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Aggregation-induced emission (AIE) can exhibit different properties in different
situations, such as non-emission and highly fluorescent in the dissolved
state of the molecule and in the aggregate or solid state, respectively. This
property of AIE is distinguished from aggregation-induced quenching (ACQ) or
even the opposite. Combining the AIE phenomenon with different polymers
yields different polymers with corresponding AIE properties. In this paper,
the mechanism, synthesis, branching and application of AIE in the fields of
optoelectronic functional materials, sensors, biology, and environment are
reviewed. It is hoped that this review will stimulate more research on molecular
aggregates and promote further cross-fertilisation and greater development in
the disciplines of materials, chemistry and biomedicine.
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1 Introduction

The study of molecular luminescence shows that the luminescence properties of
individual molecules are determined by their molecular structure. Aggregation-induced
quenching (ACQ), also known as concentration quenching, is related to the formation
of aggregates, i.e., at higher concentrations, many organically luminous materials do
not emit light. That is, fluorescence intensity decreases with increasing concentration
(Mei et al., 2015). In 2001, academician Tang et al. (2001), Luo et al. (2001), Hong et al.
(2009), Hong et al. (2011) and his team accidentally discovered a completely opposite
phenomenon of luminescence (Figures 1, 2, 3). When a non-luminescent thiole derivative
exist in the form of a single molecule in solution, the fluorescence intensified gradually
with the drying of the solvent. On this basis, the research group carried out a series of
in-depth exploration and research, and a completely new concept was proposed, namely,
aggregation-inducedemission (Tang et al., 2009; Wang et al., 2017). For example, a dye with
a multi-rotor structure of hexaphenylthiarorole (HPS) does not fluoresce when it is in
a dispersed state in a good solvent, but it fluoresces strongly when it is present in a
concentrated state in an undesirable solvent, and this special phenomenon has further
stimulated the scientific community’s enthusiasm for the study of this phenomenon. Due to
its different properties from traditional dye aggregation quenching, AIE dyes can be applied
in different concentration environments, which solves the difficulties and limitations faced
by traditional dyes in practical applications, and has great research value and significance
(Zhao et al., 2010; Leung et al., 2014; Chen et al., 2015; Song et al., 2016; Yan et al., 2016).
In recent years, the concept of AIE has been introduced into macromolecules, and a variety
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FIGURE 1
(Left) Structural chemical formula of HPS. (Right) Picture of HPS solution at different water contents (Hong et al., 2009).

FIGURE 2
Fluorescence images of DDPD solutions/suspensions at different water contents (Hong et al., 2011).

of AIE polymers have been designed and synthesized
(Chen et al., 2003; Ma et al., 2019). Compared with small molecule
AIE fluorophores, AIE polymers have the advantages of easy
modification and good processing performance, which can meet
the different needs of different fields. In addition, the AIE polymer
backbone or side chain can better limit the rotation and vibration
of the AIE molecules, so the non-radiative transitions can be better
suppressed to enhance fluorescence. Compared with traditional
fluorescent polymers, AIE polymers are expected to exhibit unique
properties and significant advantages in practical applications
due to their high luminescence efficiency in aggregate and solid-
state luminescence efficiency, large Stokes shift, and excellent
photostability.

2 Mechanism and synthesis method of
AIE

2.1 Mechanism of AIE

Since the discovery of this phenomenon in the 19th century,
academician Benzhong Tang’s research group began to study
AIE phenomenon in diverse AIE systems. They realized that the

active movement of AIE luminaires (AIEgens) in the excitation
molecule could lead to accelerated non-radiative decay of excitons,
which further led to the extinguishment of exciton emission in
the dissolved state. Such intramolecular rotation is confined to
the aggregated state, resulting in a reduction in non-radiative
attenuation and an increase luminescence (Leung et al., 2014;
Zhang X. et al., 2019). They suggested that intramolecular rotation
restriction (RIR) was the mechanism of AIE. However, a subsequent
study found that the RIR mechanism did not work for all AIEgens.
To explain these new rotorless AIE systems, they propose a
supplement to the new RIRs, namely, Limiting Intramolecular
Vibrations (RIVs), as intramolecular vibrations are included among
the causes of non-radiative decay. (Tseng et al., 2012; Zhao et al.,
2019; Yang et al., 2013; Zhou et al., 2016). Leung et al. (2014)
reported a broadeningof the AIE mechanism through analysis of
10, 10′,11, 11′-tetrahydro-5,5′-bidibenzo [a,d] (Tang et al., 2009)
annulenylidene (THBDBA),and5,5′-bidibenzo [a,d] (Tang et al.,
2009) annulenylidene (BDBA). Analyses of the computational
QM/MM model reveal that the novel mechanism behind the AIE
of THBDBA and BDBA is the restriction of intramolecular vibration
(RIV). Amore generalizedmechanistic understanding ofAIE results
by combining RIR and RIV into the principle of restriction of
intramolecular motions (RIM). (Figures 4, 5).
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FIGURE 3
Molecular structure and conformational transition of 1-methyl-1, 2,3,4,5-pentaphenylthiarrole (Luo et al., 2001).

FIGURE 4
Molecular structures of tetraphenylethene (TPE), 10,10′,11,11′- tetrahydro-5,5′-bidibenzo [a,d] (Tang et al., 2009)annulenylidene (THBDBA), and 5,5′-
bidibenzo [a,d] (Tang et al., 2009)annulenylidene (BDBA) (Leung et al., 2014).

