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Mid-infrared optical coherence
tomography and machine
learning for inspection of
3D-printed ceramics at the
micron scale
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Dominik Brouczek2, Julia Eichelseder2 and
Martin Schwentenwein2

1Research Center for Non-Destructive Testing (RECENDT) GmbH, Linz, Austria, 2Lithoz GmbH, Vienna,
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Introduction: In this paper, recent developments in non-destructive testing of
3D-printed ceramics and monitoring of additive manufacturing of ceramics are
presented.

Methods: In particular, we present the design and use of an inline mid-
infrared optical coherence tomography (MIR-OCT) system to evaluate
printed and micro-structured specimens in lithography-based ceramic
manufacturing (LCM).

Results: The proposed system helps with the detection of microdefects (e.g.,
voids, inclusions, deformations) that are already present in green ceramic
components, thereby reducing the energy and costs incurred.

Discussion: The challenges during integration are discussed. Especially, the
prospects for MIR-OCT imaging combined with machine learning are illustrated
with regard to inline inspection during LCM of printed ceramics.

KEYWORDS

non-destructive testing, additive ceramic manufacturing, inline monitoring, mid-
infrared optical coherence tomography (MIR-OCT), learning and feedback

1 Introduction

Additive ceramic manufacturing (ACM) has witnessed considerable progress in recent
years as it allowsmicrofabrication of systemswith complexmorphologies (Abdelkader et al.,
2024; Nohut et al., 2023). Another reason for the popularity of ACM is that ceramics
represent a broad category of materials with specific sets of unique properties, including
greater bending and tensile strengths, high densities, good electrical insulation, as well
as enhanced resistances to corrosion, chemicals, and temperature (Kollenberg, 2018;
Senthooran et al., 2024). These diverse material characteristics along with high-precision
manufacturing capabilities have spurred significant interest in three-dimensional ACM
technology for various applications (Chen et al., 2019; He et al., 2021). ACM systems
have been widely commercialized and adopted in biomedicine (implant printing and
bone tissue engineering) (Buj-Corral and Tejo-Otero, 2022; Ly et al., 2022), electronics,

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2024.1441812
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2024.1441812&domain=pdf&date_stamp=2024-09-13
mailto:Bettina.Heise@recendt.at
mailto:Bettina.Heise@recendt.at
https://doi.org/10.3389/fmats.2024.1441812
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2024.1441812/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1441812/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1441812/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1441812/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1441812/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Heise et al. 10.3389/fmats.2024.1441812

automotive and aerospace industries, and developing optical
components for terahertz technology (Jang et al., 2023). Although
ACM is a mature technology, misprints or defects still occur owing
to several factors, such as inconsistencies in the material properties,
fluctuations in the processing conditions, and limitations in the
current manufacturing techniques. Therefore, ACM techniques
necessitate control monitoring to enhance the dimensional accuracy
and minimize the risk of defects, such as cracks, contamination,
delamination, surface and subsurface inhomogeneities, surface
quality issues, and shrinkage.

Various quality control and inspection methods have been
employed to study ceramic materials and optimize the ACM
process.Themain approaches include scanning electronmicroscopy
(SEM), X-ray imaging (microcomputed tomography), and optical
microscopy (Sun et al., 2008). SEM provides ultrahigh resolutions
for assessing the surface quality, roughness, and average pore size but
is limited to surface examination applications. X-ray tomography
provides high-resolution volumetric images but requires lengthy
processing times and is limited to small samples owing to the
size of the imaging chamber and ionizing nature of X-rays. SEM
and radiography are expensive and technically complex methods,
which make them unsuitable for inline inspections. Although
optical microscopy is simple and cost-effective, its applications
are limited to surface analyses with low spatial resolutions and
depths of field. Conventional porosity analysis methods, such as the
Archimedean method, provide the average porosity without spatial
localization (Wits et al., 2016).

Non-destructive testing (NDT) techniques, which mainly
involve optical and acoustical imaging and sensing methods
(Ramírez et al., 2023), are advantageous as they cause no damages
or alterations to the specimens. Among them, optical coherence
tomography (OCT) enables volumetric imaging of subsurface
structures in a non-destructive manner (Heise et al., 2020;
Heise et al., 2019). The performances of state-of-the-art OCT
systems (Kopycinska-Müller et al., 2023) in the near-infrared
and visible ranges often suffer from light scattering (Su et al.,
2014). Mid-infrared OCT (MIR-OCT) has thus emerged as a
promising tool for at-line and inline volumetric imaging, inspection,
materials research, and quality assurance in 3D ceramic printing; it
needs no special sample preparations and has been demonstrated
(Israelsen et al., 2019; Zorin et al., 2018) and experimentally
validated for at-line monitoring (Zorin et al., 2022; Zorin et al.,
2020) in additive manufacturing (AM), with feasibility to be used
under field conditions as there are no specific requirements beyond
laser safety precautions.

