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The chloride migration coefficient (CMC) of concrete is crucial for evaluating
its durability. This study develops ensemble models to predict the CMC of
concrete, addressing the limitations of traditional, labor-intensive laboratory
tests. We developed three ensemble models: an inverse variance-based model,
an Artificial Neural Network (ANN)-based model, and a tree-based model using
the random forest regression algorithm. Thesemodels were trained on a dataset
comprising 843 concrete mix proportions from existing literature. Results
indicate that ensemble models outperform single models such as ANN and
Support Vector Regression (SVR) in predicting CMC, with the combined random
forest and ANN model showing the highest accuracy. Sensitivity analysis using
Shapley Additive Explanations (SHAP) reveals that the CMC is most influenced by
the water-to-cement ratio and curing age. Additionally, we designed a graphical
user interface (GUI) to facilitate the practical application of our models. This
research offers a robust methodology for evaluating concrete durability and
potential for extending the prediction to other concrete properties.
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1 Introduction

Reinforced concrete structures in marine environments are prone to deteriorate due
to the ingress of chloride ions. The intrusion of chloride ions leads to the corrosion of
steel reinforcement, subsequently diminishing the durability and service life of marine
concrete structures (Zuquan et al., 2018; Du, 2020; Zhang, 2023). In general, concrete
exhibits high alkaline conditions, aid in creating a protective coating on the surface of
steel rods, thereby slowing down the occurrence of corrosion. However, once the chloride
concentration surrounding the reinforcement bar exceeds a specific threshold, depassivation
(the breakdown of the protective layer) transpires, leading to corrosion and consequently
diminishing the safety, functionality, and longevity of the structure (Sirivivatnanon et al.,
2023). Therefore, it is crucial to accurately predict and evaluate the behavior of chloride ion
penetration in concrete.

Traditional methods are usually based on experimental measurements to assess the
chloride mitigation coefficients (CMC) in concrete. Several laboratory techniques have
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been developed to determine the CMC of concrete. According
to ASTM C1556–11, and NT Build 443 (Junior, 2021), bulk
diffusion trials are extensive experimentswhere concrete samples are
subjected to a chloride solution for an extended period. However,
these procedures are often impractical due to their labor-intensive
and time-consuming nature. An accelerated approach for assessing
the chloride diffusion coefficient is outlined in the Nordic standard
NTBuild 492 (Build, 1999), where chlorides infiltrate the concrete at
high speeds under an applied electric field.Thismigration coefficient
is not directly comparable to chloride diffusion coefficients obtained
fromothermethods.While theNTBuild 492 test yields fast results, it
is typically conducted 28 days after concrete production to allow for
curing and demands a skilled operator. Consequently, experimental
evaluation of concrete diffusion coefficients for each project is
challenging due to the substantial time and resources involved.
Hence, it is crucial to develop models that calculate the CMC for
specific concretes, considering all relevant parameters.

Considerable efforts have been devoted in recent years to
developing phenomenological and physically-based models for
predicting CMC, taking into account factors related to concrete mix
composition. For example, Chidiac and Shafikhani (Chidiac et al.,
2019) introduced a phenomenological model that incorporates
the tortuosity factor, aggregate volume fraction, porosity, chloride
diffusivity of cement paste, compressive strength, cement content,
and supplementary cementitious material content to quantify
effective chloride diffusion in concrete Riding et al., 2013. A
concrete apparent diffusion coefficient estimation model was
proposed, which includes various supplementary cement materials
(SCM), with several relationships used to calculate the diffusion
coefficient. Bogas & Gomes (Bogas et al., 2015). presented empirical
expressions for determining the diffusion coefficient as a function
of the water-to-cement ratio. The existing models often overlook
key factors that define concrete microstructure. Their accuracy
and applicability vary significantly across different scenarios due to
reliance on various assumptions and experimental databases. The
increasing use of supplementary cementitiousmaterials (SCMs) and
chemical admixtures further limits their effectiveness in predicting
diffusion coefficients reliably. Therefore, it is crucial to develop
methods that account for all governing parameters.

Creating an advanced CMC prediction model that considers
all influential parameters is challenging. Concrete permeability
depends on numerous factors that are difficult to mathematically
represent without making several assumptions. To address these
challenges, developing a CMC prediction model using state-of-the-
art machine learning algorithms could be more effective. Machine
learning algorithms excel at solving complex problems involving
numerous variables without making assumptions. In recent years,
in many aspects of materials science, machine learning has made
significant progress., including the prediction of the performance
of materials, the design of new materials, etc. However, few
studies are found on prediction of CMC of concrete considering
various influential factors such as supplementary cementitious
materials and chemical admixtures, etc (Pallapothu et al., 2023;Qian
and Du, 2023).