FIGURE 5
(A) The photoluminescence (PL) spectra of THBDBA in THF and THF/water mixtures with increasing water fractions (fw) to 90%. (B) Change in PL
intensity of THBDBA and BDBA at 377 nm versus water fraction in THF/water mixtures. Inset: αAIE values of TPE, THBDBA, and BDBA. Dye
concentration: 20 mm; excitation wavelength: 280 nm (Leung et al., 2014).

2.2 Synthesis method of AIE

The synthesis methods of AIE polymers are mainly divided into:
one-component polymerisation, two-component polymerisation

and multi-component polymerisation. In other words, they can
be divided into direct polymerisation and post-functionalisation
methods (Mei et al., 2015; Zhan et al., 2017). Of these, there are
four pathways for synthesis by direct polymerisation: 1) Direct
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FIGURE 6
Synthesis of AIE polymer by one-component polymerization (Gu et al., 2013).

polymerisation of monomers containing AIE; 2) Co-polymerisation
of AIE-containing monomers with other monomers; 3) The
polymerisation is initiated by an initiator containing AIE; 4) AIE
polymers are synthesised by linking AIE-containing monomers
through polycondensation reactions. 5) Taking the AIE-free active
precursor, the AIE structure is generated in the polymer backbone
by polymerisation or copolymerisation. Post-functionalization
methods synthesize AIE polymers by backbone, side chain, or
cross-linking reactions, as well as polymers prepared by inactive
precursors or other molecular modifications.

2.2.1 One-component polymerization
One-component polymerisation is a polymerisation reaction

based on a single monomer and is characterised by the fact that the
polymer is prepared without the need for cumbersome, stringent
stoichiometric balances. There are several methods for preparing
AIE polymers by single-component polymerisation, such as free
radical polymerisation and translocation polymerisation. Yang et al.
(2009) prepared polymers containing side chains of AIE units
by free radical polymerisation of olefinic monomers with AIE
properties. The polymerisation reaction is based on the free radical
polymerisation of carbazole-substituted triphenylene monomers
via azobisisobutyronitrile (AZBN) to build AIE polymers. Due
to the twisted structure of the monomer, the polymer is well
dispersed in good organic solvents and is aggregated in poor solvent
water, showing significant fluorescence enhancement properties.
In addition, the high glass transition and thermal decomposition
temperatures of the polymers indicate their potential for use
in the preparation of organic light-emitting diode devices and
fluorescent sensors.

Gu et al. (2013) prepared AIE polymers by atom transfer
radical polymerisation. Due to the presence of electron-pushing
diethylamino groups and electron-pulling 1,8-naphthylimides in the
monomers, the polymers were found to be very reactive in THF-
ethanol solvent mixtures. As the mass content of ethanol increases,
it first shows the intramolecular charge transfer effect, and when the

ethanol content is greater than 60%, it shows the AIE property, and
when the ethanol content is 99%, the fluorescence intensity is 2.83
times higher than that of THF solution (Figure 6).

Chen et al. (2003) prepared polymers containing side chains of
AIE units by translocation polymerisation of alkynyl monomers
with AIE properties. AIE polymers with high relative molecular
mass and high yield (80%) were prepared by polymerisation using
silica polyacetylene monomer as monomer. Due to the distorted
structure of the silane molecules, the polymers are non-fluorescent
in the dispersed state, and exhibit significant AIE characteristics in
poor solvents or low temperatures.

2.2.2 Two-component polymerization
Two-component polymerisation is a strategy for preparing

polymers by linking two difunctional monomers. It is the
more traditional and popular method for the preparation
of AIE polymers, which involves a number of classical
polymerisation reactions such as click polymerisation,
free radical polymerisation, polycondensation, ring-opening
polymerisation, etc. (Hu et al., 2014).

An early reaction is called azide-alkyne click polymerization
(AACP), which builds linear and hyperbranched polymers that
can have AIE properties. Qin et al. (2009) synthesised for the
first time tetraphenylethylene-containing AIE polymers with
good solubility, high relative molecular mass and good thermal
stability using Cu(Ⅰ)-catalyzed AACP. In order to overcome
the problem of metal residues in click polymerisation, various
metal-free spontaneous polymerisations such as mercaptoalkynyl
polymerisation, aminoalkynyl polymerisation and hydroxyalkynyl
polymerisation have been developed.

Free radical polymerisation is a commonly used method for
the synthesis of AIE polymers from AIE reactive monomers.
Forinstance, Wan et al. (2018) used EtAmPy with AIE properties
as a primer to synthesize end-group-functionalized polymers with
AIE properties by atom transfer radical polymerization (Figure 7).
In addition, Tanaka et al. (2015) designed and synthesised
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FIGURE 7
(A) Structure of initiator EtAmPy and (B) synthetic routes to the polymers (Wan et al., 2018).

FIGURE 8
Methods of synthesis of polymers (Tanaka et al., 2015).
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FIGURE 9
Preparation of AIE polymer by multi-component. Polymerization (Song et al., 2018).

boron diimide AIE monomers with different substituents, and
produced AIE polymers with high relative molecular mass
and scintillation ability by polycondensation reaction based on
Suzuki coupling (Figure 8).