Nowadays, another essential technology in various applications
is artificial intelligence (AI), which has been suggested in
ACM for classification between accurately 3D-printed and
ceramics specimens with failures at the micron scale. Specifically,
deep learning (DL) methods involving convolutional neural
networks (CNNs) or residual neural networks (so-called ResNets)
that have enabled easy training and model generation for
(OCT) image data are chosen. Similar approaches have already
been demonstrated for medical OCT use cases in the past
(del Amor et al., 2020; Lee et al., 2016).

The present work highlights the potential of MIR-OCT coupled
with AI-based identification methods for inline process monitoring
and quality control in ACM machinery. The form factor of the

system was modified to integrate the OCT measurement head
in a 3D ceramic printer, which offered several advantages. The
inline inspection enables direct layer growth monitoring, geometry
verification (e.g., thickness and CAD compliance), and real-
time defect development monitoring, providing immediate user
alerts when misprints are produced. Such monitoring enhances
production efficiency by promptly detecting potential defects,
reducing the time and cost commitments, and minimizing resource
consumption.

2 Methods

2.1 Lithography-based ceramic
manufacturing (LCM) printing

The LCM process is a 3D printing technology belonging to
the family of vat photopolymerization techniques. In this process,
a photocurable ceramic suspension based on a ceramic powder
dispersed in a light-sensitive matrix comprising methacrylate
and acrylate monomers is selectively exposed to light to trigger
photopolymerization in the illuminated areas (Stampfl et al., 2023).
The schematic setups of the 3D printer and printing machinery
are shown in Figures 1A, B. Upon selective exposure to light, the
ceramic suspension hardens in the exposed areas; by repeating
this process sequentially, the so-called green part (a composite
of ceramic particles dispersed in a polymer matrix) is formed
layerwise (Schwentenwein and Homa, 2015).

At-line or inline inspections assist with monitoring the quality
and integrity of the green part and optimizing the process
conditions. Flaws occurring during manufacturing can be detected,
and the affected parts can be eliminated.This is especially important
because the material and green parts can be recycled easily after the
3D printing step. In addition, the subsequent thermal process can
be avoided for components that are found to have defects after the
printing process, thereby conserving energy and time.

2.2 MIR-OCT

OCT is a type of short coherence interferometric technique that
typically involves spectrally broadband but spatially coherent light
sources. OCT enables non-destructive and non-invasive imaging
for extraction of subsurface microstructural information. As OCT
entails raster scanning and interferometry, it is sensitive to the
strength and runtime of the light reflected back. Nowadays,
OCT is mostly realized in the Fourier domain configuration,
as schematically shown in Figure 2A. This method relies on
measuring the spectral interference signal between the back-
reflected/back-scattered sample and reference wave. After Fourier
transformation of the spectral interference signal, the depth-
resolved reflectivity profile from within the sample is obtained.
Therefore, OCT facilitates non-destructive monitoring of the
subsurface and embeddedmicron-scale structural defects within the
(semitransparent) specimen.

The Fourier-domain MIR-OCT system established for
inline measurement of 3D-printed ceramics comprises three
core units:
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FIGURE 1
(A) Schematic setup of the 3D printer with a structured illumination unit by applying a digital micromirror device for patterning; (B) 3D printer for
lithography-based ceramic manufacturing (LCM) CeraFab 2M30.

FIGURE 2
(A) Schematic of the mid-infrared optical coherence tomography (MIR-OCT) system; (B) schematic 3D design of the optical interferometric head; (C)
assembled optical head containing the interferometer unit, fiber connectors, and ports as optical core elements.
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FIGURE 3
Optical head integrated with the LCM printer: (A) OCT unit in the idle state, i.e., when the 3D printing process is active; (B) OCT unit in the active state,
i.e., when moved to the measuring position at the printing field. The plastic housing of the optical unit is removed in (B) for illustration.

FIGURE 4
Characterization of the inline MIR-OCT system: (A) sensitivity roll-off determined at a tilted surface over a depth range of 3 mm (optimal position at
zero frequency was chosen), where the OCT image of the surface appears reflected since the zero-delay plane has been crossed; (B) B-scan of a step
profile with a vertical step size of 0.4 mm and lateral scanning range of about 10 mm.

(1) a compact interferometric optical measurement head
downsized to 16.5 cm × 12.5 cm × 6 cm and assembled in
the arrangement shown in Figures 2B, C;

(2) a dispersive, single-pixel scanning spectrometer to record the
spectral interference signal; and

(3) amid-infrared (MIR) supercontinuum broadband light source
that is spatially coherent, emits instantaneous broadband
pulses, and has a spectral window (limited for OCT
measurements) from 3.15 μm to 4.2 μm.

The MIR-OCT system applies time-encoded sampling,
i.e., scanning of the spectral interferograms in wavelength
and wavenumber, to gather the structural information after
Fourier transformation. More details on this approach can
be found in Zorin et al. (2022).