In this study, we propose machine learning approaches for
predicting the CMC of concrete. These machine learning models
are trained using a large amount of concrete CMC data from
published literature, including information on concrete mix ratio,

age, and environmental conditions. Compared to the traditional
physical model-based approach, our method has higher flexibility
and generalization ability, and can better adapt to the complex
behavior of chloride ion penetration in concrete under different
conditions.

2 Data description

2.1 Data collection

CMC of concrete is an indicator to assess its ability to resist
chloride ion attack in chloride salt environments, which is an
important cause of corrosion of reinforcements and deterioration
of durability of concrete structures. Concrete is a porous, non-
homogeneous composite material into which chloride ions enter
mainly through hydrostatic pressure, capillary adsorption and
free diffusion (Audenaert et al., 2010; Elfmarkova et al., 2015;
Taffese et al., 2022; Pontes et al., 2023). Hydrostatic pressure is
usually found in environments where there is a water pressure
difference, such as the deep sea, following Darcy’s law. Capillary
adsorption, on the other hand, occurs when the internal pores of
the concrete are not saturated and chloride ions enter the concrete
through the capillary voids. Free diffusion is usually driven by a
concentration gradient and can be categorized as either steady state
or unsteady state. Under steady state diffusion, the concentration
distribution is independent of time and conforms to Fick’s first
law; whereas, in practical engineering, the chloride ion diffusion is
more affected by time and the concentration varies with time, which
conforms to the unsteady state diffusion process of Fick’s second law.

There are many factors affecting chloride ion diffusion in
concrete, the most important of which are water cement ratio,
sand rate, mineral admixture, admixtures, age of curing and
experimental age. The key input variables include the water-to-
binder ratio (W/B), which is the ratio of the weight of water
to the weight of binder in the concrete mix and significantly
affects porosity and permeability. Cement age (CM-Age) refers
to the age of the cementitious material in days since mixing,
impacting the hydration process and reducing permeability over
time. Water content (W), measured in kilograms per cubic meter,
affects workability and hydration, influencing final porosity and
permeability. Coarse aggregate content (Ca), also measured in
kilograms per cubic meter, affects the interfacial transition zone
and overall permeability. Superplasticizer (SP) is a chemical
admixture that enhances workability without increasing water
content, reducing thewater-to-cement ratio and decreasing porosity.
Fly ash (FA) is a supplementary cementitious material that improves
packing density and reduces permeability through pozzolanic
reactions. Silica fume (SF) is another supplementary material that
refines pore structure and enhances matrix density, significantly
reducing permeability. Lastly, air-entraining agent (AEA) introduces
microscopic air bubbles into the concrete, improving freeze-
thaw durability but potentially increasing permeability if not
used properly. These explanations provide a clear understanding
of each variable’s role and impact on the predicted chloride
migration coefficient of concrete. We hope these additions address
the reviewer’s concerns and improve the manuscript’s clarity
and readability.
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FIGURE 1
The test apparatus of RCM.

According to Nordic standard NT Build 492 (Sua-iam et al.,
2024), the transport of negatively charged chloride ions towards the
anode can be accelerated through the application of an electric field.
Although this method does not fully replicate the actual process of
chloride ion penetration in structures, it offers a rapid means to
compare the chloride ion resistance between concrete specimens
and standard specimens. The diffusion coefficient determined by
this method is referred to as the “non-steady-state migration
coefficient” or Dnssm. The RCM method is a non-steady-state
electromigration-based testing technique (Tang et al., 2011). The
specimen is placed between two solutions and an external electric
field is applied. Under the influence of the external electric field,
the chloride ions present in the cathode solution gradually diffuse
into the interior of the sample. After a period of electromigration
testing, the specimen is split along its axis, and a silver nitrate
solution is sprayed onto the newly created section. The depth of
chloride ion penetration within the specimen is measured using
white silver chloride precipitates, from which the chloride ion
diffusion coefficient in concrete is calculated. The test apparatus
is shown in Figure 1. The specific calculation formula is shown in
equation Eq. 1.

Dnssm = 2.872× 10−6
Th(xd − α√xd)

t
(1)

Dnssm: Chloride diffusion coefficients measured by the RCM
method (m2/s); T: Average of initial and final anode electrolyte
temperatures(K); h: Specimen height(m); xd: depth of chloride ions
in the specimen(m); t: test time(s); ɑ:feature variable-(3.338 × 10−3

√Th)
For the collection of data, source references were made

according to the following criteria.

• Academic authority: literature was selected from well-known
academic journals, conference proceedings or published
by professional academic institutions, so that the collected
experimental data have a high degree of academic credibility.

• Feasibility of the researchmethodology: the literature describes
the design of the experiment, sample preparation, testing
methods and other information as accurately as possible, so that
other researchers can reproduce the results of the experiment.