2.2.3 Multi-component polymerisation
Multi-component polymerisation is a unique polymerisation

reaction based on a multi-component reaction involving three or
more monomers. They are characterised by high atom economy,
mild reaction conditions, simple operating procedures and a
variety of structures. Song et al. (2018) successfully synthesised AIE
polymers by Ag2WO4-catalyzed multicomponent polymerisation
of CO2, thioglycodiyne-containing and alkyl dihalides under mild
reaction conditions at atmospheric pressure. The polymer has
an absolute fluorescence quantum yield of 61% in the solid
state, which is a significant improvement over the previous
one (Figure 9).

2.2.4 Other examples of direct aggregation and
post-functionalization

AIE active conjugated polymers are generally prepared
by polycondensation reaction. Dai et al. (2015) synthesized
organoboron conjugated polymers via palladiumcatalyzed
Suzuki coupling reaction of 2,7-dioxaborolanefluorene and
using Pd(PPh3)4 as the catalyst. A rotatable phenyl group was

incorporated onto the nitrogen atom of the boron ketoiminate
derivative, endowing the final polymers with AIE property.
High molecular weight astrophic or cross-linked AIE polymers
are synthesized by reacting with molecules containing multiple
reactive groups. Ma et al. (2015), Wang et al. (2015) used water-
soluble star-shaped polyethylene oxide (PEO) or branched
polyethylenimine (PEI) to cross-link anhydride or epoxy groups
containing polymers to yield the final AIE polymers. He et al. (2020)
synthesized a series ofmultifunctional hyperbranched polyesters (β-
aminoacrylates) by spontaneous aminoalkyne bond polymerization
using esterification-activated triyne and diamine as monomers. As
a result, high-quality HB-PAAs with high average molecular weight
(Mw up to 18,290), soluble and heat-stable were obtained, with a
yield of up to 99%. When the introduction of an AIE-active TPE
group into the hb-PAA backbone can make it exhibit typical AIE
characteristics.

3 Research branches of AIE

Over the past few decades, a series of new branches of
AIE have been evolved based on the key breakthroughs in AIE
research, such as clusterization-triggered emission (CTE), crystal-
induced emission (CIE), room temperature phosphorescence
(RTP), aggregation induced delayed fluorescence (AIDF),

Frontiers in Materials 06 frontiersin.org

https://doi.org/10.3389/fmats.2024.1446307
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Pei et al. 10.3389/fmats.2024.1446307

mechanoluminescence (ML), aggregation induced generation of
reactive oxygen species (AIG-ROS) and so on. In this part, the
research branches of AIE are summarized.

3.1 Clusterization-triggered emission (CTE)

Traditional luminescence groups are generally composed of
aromatic groups, etc. With the continuous development of AIEgens
research, it has been found that many non-conjugated polymers
and natural products that do not contain aromatic building
groups also demonstrate AIE properties (Ye et al., 2017). The CTE
mechanism is proposed in view of the presence of electron-
rich subunits in polymers, the aggregation emission when linking
clusters, the overlap of different clusters with subsequent electron
clouds, and the conformational strengthening of molecules. In these
clusters, conjugation is extended by steric electron interactions,
that is, the overlap of π and lone pair (n) electrons between
cyanogroups, while ossifying the molecular conformation, thus
providing significant emission upon irradiation. Therefore, those
photophysical processes that differ from the general laws can
be explained by CTE (Zhou et al., 2016). The proposal and
study of CTE mechanism further improves the interpretation of
AIE characteristics expressed by non-conjugated polymers and
natural products that do not contain aromatic building groups.
With the continuous development and deepening of CIE system,
some other unconventional luminaries have been designed and
discovered by using CIE mechanism. For example, polyacrylonitrile
(PAN) is a cyano-based polymer that emits little light in dilute
dimethylformamide (DMF) solution, while its solid powder glows
visible blue when exposed to ultraviolet light. Polymethacrylate (N-
hydroxysuccinimide) ester (PNHSMA) without aromatic structure
also emits almost no light in dilute solution, but becomes highly
luminous in concentrated solution and solid powder (Bin et al.,
2016). Starch and cellulose contain a lot of isolated oxygen atoms,
which do not produce visible light in solution. While in the
solid state, these electron-rich oxygen atoms can be pushed into
a star cluster, leading to a highly overlapped electron clouds by
interactions across space, and subsequent conjugated and rigid
conformations which contribute to emission. As a result, these
materials can emit visible light when excited (Gong et al., 2013;
He et al., 2018).

3.2 Crystal-induced emission (CIE)

Since many advanced optoelectronic devices work as thin
films or crystals, organic light-emitting devices with strong
solid-state emission are very important (Guo et al., 2018). In
addition, crystallization is conducive to charge transfer in
organic semiconductors and to the generation of OLETs and
organic lasers (Zhao et al., 2017; Zhao et al., 2018). However, for
conventional luminaries, crystallization is undesirable because
strong p-p interactions in the crystals usually lead to a change
in emission wavelength, resulting in reduced emission intensity
(Zheng et al., 2016; Yamaguchi et al., 2017). In order to avoid
luminescent crystallization, various chemical modification and
physical doping strategies are used, which lead to high cost

