were less than
9%, and its average relative error was 2.40%. However, some of

the relative errors between the measured value and the predicted
value of the GBRT was greater than 10%, and the accuracy of some
predicted results was not high. Compared with the average relative
error of the three predictionmodels, the combinedmodel had a best
prediction effect.

On the whole, the GBRT model and the combined model were
good in predicting TPP values. However, according to the above
analysis, theGBRTprediction results included a predicted valuewith
a relative error of up to 11.18%. According to the root-mean-square
error formula, the RMS error is more sensitive to outliers than the
mean absolute error. Compared with the RMS errors of the three
models, the combined model had a smallest error. When predicting
the TPP of flame-retardant cotton, it is necessary to ensure that the
relative errors between the predicted values and themeasured values
are small in addition to ensuring that the overall accuracy is high.
According to the model evaluation indexes, the fitting effect of the
combined model was best and the error was smallest. Therefore,
model (8) can predict the TPP of flame-retardant cotton with air
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FIGURE 10
Relative errors of predicted values of the three models.

gap between 0 and 19.2 mm. The combined model was conducive
to application.

4 Conclusion

This work analyzed the correlations between gram weight,
thickness, air gap, and thermal protection performance (TPP).
Multivariate nonlinear regression model, gradient boosting
regression tree model and combined model were established and
compared. The following conclusions were drawn:

(1) There were strong linear correlations between gram weight,
thickness, and TPP value, as indicated by the correlation
coefficients between these three variables being larger than 0.8.
Therewas a slight linear correlation between the TPP value and
air gap, as indicated by the correlation coefficient of 0.304.

(2) In the multivariate nonlinear regression model and GBRT
model, most of the relative errors between the predicted values
and the measured values were less than 5%.

(3) The inverse variancemethodwas used to construct a combined
model for predicting the TPP value. The R2, MRE and RMSE
of the combined model were superior to single models,
By integrating the strengths of both models, the combined
model enhanced the prediction accuracy of thermal protective
performance, facilitating a wider application.

(4) In investigating the thermal protective performance of flame-
retardant cotton, this study utilized a limited number of
variables to establish the prediction model. This approach
significantly streamlined the model’s complexity while
dramatically improving analysis efficiency, ensuring both
efficiency and precision.

However, there were certain limitations in the exploration
of flame-retardant cotton fabrics in this work. The methodology
presented was specifically tailored for flame-retardant cotton fabrics
and has not been validated for other types of fabrics. Future research
could explore the applicability of this approach by incorporating
data from additional fabric types.
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