• Data diversity and completeness: The type and scope of data
covered in the literature should be taken into account, and
literature with diverse data should be selected, which may
include information on the physical properties of concrete, its
chemical composition, and its engineering applications.

• Availability of data: The data provided in the literature can
be used for further analysis and research. The data should
be presented in suitable formats and units with detailed data
descriptions and documentation so that other researchers can
effectively use and understand the data.

• Updatability of data: Priority is given to the most recent data
sources, especially literature published within the last few years,
to reflect the latest progress and trends in the current field of
concrete research, so that the machine learning model can be
more adapted to the current situation and the new concrete
model in the longer term future.

Ultimately this study has collected a comprehensive data
set from peer-reviewed papers included in reputed journals.
The dataset contains 843 experiments (Hao-bo and Guo-zhi,
2004; Audenaert et al., 2010; Jain and Neithalath, 2011; Liu et al.,
2011; Marks et al., 2012; Maes et al., 2013; Bogas et al., 2015;
Elfmarkova et al., 2015; Liu and Zhang, 2015; Marks et al.,
2015; Real et al., 2015; Ferreira et al., 2016; Park et al., 2016;
Rajaie and Mahmoud, 2016; Van Noort et al., 2016; Choi et al.,
2017; Liu et al., 2017; Naito et al., 2020; Shiu and Yang, 2020;
Pontes et al., 2021; Sell Junior et al., 2021) that investigated the
unsteady state migration coefficients (𝐷𝑛𝑠𝑠𝑚) of various types
of concrete. The data were collected from articles published in
international journals. The raw data stores information about the
concrete mixture, including its flow and hardening characteristics.
During data preprocessing, the data selected from the raw data were
used to create four machine learning based models (Models I, II, III,
and IV), which are presented in separate worksheets.

2.2 Data pre-processing

In machine learning modeling, the interdependence between
the selected input parameters can lead to poor interpretation,
resulting in the “multicollinearity problem.” It is stated that the
correlation coefficient between every two parameters involved in
the modeling should be less than 0.80 for the model to be reliable
(Hall, 1999; Garg and Tai, 2013; Jebli et al., 2021; Chan et al.,
2022). In this study, the correlation coefficients between two input
parameters were calculated for all the selected input parameters
and the results are shown in Figure 2 below. From the results, it
can be seen that the correlation coefficients (both positive and
negative) between different input parameters are significantly less
than 0.80, which reduces the risk of multicollinearity problems
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FIGURE 2
Correlation matrix of input variables.

and meets the modeling requirements. At the same time, it
has been shown that the minimum ratio of database size to
the number of input variables should be at least 3:5 when
modeling using machine learning, and other performance criteria
are satisfied so that the model built can be used as a general
model. The relationship between database size and input variables
involved in this study satisfies the requirements for building a
generalized model.

Preprocessing steps included normalization using min-
max normalization to ensure equal contribution from each variable
and handling missing values through mean imputation for variables
with few missing entries and regression imputation for those

with significant missing data. These steps ensured the dataset
was clean, consistent, and suitable for training the machine
learning models.

3 Methodology

3.1 Machine learning algorithms

This study compares both ensemble models and single
models for prediction of CMC of concrete (Gandomi et al., 2012;
Gandomi and Roke, 2015; Feng et al., 2021). Artificial Neural
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FIGURE 3
Construction of the ensemble learning models.

Networks (ANN) and Support Vector Regression (SVR) are
single type models, and ensemble models includes Random
Forest Regression (RFR), the inverse variance-based ensemble
model (HEM-IV), and the Artificial Neural Network-based
ensemble model (HEM-ANN). The description of the models are
as follows.

3.1.1 ANN
Artificial Neural Networks (ANN) are mathematical models

inspired by biological neural networks (Agatonovic-Kustrin et al.,
2000; Krenker et al., 2011; Dongare et al., 2012; Eluyode et al., 2013;
Abdolrasol et al., 2021). The network is made up of layers of
interconnected nodes, which include an input layer, one or more
hidden layers, and an output layer. Each connection between nodes
is assigned a weight, denoted as wij, where i is the index of the input
neuron and j is the index of the output neuron. The output xj of
neuron j in a layer is determined by the weighted sum of the inputs

yj passed through an activation function f (Eq. 2):

yj = f(∑i
wijxj) (2)

The activation function introduces non-linearity into the
network, allowing it to learn complex relationships in the
data. Training the network involves adjusting the weights
to minimize a loss function, often using algorithms like
backpropagation. ANNs are highly flexible and capable of
capturing complex nonlinear relationships between input
variables and the target variable. They can learn from large
datasets and improve prediction accuracy through deep
learning techniques.