and complex equipment (Parashchuk et al., 2018; Liu D. et al.,
2019). It has been found that some molecules behave differently
in different states, and do not exhibit emission in solution and
amorphous solids, but emit significantly in crystalline states., such
as (4-biphenylyl) phenyldibenzofulvene (BpPDBF) (Dong et al.,
2006). This phenomenon was called crystal induced emission
(CIE). Further studies have shown that there are a variety of
intermolecular forces that interact with each other and few strong
p-p interactions among molecules in CIE crystals, which is not
only conducive to heighten the molecular conformation, but also
avert emission quenching through p-p interactions (Chen et al.,
2017; Yamaguchi et al., 2017). Therefore, the presence of an energy
available conical intersection (CI) or minimum bandgap of the
excited state will result in a redshift and attenuation of the
emission (Li and Blancafort, 2013; Gao et al., 2017). However, in
the crystal form, the CI and excited state minima are energetically
inaccessible due to conformational rigidity. The CIE phenomenon
indicates that active intramolecular motion may still exist even
in amorphous solids and affect the photophysical properties
of luminogen.

3.3 Room-temperature phosphorescence
(RTP)

Room temperature phosphorescent (RTP) organic
luminescence has attracted a lot of attention due to its relatively
long-lived triple excitation state, which has important applications
in emergency lighting, anti-counterfeiting, and high-sensitivity
bioimaging. However, the weak spin-orbits coupled (SOC) of
most organic molecules give rise to inefficient and low speed than
the radiative decay of three-state excitons compared to inorganic
and organometallic phosphorescent compounds. Typical examples
have halogen bonds (Bolton et al., 2014), and n-π transition
(Zhao et al., 2016) that promote the singlet-triolet intersystem
crossing (ISC) and simultaneously reduce the nonradiative decay
of the three-state exciton. Taking BDBF as an example, the planar
molecule BPBF emits light in the crystalline state but not in
the amorphous state (Gong et al., 2013). Crystallization can also
inhibit the significant phosphorescence induced by the non-
radiative attenuating exciton triad (Gong et al., 2013). Since non-
radiative attenuation of crystal-induced conformational stiffness can
effectively block molecules, which allows better management of the
ISC process, CIP essentially implements the simple design of RTP.

3.4 Aggregation-induced delayed
fluorescence (AIDF)

Fluorescence and phosphorescence can be modulated by
suppressing non-radiative attenuation and ISC processes at
the aggregation level. What’s more, more importantly, delayed
fluorescence torsion system crossover is achieved by exciton
excitation by singlet and triplet states (Duan et al., 2018). TADF
emitters are highly device-efficient phosphorescent materials,
and almost all of them are dispersed into the host matrix
to inhibit concentration quenching or exciton annihilation.
Therefore, in order to ensure the efficient of TADF-based
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OLEDs, the precise control of doping process is usually required.
In addition, the electroluminescence (EL) efficiency of many
doped OLEDs at high brightness still shows a serious roll-
over phenomenon Which becomes an obstacle that needs to be
overcome (Furue et al., 2016; Bryce, 2017). In the aggregated
state, isomers usually have distorted structures, strong emission
and weak intermolecular p-p interactions. Therefore, pure
AIEgens films can alleviate emission quenching and exciton
annihilation and are suitable for fabrication of undoped
OLEDs devices.

3.5 Mechanoluminescence (ML)

In addition to photoluminescence, mechanluminescence (ML),
which converts mechanical energy into visible light, is another
emission phenomenon.ML phenomenon has been discovered since
1605, but its luminescence mechanism has not been clearly defined.
In general, the controversy in ML phenomena is centered on how
the discharge occurs (Zink et al., 1976; Chandra et al., 2013). The
luminous causes of ML include gas discharge, energy transfer and
the coexistence of both. The theory of electron bombardment
proposed by Zink et al. and Chandra et al. seems to hold for
most organic or inorganic crystal breaks in ML (Chandra et al.,
2012). They proposed that when the electrons are bombarded, the
material dissolves to form a new surface with an energy of +5 eV
and a wavelength of 250 nm. Therefore, ML materials with typical
luminescence centers can be excited with the energy transferred
from Which the crystals are bombarded with electrons, while
there is no consensus on the luminescence mechanism of ML
materials without typical luminescence centers. Nevertheless, from
the perspective of cluster luminescence, Their emission appears to
be excited by cluster excitons that emit light or are doped with
impurities (Zhang et al., 2020).

3.6 Aggregation induced generation of
reactive oxygen species (AIG-ROS)

The radiant decay of excited states includes fluorescence,
phosphorescence and delayed fluorescence. In addition, excitons
may undergo inactivation pathways such as internal conversion
or electron transfer to O2, such as heat generation or reactive
oxygen species (ROS) (Bin Chen et al., 2017; Zhou et al., 2017).
Due to their planar structure and extended conjugated P system,
traditional phosphor compounds are susceptible to aggregation
under physiological conditions. Therefore, due to the acceleration
of exciton non-radiative attenuation by strong p-p superposition,
the production efficiency of ISC and ROS is reduced. They show
high ROS production efficiency and low LOS production efficiency.
(Gu et al., 2018; Zhang C. et al., 2019). AIEgens in the polymeric
state exhibited a higher ROS production efficiency, while the
lower ROS production efficiency in the solution state (Sturala et al.,
2017). The low ROS generation in solution state is due to the
non-radiative attenuation accelerated by the active intramolecular
motion, resulting in low ISC efficiency and triplet instability. So
non-radiative attenuation is effectively inhibited, and ISC efficiency

and triplet exciton stability are improved, thus producing high ROS
efficiency. (Xu et al., 2017) (Table 1).

