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Editorial on the Research Topic

Multifunctional, flexible, polymeric materials with controlled
nanostructures
s

The ongoing research in flexible polymeric materials with controlled nanostructures holds
great promise for advancing a wide range of applications. By focusing on the structure-
properties correlations, researchers can design materials with enhanced mechanical,
electrical, thermal, and optical properties. The recent advances in synthesis and assembly
techniques have paved the way for the development of functional materials with tailored
nanostructures. Overcoming the challenges in this field will enable the integration of these
materials into practical devices, driving innovation in areas such as energy storage and
conversion, electrochemical sensing, thermal conduction or insulation.

In the quest for sustainable and efficient solutions, the realm of materials
science has witnessed remarkable strides towards multifunctional, flexible polymeric
materials with controlled nanostructures due to their unique properties, such
as lightweight, mechanical flexibility, and easy processability (Feng et al., 2021;
Li et al., 2021; Ren et al., 2021). Understanding the structure-property correlations
through the design of controlled nanostructures is highly significant (Roberts and
Knackstedt, 1996; Tong et al., 2019). The properties of nanomaterials are influenced
not only by their composition (Ai et al., 2020; Ren et al., 2022) but also by their
nanostructures, such as nanoparticle dispersion and hierarchical design (Wang et al.,
2015; Zhang et al., 2018; Vargo et al., 2023; Li et al., 2024). The amalgamation of
advanced synthesis techniques and innovative applications has paved the way for
transformative developments in various fields ranging from energy to environmental
sustainability (Tabone et al., 2010; Giussi et al., 2019; DelRe et al., 2021; Homer et al., 2023;
Hua et al., 2023).

This Research Topic aims to provide a comprehensive overview of recent advancements
in developing flexible polymeric materials with controlled nanostructures, and to showcase
intriguing research results that will inspire future advancements in both fundamental
science and applied research, paving the way for promising devices and systems. The
focus will be on structure-property correlations, emphasizing the impact of controlled
nanostructures on the materials’ multi-physical properties. We are delighted to present
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five valuable research findings on this Research Topic, including
advancements in organic polymeric and inorganic composites,
improvements in multi-physical performance and preparation
methods, as well as the exploration of structure-property
correlations.

Organic polymers, composed of repeating monomer units,
are essential materials with diverse structures and applications
(McCrum et al., 1997). Han et al. delved into the enhancement
of organic solar cells through the modification of poly (3,4-
ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT:PSS)
hole transport layer. By addressing the intrinsic limitations of
PEDOT:PSS, such as low conductivity and surface roughness,
the study achieved a remarkable power conversion efficiency of
18.13% in PM6:Y6 devices. In the realm of thermal insulation,
Liu et al. leveraged the thermal properties of polyimide (PI)
aerogel and the reinforcement of aramid fiber and prepared
flexible PI aerogel/aramid fiber composites with enhanced
mechanical strength and thermal insulation capabilities successfully.
In consideration of environmental sustainability, waterborne
phenol-formaldehyde epoxy resins with superior performance
and environmental friendliness were explored extensively.
Through meticulous optimization of synthesis methods and the
introduction of nano-silica modifiers, Lu et al. obtained stable
phenol-formaldehyde epoxy resin emulsions with a prolonged
storage lifespan.

In addition, some contributions cover the exploration of
nanocomposites with tailored nanostructures. Hasheena et al.
presented a facile synthetic strategy for the fabrication of

graphene oxide-nickel sulfide quantum dots, offering a versatile
platform for electrochemical sensing. The nanocomposite-coated
electrode exhibited excellent stability and sensitivity, enabling the
simultaneous detection of dopamine and tyrosine. Also based
on graphene oxide (GO), Armstrong et al. introduced silver-
graphene oxide (Ag-GO) hybrid nanofluid to heat exchanging
equipment. By tuning the molarity of Ag-GO hybrid nanoparticles,
uniformly embedded quazicubical Ag nanoparticles over an
amorphous, worm-like silky veil of GO nanostructures were
formed, achieving significant enhancements in heat transfer
coefficient and thermal performance index in a double pipe
heat exchanger.

Collectively, these articles underscored the pivotal role of
controlled nanostructures in unlocking the multifunctionality
and flexibility of organic-inorganic hybrid materials across
diverse applications. From renewable energy to environmental
remediation, these advancements epitomized the convergence
of materials science, nanotechnology, and sustainability, offering
solutions to pressing global challenges. Through this collection of
articles, we aim to ignite greater research enthusiasm and push
the potential of multifunctional materials to new frontiers in
future applications.

We extend our gratitude to all the authors who contributed
to this Research Topic, as well as the journal editors and staff who
helped compile this
outstanding collection.
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