3.1.2 SVR
Support Vector Regression (SVR) is a type of Support Vector

Machine (SVM) that is used for regression tasks (Gunn, 1998;
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FIGURE 4
Predicted versus observed values for different models on the training
and test sets: (A,B) RFR, (C,D) ANN, (E,F) SVR, (G,H) HEM-IV,
(I,J) HEM-ANN.

Basak et al., 2007; Awad et al., 2015). In contrast to traditional
regression techniques that seek to minimize the discrepancy
between predicted and observed values, SVR focuses on finding
a function that deviates from the actual values by a value
no greater than a specified margin (𝜖). The objective of SVR
is to determine a hyperplane that best fits the data while
maximizing the margin. This is achieved by solving the following
optimization problem (Eq. 3):

FIGURE 5
Taylor diagram comparison of models.

minw,b,ξ,,ξ∗
1
2
‖w‖2 +C∑n

i=1
(ξi + ξ∗i ) (3)

subject to the constraints (Eq. 4):

{{
{{
{

yi − (w · xi + b) ≤ ϵ+ ξi
(w · xi + b) − yi ≤ ϵ+ ξ

∗
i

(ξi,ξ∗i ≥ 0
(4)

The weight vector is denoted by w and the bias is represented
by b, ξi and ξ∗i are slack variables representing the degree of
deviation from the margin, and C is a regularization parameter
that determines the trade-off between the flatness of the regression
function and the amount up to which deviations larger than 𝜖ϵ
are tolerated. SVR is effective in high-dimensional spaces and is
robust to outliers, making it a powerful tool for various regression
applications.

3.1.3 RFR
Random Forest Regression (RFR) is a method of ensemble

learning that involves using utilizing multiple decision trees can
enhance predictive accuracy and mitigate overfitting. Each tree
in the forest is built from a random subset of the training data,
and its predictions the final output is generated by averaging the
values. The random selection of both data samples and features for
each tree ensures a diverse set of models, enhancing robustness.
The prediction for a given input x in a random forest is given
by (Eq. 5):

ŷ = 1
M
∑M

m=1
Tm(x) (5)

where 𝑀 is the quantity of trees in the forest and Tm(x)
is the prediction of the mth tree. The method can handle
a large number of input variables and provides estimates of
feature importance, making it a versatile and powerful tool for
regression tasks across various domains.
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FIGURE 6
(A) Variable importance with SHAP analysis, and (B) local interpretations of the first sample for predicting Dnssm.

3.1.4 HEM method
Ensemble learning, a technique combing ML algorithms to

enhance predictive outcomes by bolstering stability and precision
(Che et al., 2011; Yohannese et al., 2018; Rosellini et al., 2020;
Saadaari et al., 2020), was employed in this investigation. Two
distinct methods for amalgamating ML algorithms, HEM-IV
and HEM-ANN, were utilized. RF, SVR, and ANN yield diverse
prediction outcomes owing to their distinct algorithms, even when
the same dataset and sampling technique are employed: Y1 (RF),
Y2 (SVR), and Y3 (ANN). By combining Y1, Y2, and Y3 through
a linear combination, HEM-IV derives the final prediction result Y.
The coefficients for HEM-IV are established using the root mean
square error (RMSE) is a widely utilized metric for evaluating
performance ML models (Nevitt et al., 2000; Botchkarev, 2018;
Botchkarev, 2019; Schratz et al., 2019; Naser and Alavi, 2020). The
HEM-IV model is represented by the following equations (Eq. 6):

Y = Y1

1
RMSERF

1
RMSERF
+ 1

RMSESVR
+ 1

RMSEANN

+Y2
1/RMSESVR

1
RMSERF
+ 1

RMSESVR
+ 1/RMSEANN

+Y3
1/RMSEANN

1
RMSERF
+ 1

RMSESVR
+ 1/RMSEANN

(6)

For HEM-ANN, the prediction results (Yi) of the three
individual ML models from the training set are utilized as new
input variables to train HEM-ANN, forming the training set Xtrain.
This process leads to the development of the hybrid ensemble
learning model HEM-ANN. Figure 3 depicts the workflow of these
hybrid ensemble models. This approach leverages the strengths of
each individual model, reduces prediction errors, and improves
overall accuracy.