4 Applications of AIE

AIE materials can make full use of the natural aggregation
of molecules and inhibit the non-radiative dissipation of excited
states by limiting intramolecular motion, and have been widely
used in various frontier fields such as optoelectronic devices,
chemical sensing, and biological detection and imaging due to
their high luminescence efficiency of aggregate states (Fan et al.,
2024; Zheng, 2021; Hou, 2024; Tang, 2024; Ma et al., 2022;
Xue et al., 2023; Lee et al., 2023; Xu et al., 2023; Zhang E. et al.,
2023; Yuan et al., 2022; Zalmi et al., 2022; Gu et al., 2023;
Sun et al., 2023; Ye et al., 2023).

4.1 Optoelectronic functional materials

The application of traditional ACQ organic functional materials
is greatly restricted due to their low photoelectric conversion
efficiency, slow response time and poor molecular flexibility, as
well as the fact that they are often used in aggregated or thin
film environments. To compensate for the shortcomings of ACQ,
researchers have had to develop novelmaterials.The development of
AIE materials has led to the gradual resolution of this drawback and
has become a luminescentmaterial with potential application value.

4.1.1 Electroluminescent device (ELD)
Conjugated polymers usually show luminescent properties once

they are made into light-emitting diode (LED) devices (Zhao et al.,
2012; Liu et al., 2016; Wei et al., 2016). Tan (Tan et al., 2017) et al.
designed and synthesised novel blue light-emitting materials
TPE-4Br and TPE-3Br using tetraphenylene (TPE). And as the
light-emitting layer of the organic light-emitting diode device,
using the intrinsic exciton luminescence of the material and its
electroluminescent complex luminescence, the ideal white light
electroluminescence can be obtained (Figure 10). Zhang H. et al.
(2019) prepared six AIE-HLCT blue light molecules using
phenanthrene imidazole (PPI), cyano and TPE motifs. The TPE
motif makes the material exhibit obvious AIE properties, resulting
in high fluorescence quantum efficiency in both solid-state
environments, resulting in undoped sky blue OLEDs (maximum
brightness, EQE, CE, PE 31 070 cd·m−2, 7. 16%, 18. 46 cd·A−1 and,
16. 32 lm· W−1), the electrogenerated exciton utilization rate is 48%,
and the efficiency roll-off is low.

4.1.2 Stimulus-responsive materials
AIE polymers can respond accordingly to stimuli from different

elements in their surroundings such as heat and light (Wu et al.,
2012; Yin et al., 2013; Kuo and Hong, 2024) and can therefore
be used to design stimulus-responsive materials. Zhang et al.
(2018) synthesised a series of AIE supramolecular polymer gels
by coordinated multilevel hierarchical self-assembly of host-guest
interactions. It can be converted into a gel with a higher
concentration than the original, which show AIE properties due to
the restriction of intramolecular movement of tetraphenylethylene
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FIGURE 10
(A) Synthetic routes of TPE-4Br and TPE-3Br. (Tan et al., 2017), (B) Chemical structures of organic materials and simplified configuration of
OLED devices (Tan et al., 2017).

in the three-dimensional polymer network. Using the kinetic
nature of ligand bonding and subject-guest interactions, this
polymer can exhibit a gel-sol transition, as well as an “on-
off” of fluorescence under different stimuli (e.g., temperature,
competing guest molecules, halides, etc.) (Figure 11). Zhao et al.
(2021) reported a novel light-responsive luminescent material
(PRL) with reversible conformational and fluorescence switching

properties in the solid state. The luminescence properties of
TPE-4N can be reversibly controlled by rapid light triggering
and thermal annealing. The luminescence properties of TPE-
4N can be reversibly controlled by rapid light triggering and
thermal annealing. Since light stimulation is non-contact and non-
destructive, it has the advantages of high contrast, fast response,
good persistence, and reversibility.
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FIGURE 11
AIE supramolecular polymer gel capable of responding to external stimulation (Zhang et al., 2018).

4.2 Sensor applications

Sensing refers to the use of a special system, i.e., a
sensor or probe, to detect specific entities, such as matter
and energy. Sensors have been applied to various fields
such as medicine, industry, environmental protection and
control, so the development of sensors is of great significance
(Wang et al., 2014; Gupta, 2019; Jiang et al., 2021; Yan et al., 2022;
Ye et al., 2023).

4.2.1 Chemical sensors
Carbon dioxide gas can be detected and quantified using theAIE

molecule. Liu et al. (2010), dissolved 1,1,2,3,4,5-Hexaphenylsilole
(HPS) in an amine solvent (e.g., dipropylamine, DPA) to
obtain a solution with no fluorescence emission. When carbon
dioxide gas is drummed into this solution, it reacts with the
dipropylamine in it to form a carbamate ionic liquid (CIL).
The HPS molecule begins to emit fluorescence because the
restricted intramolecular rotation (RIR) process is triggered. The
intensity of fluorescence varies depending on the number of ions
produced as carbon dioxide enters the liquid. The more carbon
dioxide, the more ions produced, the stronger the fluorescence,
and vice versa. This method allows for accurate analysis of
carbon dioxide levels, such as prediction of volcanic eruptions,
as well as environmental safety testing (Figure 12). Cuc et al.
(2021) reported a novel multi-stimulus-responsive fluorescent
supramolecular polymers Poly (TPE-DBC)/FL-DBA and TPE-
DBC/FL-DBA. After the coordination of the supramolecular
polymer with Al3+ ions, the TPE-DBC/FL-DBA-Al3+ and Poly
(TPE-DBC)/FL-DBA-Al3+ supramolecular host and guest systems
were obtained, respectively. The supramolecular polymers exhibited
high sensitivity and selectivity for Al3+, and the green-emitting
guest FL-DBA-Al3+ was chelated by FL-DBA and Al3+, and
exhibited strong green fluorescence emission behavior, with
LODs of 50.61 and 38.59 nmol/L, respectively. Therefore, this
study successfully synthesized a ratiometric fluorescence host-
guest sensor material, which provides a new method for the
detection of Al3+.

4.2.2 Biosensor
Sensors made of AIE-type polymers have high sensitivity, fast

response and amplification effects, and will not interfere with
the application process due to aggregation-induced quenching.
Liu et al. (2011) and others invented a new concept of “light-
up” biosensor for highly selective detection of D-glucose in the
aqueous phase. The luminescence of TPE-centred diboronic acid
molecules can be greatly enhanced when oligomers are formed
with D-glucose molecules, due to the fact that the formation of
oligomers results in the restriction of the intramolecular rotation
of the aromatic ring of the TPE. Conversely, using probes to bind
to other sugars, such as D-fructose, D-galactose, and D-mannose,
yields no enhanced fluorescence due to the inability of these sugars
to form oligomers with this fluorophore (Figure 13). Lu et al. (2020)
reported for the first time the application of Ru(II) complexes with
AIECL activity and their non-selective RNA probes. Dichlorobis
(1,10-phenanthroline)ruthenium (II) (Ru2 (phen)2Cl2) was found
to exhibit significant AIE and AIECL properties in a mixed solution
of H2O-MeCN. When the moisture content is as high as 70%, its
AIE strength and AIECL intensity peak, which are 5.7 and 120 times
higher than those in pure MeCN, respectively. The intensity of ECL
in this system is significantly affected by the type of nucleic acid in
solution. This study has opened up a way to identify various nucleic
acids, and is of great significance in many research fields such as
biosensors and bioimaging probes.

4.3 Biomonitoring, imaging and
therapeutic applications

AIE polymers use the spontaneous aggregation process
to inhibit non-radiative transitions, exhibiting synergistic
amplification effects, showing advantages in bioimaging applications
with high signal-to-noise ratios. At the same time, the ease
of modification and versatility of AIE polymers make them
responsive and specific to changes in the microenvironment, so
they have high potential for development in biological applications
(Dai et al., 2019; Zheng et al., 2020).
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FIGURE 12
(A) Fluorescence images at different water contents. (B) Synthesis of CIL (Liu et al., 2010).

FIGURE 13
(A) Change in FL intensity at different sugar concentrations (B) FL response of 1 (50 μM) in the presence of interferences (Liu et al., 2011).

4.3.1 Biomonitoring applications
Researchers have used fluorescent probes to achieve direct

visualisation of lesion sites and cells (Tian et al., 2019).Although
traditional fluorescent molecules have been heavily developed and
widely used, their fluorescence tends to diminish or burst at high
concentrations, thus limiting their practical applications (Ding et al.,
2013; Mei et al., 2018).Therefore, the design of fluorescent probes
using AIE molecules for the detection of biological targets and

imaging of biological samples has become a current research
hotspot. Peptides are usually composed of 20 natural amino
acids and some non-canonical amino acids, which play very
important roles in biological functions (Zhang et al., 2021), such
as tissue targeting (Lee et al., 2010; Araste et al., 2018; Wang and
Hu, 2019), membrane penetration (Green et al., 1989; Lundberg
and Langel, 2003; Temsamani and Vidal, 2004; Lehto et al., 2016;
Nakayama et al., 2018), endosome escape (Midoux and Monsigny,
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FIGURE 14
A375 cells and unstained MDAMB231 cells (blue markings) (Cheng et al., 2017).

1999; Brogden, 2005; Lo and Wang, 2008; Schellinger et al.,
2013), cellular transport (Carnevale et al., 2018), and nuclear
localisation (Robbins et al., 1991; Xu et al., 2016). Modifying these
short peptides with different functions as functional modules in
AIE-based fluorescent probes (MPAPs) can make the fluorescent
probes have good biocompatibility, excellent biodegradability, good
bioactivity and rich diversity, etc (Yang et al., 2020).The introduction
of peptides also improves the hydrophilicity of AIE molecules and
they also favour their application in biomedical fields. In order to
accurately target the target cells and locate in the nucleus for long-
lasting and low-toxicity tracing of tumour cells, Cheng et al. (2017)
designed and synthesized a “T” probe, TCNTP (Figures 14, 15).
The probe was obtained by covalently linking a functional peptide
(TCNT) and a fluorescent imaging agent (PyTPE) via a cuprous-
catalysed azide and alkyne click reaction. TCNT consists of four
modules, includes targeted cyclic peptide (cNGR) with high affinity
for aminopeptidase N (CD13), cell-penetrating peptide (CPP),
nuclear localisation signal peptide (NLS) and targeted peptide
(RGD) that selectively interacts with integrin αv β3. Assisted by
functional peptides, the TCNTPprobe selectively targeted the nuclei
of A375 cells overexpressing both integrin αv β3 and CD13 and
showed intense yellow fluorescence. The experimental results show
that themodular TCNTP probe can not only precisely target specific
cell lines and transport biomolecules to the nucleus, but also achieve
long-lasting tracking transport.