3.2 Hyperparameter tuning

The selection and tuning of hyperparameters is crucial
in the process of constructing and developing ML models.
Hyperparameters are parameters set before model training;
they control the learning process and complexity of the model,
and directly affect the performance and accuracy of the model
(Cawley et al., 2007; Probst et al., 2019; Yang and Shami, 2020).
Since different datasets and problems require different model
configurations, choosing appropriate hyperparameter values
becomes critical. It is known that determining the optimal
hyperparameter values undertaking a complex and time-consuming
process, given the wide array of tasks involved.hyperparameter
values is often large and their interactions are complex, and hence
it is difficult to find the optimal solution by simple trial and

Frontiers in Materials 07 frontiersin.org

https://doi.org/10.3389/fmats.2024.1445547
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Li et al. 10.3389/fmats.2024.1445547

FIGURE 7
Sensitivity of Dnssm to change of (A) W/B, (B) Ca, (C) Ta, (D) C, (E) W, (F) DD, (G) LF, and (H–L) ITZ of concrete with increase in LWA.

error methods. To solve this problem, researchers have proposed
various methods to automate and optimize the hyperparameter
selection process. These include the use of empirical formulas
to guide parameter selection, e.g., grid search, stochastic search,
Bayesian optimization, etc., and the use of techniques such as
cross-validation to evaluate model performance (Bergstra et al.,
2012; Strumberger, 2019; Alibrahim and Ludwig, 2021). These
methods can help researchers find the optimal hyperparameter
configurations more efficiently and improve model performance
and accuracy.

In this study, the hyperparameter tuning of the ML models
were tuned through the Firefly Algorithm (FIA) (RAJESWARI
and BASHU; Naser, 2021; Xu et al., 2016). FIA is a nature-
inspired optimization technique used for tuning hyperparameters
of ML models by mimicking the behavior of fireflies. The key
idea is that each firefly represents a potential solution, and
their attractiveness is determined by their brightness, which
corresponds to the quality of the solution. Fireflies move
towards brighter ones, thereby exploring the solution space
effectively. The brightness of a firefly I is related to the objective

Frontiers in Materials 08 frontiersin.org

https://doi.org/10.3389/fmats.2024.1445547
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Li et al. 10.3389/fmats.2024.1445547

FIGURE 8
Sensitivity of Dnssm to the change of (A) CM_Age, (B) CS, (C) SF, (D) Fa, (E) AC, (FA) FA, and microstructure of fly ash concrete at (G) 3d, (H) 7d, (I) 14d
and (J) 28d.

function f (x) that needs to be maximized or minimized. The
movement of a firefly i towards another more attractive firefly 𝑗
is given by (Eq. 7):

xt+1i = x
t
i + β0e

−γr2ij(xtj − x
t
i) + α(rand− 0.5) (7)

where xti is location of fireflies 𝑖 at time t, β0 is the
attractiveness at 𝑟 = 0, 𝛾 is the light absorption coefficient,
rij is the distance between fireflies i and j, α is the
randomization parameter, and rand is a random number
uniformly distributed in (0,1). This iterative process continues
until convergence criteria are met, effectively tuning

the hyperparameters to optimize the performance of machine
learning models.

The tuning of the hyperparameters was carried out on a
training set that included 70% of all the example data. FA searched
for the best hyperparameters on 90% of the training set and
carried out the computation of the corresponding RMSEs on the
remaining 10%. The best hyperparameters were obtained after
convergence occurred (i.e., when the RMSEs were no longer
decreasing). Finally, the predictive performance of the model is
performed on a test dataset containing 30% of the data points,
which is not related to the training dataset but is only used for
the evaluation of the model’s correlation performance. If it appears
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FIGURE 9
Model user interface diagram.

FIGURE 10
Influence of microbial surface treatment on the chloride penetration
of concrete.

that there exists a model that fits well on both the training and
test sets, then minimal overfitting has occurred. Figure 4 shows
the overall process of predicting the 𝐷𝑛𝑠𝑠𝑚 for concrete using a
tree-based model.

For initial configuration, the HEM-IV combines predictions
from RFR, SVR, and ANN, weighted by the inverse of their
MSE. The HEM-ANN uses predictions from these base models as
inputs to an additional ANN, structured with an input layer of
3 neurons, two hidden layers with 10 and 5 neurons respectively
using ReLU activation, and an output layer with 1 neuron using a
linear activation function. It is trained with the Adam optimizer, a
learning rate of 0.001, MSE as the loss function, over 100 epochs
with a batch size of 32. The RFR consists of 100 trees with a
maximum depth of 30, minimum samples split of 2, minimum
samples leaf of 1, bootstrap enabled, and uses MSE as the criterion
for split quality.

3.3 Model evaluation

Relationship coefficients (R), the mean absolute error (MAE)
and the root mean square error (RMSE) were employed for
assessment. model in this study (Tikhamarine et al., 2020).

Relationship Coefficient (R), also known as the correlation
coefficient, it quantifies the intensity and alignment of the linear
correlation between estimated and observed values. It ranges from
−1 to 1, where 1 indicates a perfect positive correlation, −1 indicates

Frontiers in Materials 10 frontiersin.org

https://doi.org/10.3389/fmats.2024.1445547
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Li et al. 10.3389/fmats.2024.1445547

a perfect negative correlation, and 0 indicates no correlation (Eq. 8).