4.3.2 Bio-imaging applications
AIE polymer probes are characterised by their tunable emission

wavelength (fromUV toNIR), tunable size (from tens of nanometres
to hundreds of nanometres), high fluorescence intensity, good
photostability, good aqueous dispersion and low cytotoxicity. It
has been successfully applied to in vitro/in vivo imaging. Lu et al.
(2012) synthesised a series of novel amphiphilic poly-N-(2-
hydroxypropyl) methacrylamide based poly-N-(2-hydroxypropyl)
methacrylamide through the free-radical polymerisation reaction of

a monomer/hydrophobic fluorophore with AIE properties and N-
(2-hydroxypropyl) methacrylamide. copolymer AIE fluorophores.
The experiments show that the aggregation of AIE fluorophores
in the micelle core contributes to the stronger aggregation of AIE
segments, resulting in higher quantum efficiency.The polymer has
good water solubility, allowing hydrophobic AIE materials to be
applied under biological conditions. The polymer was endocytosed
by 2 experimental cell lines [human glioblastoma cerebri and human
oesophageal precancerous cells (CP-A)] and distributed into the
cytoplasm. The polymer was not cytotoxic to either of the 2 cell lines
at a polymer mass concentration of 1 mg/mL (Figures 16, 17).

In addition Seo et al. (2016) performed signal enhancement by
designing and constructing nanoparticle imaging probes (with a
size of about 26 nm) with unique photonic characteristics, to wit:
1) Peroxide is an energy donor material that produces electron
excitation energy that can be used in response to inflammation
to produce H2O2; 2) Conjugated polymers with low bandgap and
bright NIR emission show AIE properties; 3) Photons across the
energy gap transfer the resulting excitation energy to the emitter
for effective excitation. Its energy-relaying nano-integration in water
showed a 50-fold enhanced sensing signal compared to a dissolved
mixture of AIE polymer and peroxalate in tetrahydrofuran. In
addition to detecting H2O2 down to 10–9 mol/L, the enhanced
chemiluminescence has a considerable tissue penetration depth
(>12 mm) under ex vivo conditions, enabling deep imaging of mice
with peritonitis in the model (Figure 18).

4.3.3 Applications of biotherapy
Using the host-guest method, Liu et al. (2021) used a

carboxylate-modified column (Luo et al., 2001) aryl hydrocarbon
H as the supramolecular host and a fluorophore G with tetrastyrene
nucleus with AIE properties as the guest to obtain the host-
guest complexes H⊃G. They found that the fluorescence of H ⊃
G was much stronger than that of free G (Figure 19), and then
prepared SNPs with high emissive properties from H ⊃ G by a
nanoprecipitation method. The SNPs have good photostability and
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FIGURE 15
The chemical structures of TCNTP (Cheng et al., 2017).

can be used for live cell imaging. It is important to note that SNPs are
capable of forming drug delivery systems together with doxorubicin
(DOX) and are self-imaging.The fluorescence of both SNPs and
DOX, mediated by FRET and ACQ effects, was lost due to the
energy transfer relay (ETR) effect. In acidic microenvironments,
DOX-loaded SNPs@DOX fluoresce, allowing for the detection of
drug release. It is important to note that the application of this
material can greatly exert the anti-cancer efficacy of loaded drugs,
which shows great potential in drug delivery systems for the purpose
of imaging guidance.

4.4 Other applications

4.4.1 Anti-counterfeiting applications
Huang et al. (2019) designed novel tetraphenylene (TPE)

derivatives integrating aggregation-induced emission (AIE),
polymorphic mechanical discolouration and self-recovering
photochromism. The molecule is susceptible to grinding, heating
and vapour fuming and exhibits corresponding emission colour
shifts. Heated powders or single crystals exhibit reversible
photochromism. Under ultraviolet light, it will take on a bright
red color, but it will return to its original appearance soon after
leaving ultraviolet light. Together, this reversible polymorphism,
high contrast and fast-responding mechanical and photochromic
properties provide a dual enhancement of multimodal assurance for
advanced anti-counterfeiting. Zhang T. T. et al. (2023) developed
two novel dual-mode orthogonal tunable fluorescence systems A
and B using a supramolecular host-guest approach. When 0.2 equiv.

of CB (Leung et al., 2014) is added to the guest molecular solution
of the fluorescent dye peryldimide (PDI-C6)@-7-hydroxycoumarin,
System A produces blue, yellow, and white fluorescence under a UV
lamp at 25°C, 365 nm.When quinine sulfate at 0.4 or 0.5 equiv.
is added to a solution of PDI-C6 (10 μm) @CB (Leung et al.,
2014) (20 μm) molecules, wash B can be used to distinguish
white luminescent materials. The light-emitting system has
potential application value in the fields of anti-counterfeiting, 3D
printing and so on.