R =
∑n

i=1
(yi − y)(ŷi − ŷ)

√∑n
i=1
(yi − y)

2∑n
i=1
(ŷi − ŷ)

2
(8)

The Mean Absolute Error (MAE) calculates the average size of
the errors between predicted and actual values, regardless of their
direction. It is calculated as (Eq. 9):

MAE = 1
n
∑n

i=1
|(ŷi − ŷi)| (9)

The Root Mean Square Error (RMSE) is a widely utilized metric
that quantifies the square root of the average squared deviation
between predicted and actual values. It is given by (Eq. 10):

RMSE = √ 1
n
∑n

i=1
(ŷi − ŷi)

2 (10)

In the above equations, yi are the actual values, ŷi are the
predicted values, and the variable n represents the number of
observations.

4 Findings and analysis

4.1 Prediction results of different ML
models

Figure 3 plots the correlation between the forecasted Dnssm
values the real values of Dnssm are each model on the training
and testing subsets. It can be seen that most of the data points
in the five models are closely spread out on either side of the
line y = x straight line, and all of them can be fitted relatively
accurately. The R-values of the measured and predicted values
of the five models are 0.98, 0.84, 0.94, 0.965, 0.994, respectively,
while the RMSEs of the models on the training set are 1.89, 4.853,
3.174, 2.653, 1.005, among which the RFR and HEM-ANN models
have the best fitting of the measured and fitted values among
the five models, and the data points of their were more closely
distributed.

In order to verify the prediction accuracy and generalization
ability of the models, the five established machine learning models
are used to perform simulation tests on the test set data in
the database that are not involved in modeling. It can be seen
that the accuracy of the prediction ensemble models is greater
than that of singe models, among which, the ensemble model
RF has the best prediction performance with R and RMSE on
the test of 0.9 and 4.4, respectively. To further validate the
predictive ability of the models, the performance of each model
was further compared using a Taylor diagram as shown in Figure 5.
A Taylor diagram is a visual representation representation used
to display the performance of different models in terms of their
standard deviation, the three measures being referred to are
standard deviation, correlation coefficient, and root mean square
error (RMSE). (Despotovic et al., 2016; Alam et al., 2021; Soleimani,
2021). The radial distance from the origin represents the standard
deviation of the models, the angular coordinate represents the
correlation coefficient between the model output and the reference
data, and the concentric dashed curves represent the RMSE values.

The reference data is located at the point on the x-axis labeled
“Ref.” with a standard deviation of 10.0, correlation coefficient
of 1.0, and RMSE of 0. Models closer to the reference point on
the x-axis have higher correlation coefficients and lower RMSE
values, indicating better performance, and those with smaller radial
distances have standard deviations closer to the reference data,
indicating better performance in capturing variability. For example,
ensemble models show higher performance with higher correlation
coefficients and a standard deviations close to the reference, while
single models like SVR and ANN have lower correlation coefficients
and higher standard deviations, indicating poorer performance.
The Taylor diagram provides a comprehensive visual comparison
of model performance relative to the data that is used for
referencing.

4.2 Variable importance

To further understand how the key features of the inputs
affect the output of the model, the Shapley Additive exPlanations
(SHAP) values of the features of interest were obtained with
the best performed model (RF) (Halamickova et al., 1995;
Zhang et al., 2018). Figure 6A shows the average SHAP values of
different input features for Dnssm of plain concrete. In which
various features are arranged in descending order of importance.
It can be seen that among the many features, W/B, CM-Age and
W are the input variables that affect the Dnssm to a higher extent,
while AEA has the lowest influence. Therefore, in order to achieve a
more superior resistance to chloride penetration in the preparation
of concrete, more attention should be paid to these variables.

Figure 5B shows the local interpretation of the first sample in
predicting Dnssm. The provided SHAP plot visually represents the
contribution of various features to a single prediction made by a
machine learning model. The base value, around 6.66, is the average
model output across the training dataset, serving as the starting
point for the explanation. Features pushing the prediction higher are
shown in red, while those pushing it lower are in blue. For example,
“Speed = 289.32,” “CM_Age = 28.0,” and “CS = 29.3” contribute
positively, increasing the prediction, whereas “W/B = 0.35,” “SF
= 45.0,” “W = 157.5,” and “Ca = 376.6” contribute negatively,
decreasing the prediction. The length of each bar indicates the
magnitude of the feature’s impact, with longer bars signifying amore
significant influence.

4.3 Sensitivity analysis

The Dnssm value is predicted using the RF model when
changing a certain input variable while other input variables are
fixed to their average values. By this way, the sensitivity of the
output variable to the change of input variables is calculated. From
the effects of the input feature variables on Dnssm are broadly
categorized into three groups: one group is tomake theDnssm trend
significantly higher, such as the features (W/B, Ca, DD, etc.); one
group is to make the Dnssm trend significantly lower, such as the
features (Spreed, CM-Age, CS, SF, etc.), and the last group is to
make no large fluctuation in the Dnssm trend, such as the features
(CS-Age, P, SP, AEA, etc.).
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4.3.1 Variables positively influencing the Dnssm
The variables positively influencing Dnssm include W/B,

Ca, DD, Ta, C, W, DD, LF, as shown in Figure 7. It is observed
that an increase in the W/B ratio (after 0.34) increases the
Dnssm significantly. The possible reason is that higher W/B
ratio may lead to the formation of more pores and voids this
results in enhanced chloride ion penetration in the concrete
(Win et al., 2004; Wang et al., 2016), while the increase of binder
(cement) results more hydrates and densifies the matrix, decreasing
the Dnssm (Figure 7D). The amount of coarse aggregate (Ca)
in concrete significantly influences chloride penetration by
affecting permeability, porosity, and the interfacial transition
zone (ITZ) (Figure 7B). In addition, a higher aggregate content
may lead to microcracks due to differential shrinkage and
thermal stresses, offering pathways for chlorides (Kozul and
Darwin, 1997; Grassl et al., 2010; Zhang et al., 2020; Zhang et al.,
2023). Figures 7H–L represent the ITZ of concrete with different
lightweight coarse aggregate (LWA) dosages ranging from 0%
(0 kg) to 100% (692 kg) (Mangalathu et al., 2020). It can be seen
that larger ITZ and more micro cracks are observed with the
increase in LWA, which enhances the chloride ion transport to
some extent.

It should be noted that higher loads applied to the concrete
may lead to the formation of microcracks within the concrete,
these pathways could serve as channels for chloride ions to enter,
leading to an elevated permeability coefficient for chloride ions.
(Figure 7G). Higher ambient Temperature (Ta) may result in faster
water loss from the concrete, which may exacerbate the pore
structure of the concrete and increase chloride ion penetration
(Figure 7C) (Powers, 1947; Cawley and Talbot, 2010; Liu et al., 2011;
Zeng et al., 2012; Lyngdoh et al., 2022).

4.3.2 Variables negatively influencing the Dnssm
The variables positively influencing Dnssm include CM_Age,

CS, SP, Fa, AC, FA, as shown in Figure 8. It is not unexpected
that as the CM_Age of concrete increases, its hydration reaction
will continue, producing more hydration products to fill the
pores of concrete, improving the compactness and densification
of concrete, thus reducing the infiltration of chloride ions
(Lee et al., 2012; Franus et al., 2015; Huang et al., 2019); This is
verified by Figures 8H–K showing the SEM images of fly ash
concrete at different curing ages. It can be seen that the number
of hydrates inside the concrete gradually increased and the tiny
pores gradually decreased with curing age.

The addition of a certain amount of supplementary cementitious
materials (SCMs) such as SF (Figure 8D) and Fa (Figure 8E) improve
the packing density of the cement paste, fill voids, and refine the
pore structure, thereby decreasing the connectivity of capillary pores
through which chlorides can penetrate. They also contribute to the
pozzolanic reaction, consuming calcium hydroxide and forming
additional calcium silicate hydrate, which further densifies the
matrix and reduces porosity. Moreover, SCMs enhance the chloride
binding capacity of concrete by forming additional compounds that
can chemically bind chlorides, thereby reducing the free chloride
ions available for corrosion processes (Gjørv et al., 1979; Li et al.,
2015). The increase in variables SP, FA and AC in a certain
amount all increase the density of concrete, thus reducing the

chloride penetration (Standard, 1996; Kozul and Darwin, 1997;
Zhao et al., 2014; Simčič et al., 2015).

4.4 GUI design

In order to enable more scholars to use the model to
predict the chloride permeability coefficients of concrete in an
easy way, we designed a graphical user interface (GUI) in the
environment of MATLAB. The screenshot of its operation interface
is shown in Figure 9 below. By using this GUI, users can more easily
and quickly use the system to load training data, select the type
of tree-based model, adjust hyperparameters, insert different input
variables, and compare the prediction results of different models.

The GUI is designed to simplify the process for researchers
and practitioners who may not be familiar with the underlying
machine learning algorithms. By using the GUI, users can easily
input various concrete mix parameters, select the type of predictive
model (e.g., ANN, SVR, RFR, HEM-IV, or HEM-ANN), and adjust
hyperparameters.TheGUI then processes these inputs and provides
a prediction of theCMC, alongwith visualizations of the results.This
interface enhances accessibility and usability, making the advanced
predictive capabilities of our models available to a broader audience
without requiring extensive technical knowledge. It also supports
comparative analysis by allowing users to view and compare the
predictions from different models, thereby aiding in the selection of
the most suitable model for their specific needs.