4.4.2 Explosive detection applications
Zhu et al. (2022) synthesised helical mesoporous organic-

inorganic hybrid silica nanofibres by co-condensation of 1,2-
bis (triethoxysilyl) ethane with tetra-phenylene-containing (TPE)
triethoxysilane, a polymer that emits blue fluorescence.The pore
channels of the hybridised silica are arranged in a hexagonal shape.
Layered mesopores were identified on the nanofibre surface. As
the weight ratio of TPE increases, the fluorescence quantum yield
also increases. These hybrid silica exhibit a sensitive fluorescence
burst response to nitroaromatic explosive picric acids and can be
used for explosives detection. Li et al. (2020) reported a novel AIE
ultra-sensitive fluorescence sensor based on a tripod naphthalimide
derivative (NQ). The sensor is used for the sensitive detection of
picric acid (PA), an explosive analogue in the model, with high
sensitivity and selectivity, with a minimum detection limit (LOD)
of 4.73 × 10−8 mol/L. In addition, under natural light and ultraviolet
irradiation, the identification of PA by S-TNQ solid powder can be
visually observed, which has potential application value in the field
of explosives detection.
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FIGURE 16
Synthesis method of AIE monomer and copolymer (Lu et al., 2012).

4.4.3 Solar cell applications
Li et al. (2019) prepared bi-anchored phenothiazine core

sensitisers (YL1-YL4) with tetraphenylethylene (TPE) entities
as N-substituents for dye-sensitised solar cells (DSSC). The
YL4-based DSSC exhibited optimal solar-electric conversion
efficiencies of up to 9.79% and 10.87% without and with
CDCA co-adsorbent, respectively. These figures are better than
the values obtained from previous designs. YL Dye features
a double layer of masking to effectively block dark current:
an internal mask to prevent anchoring of the skeleton and
an external mask to prevent clogged TPE units. The plugged
TPE also enhances the dye stability of the TiO2 surface. The
device achieves a maximum cellular efficiency of 27.54% at
187 lux and a minimum of 24.98% at 1025 lux and 26.81% at
597 lux under the Philips T5 lamp. This shows great potential
for the Internet of Things (IoT) and the value of research in
solar cells. Hu et al. (2021) developed a two-donor supramolecular
artificial LHS (TPE-containingmetal-ring compound L-3 and DSA-
dinitrile-containing guest L-4) through metal-ligand coordination
interaction and host-guest interaction. The material exhibits higher
energy transfer efficiency and antenna effect, and exhibits good
capture ability for ultraviolet and blue visible light. Compared

with single-donor LHS, the energy transfer efficiency is about
0.29 times more (361 nm excitation) and the antenna effect is
about 1.9 times more (415 nm excitation). Therefore, this study
provides a unique strategy for harnessing solar energy through
artificial LHS.

4.4.4 Environmental science applications
In 2020, Feng et al. (2020) designed and synthesized an AIE

active formate oligomer (OU) gelling agent by a simple “one-pot”
method, which self-assembled into a supramolecular gel (OUG)
through hydrogen bonding, π-π stacking, and van der Waals
interaction. Due to the dynamic characteristics of these non-
covalent bonds, OUG shows stimulus responses to a variety of
factors. For example, Fe3+,HSO4

− and F− exhibit highly sensitive and
reversible response characteristics, and the lowest detection limit is
in the range of 5.89 × 10−9 −8.17 × 10−8 mol/L. What’s more, OUG
can absorb up to 97.5% Fe3+ from the aqueous environment.OUG
acts as a reversible fluorescence sensor switch through competitive
cation-π and cation-anion interactions. This material is simple
to synthesize, low cost and highly sensitive, and has great
application potential in sensing and preventing heavy metal
ion pollution.
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FIGURE 17
Amphiphilic AIE polymers that can be applied to the imaging of biological cells. Fluorescence image (A.D). Brightfield image (B.E). (A) superimposes
(B–D) superimposes (E, F) (Lu et al., 2012).

FIGURE 18
AIE nanoparticles capable of detecting bio-marker H2O2 (Seo et al., 2016).

5 Summary and prospect

The AIE study highlights the importance of polymeric and
molecular science for the development of materials. Over the
past years, much has been achieved in AIE research, including
the understanding of its mechanism, structure-performance

relationships, and applications.Although supramolecular
luminescent materials have developed rapidly in recent years,
there are still some problems that need to be studied urgently:
1) A variety of non-covalent interactions in most supramolecular
assembly systems can interact with each other and coordinate
with each other, which can greatly affect the photophysical
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FIGURE 19
(A) Chemical structure of G, M, and H. (B) Schematic diagram of the use of SNPs as drug nanocarriers and imaging-guided
drug delivery (Liu et al., 2021).

properties of supramolecular assemblies. 2) The stability of general
supramolecular luminescent materials is relatively poor, which is
both an advantage and a disadvantage, and the balance should
be grasped according to the actual situation; 3) The non-covalent
bond construction of supramolecular materials is easily degraded,
so it is key to prepare supramolecular luminescent materials with
low biotoxicity, high biocompatibility and good water solubility
through structural modification, so as to further promote their
applications in the fields of drug delivery, biosensing and imaging.
As a new class of materials for polymeric scientific research, AIE
continues to integrate with materials, biology, energy, environment
and other research fields, breathing new life into these areas. With
more researchers beginning to work in this domain, more and
more AIE products will be used in all aspects of life, becoming an
indispensable part.
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