4.5 Prevention of concrete chloride
penetration with MICP

As mentioned above, curing environments are the input
variables that affect the Dnssm to a higher extent. These variables
influence the concrete chloride penetration by influencing the inner
pores and cracks in concrete. Therefore, by reducing or healing
the newly generated cracks in concrete with microbially induced
calcium carbonate precipitation (MICP) techniques, the chloride
penetration can be prevented. This study will explore the curing
environments together with the bacteria on the chloride penetration
of concrete.

The bacteria used in our study are applied as a surface treatment
to the concrete specimens, rather than being mixed with the cement
and water. Surface treatment allows for targeted healing of exposed
cracks, is simpler, and may be more cost-effective; however, it has
limited penetration and durability may be compromised over time.
Mixing bacteriawith cement andwater ensures uniformdistribution
and internal healing, enhancing durability andproviding continuous
self-healing, but it is more complex, potentially more expensive,
and might affect concrete properties. Our study chose surface
treatment for its simplicity and effectiveness in demonstratingMICP
in reducing chloride penetration. Future research could explore
combining both methods to maximize the benefits of bacterial self-
healing in concrete structures.

Throughout this study, the main bacterial agent used was
Sporosarcina pasteurii PTCC 1645 (DSM 33), a calcium carbonate-
producing bacterium. Lyophilized bacteria were activated under
sterile conditions using a suspension with a bacterial concentration
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of 107 cells/mL. According to ACI-211, the concrete mixes were
designed to reach a UCS of 25 MPa at 28 days with cement,
water, coarse aggregate and fine aggregate of 373.8 kg/m3,
206.5 kg/m3, 739.3 kg/m3, and 993.5 kg/m3, respectively. The
specimens were surface treated with bacterial suspension for 48 h
before testing.

From Figure 10, the untreated sample shows a chloride
penetration of 13,000 coulombs, while the treated sample shows
a reduced penetration of 9,200 coulombs. This significant
reduction of 3,800 coulombs demonstrates the effectiveness of
microbial surface treatment in minimizing chloride penetration.
Consequently, applyingmicrobial surface treatment can enhance the
durability and longevity of concrete structures exposed to chloride
environments.

5 Conclusion

The study began by creating an ensemble model based on
machine learning to forecast the chloride permeability coefficients
of concrete. The effects of different input variables on the
Dnssm values were analyzed by SHAP analysis. The results are
summarized as follows:

(1) Five machine learning models—Random Forest Regression
(RFR), Artificial Neural Networks (ANN), Support Vector
Regression (SVR), Inverse Variance-Based Ensemble Model
(HEM-IV), and Artificial Neural Network-Based Ensemble
Model (HEM-ANN)—were used to predict the Dnssm of
concrete with different mix ratios. The ensemble models
demonstrated higher prediction accuracy than the single
models. Specifically, the RFR model achieved an R-value of
0.98 and an RMSE of 1.89 on the training set, while the HEM-
ANN model achieved an R-value of 0.994 and an RMSE of
1.005, indicating superior performance in fitting the data.

(2) The most important variable affecting the chloride migration
coefficient of concrete is the water-to-binder ratio (W/B).
Carefully adjusting this variable can significantly reduce
the micropores in concrete, thereby decreasing chloride
penetration.

(3) Variables such as W/B, coarse aggregate content (Ca), dry
density (DD), ambient temperature (Ta), cement content (C),
water content (W), and lime filler (LF) positively influence
the Dnssm, whereas cement age (CM-Age), compressive
strength (CS), superplasticizer (SP), fly ash (Fa), and air
content (AC) negatively influence the Dnssm of concrete.
These findings emphasize the importance of optimizing
the combination of materials and curing processes to
enhance the durability of concrete structures in chloride-rich
environments. Additionally, microbial surface treatment can
effectively reduce chloride penetration in concrete.

Based on the positive findings of this study, future research
should aim to enhance the dataset by including a wider variety of
mix ratios and environmental conditions to improve the overall
applicability and strength of the ensemble model. Additionally,
exploring advanced machine learning techniques, such as deep
learning and hybrid models, could further enhance prediction
accuracy and provide deeper insights into the complex interactions

between input variables. While W/B was identified as the most
critical variable, future studies should optimize this parameter by
examining various admixtures and supplementary cementitious
materials to fine-tune the concrete’s microstructure. Investigating
the impact of nano-materials and advanced curing techniques on
reducing micropores and enhancing durability is also a promising
direction.
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