The measurement head was optimized for integration with a
two-component 3D printer for inline monitoring, which enabled
layer growth tracking, geometry verification, roughness andporosity
measurements, and real-time defect detection. The detection

unit included advanced electronics (such as boxcar demodulator,
digitizer, and function generator) for precise control and data
acquisition; it was connected to a personal computer via ethernet
for user interface management.

The MIR-OCT system demonstrated a high sensitivity of
around 80.2 dB and good resolution (axial resolution of 8–16 μm
depending on the chosen spectral window and lateral resolution of
40 μm), which were suitable for imaging and distinguishing the fine
structural details in ceramic samples.

2.3 Integrating MIR-OCT into the LCM
machinery

The optical sensing head was fixed on a scanning stage and
integrated with the LCM machinery. Here, the optical sensing head
can move into the printing field using the rotating mechanical
arm of the LCM machine and is positioned under the sample,
as shown in Figure 3. Structural imaging is then performed either
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FIGURE 5
Photographs of (A) ceramic 3D-printed samples, (B) samples arranged on the building platform of the LCM machine, and (C) typical B-scans of the
microstructured ceramic green parts with different structure sizes of the embedded stripes, recorded in the inline mode of the MIR-OCT system
integrated with the LCM printer. The lateral scanning range was about 42 mm.

FIGURE 6
Illustrations of different classes of defects in 3D-printed ceramic samples: (A–C) pores (air bubbles), (D) contamination, (E) overhang, and (F) reference
sample without defects.
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FIGURE 7
OCT images (B-scans) recorded for the 3D-printed ceramic samples corresponding to Figure 6: (A–C) pores (air bubbles), (D) contamination, (E)
overhang, and (F) reference sample without defects. The yellow arrows indicate the printing defects expressed in the OCT images; the thicker orange
arrow in (A) indicates the sensing/imaging direction.

FIGURE 8
Illustration of data augmentation: (A) scheme of the 3D OCT image sets (with contaminations, cracks, and no defects); (B) B-scans (2D) extracted from
OCT volume sets (normal to the scanning direction); (C) B-scans extracted in various directions from the OCT volume sets; (D) augmented OCT
B-scans assigned to the corresponding defect groups.

after completion of the printing process or on a software-defined
print layer. Fiber-optic connections enable broadband illumination
by the MIR supercontinuum source and spectral interferometric
detection at an external spectrometer unit.

Figure 3A shows an LCM printing machine with the MIR-
OCT system located at the printing position (when the printing

process is active, the OCT is in idle mode). Figure 3B shows the
OCT unit in the active sensing mode, where the printing process is
paused andOCTmeasurements are performed.The emission power
and repetition range of the supercontinuum source are selected
according to the optimal parameters (250 kHz and 6,000 mA diode
current), yielding an output MIR average power of around 230 mW.

Frontiers in Materials 06 frontiersin.org

https://doi.org/10.3389/fmats.2024.1441812
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Heise et al. 10.3389/fmats.2024.1441812

FIGURE 9
Illustration of training of the neural network: (A) OCT volume scans recorded for green part ceramics with various defects and reference without
defects and labeled B-scans applied as (B) inputs to train the ResNet18 structure; (C) classification (with estimated probability for each class).

FIGURE 10
Illustration of the feedback procedure: (A) the ceramic component is imaged inline during printing and recorded as a short B-scan (i.e., image patch of
width 100 pixels); (B) B-scan analysis where the measured data are classified by a trained neural network and repeated for all sequential B-scan
batches; (C) predicted classifications are stored for calculating the overall accuracy. The final accuracy computed per measurement run or sample is
provided as feedback to the operator.

2.4 Data analysis

For automated data analysis, a machine learning or DL strategy
was applied. In particular, a pretrained ResNet18 model was
implemented to analyze the OCT images for classification under
correct and defective labels. A dataset containing at least 400 images
per defect class and reference parts without faults was manually
labeled and used for subsequent training and modeling. Data
augmentation was used to increase the size of the dataset.

3 Results

3.1 Inspection and monitoring

3.1.1 At-line inspection of LCM-printed ceramics
for micron-scale defects

At-line inspection is beneficial for reducing the number
of defective ceramic parts that are sintered after printing and
potentially supplied to customers. The contrast and visibility of
the microdefects in the green ceramic parts achieved with MIR-
OCT imaging are relatively high, especially compared to those of
the sintered samples. This is attributed to the lower difference in
refractive index between the ceramics and polymer matrix filling

the pores than that for the sintered state with air in the porous
ceramic material. Hence, stronger scattering is observed in the latter
case, which could hide the potentially buried microdefects in the
interior of the material. Different specimens with defined printing
faults were tested using the at-line MIR-OCT system, as reported by
us recently (Zorin et al., 2022).

3.1.2 Inline monitoring during LCM printing
Before integrating the inline system, the MIR-OCT was

calibrated to determine the optimal head positioning (i.e., z-offset
that was obtained with the printer’s Z-scan stage). Moreover, the
sensitivity roll-off was evaluated. For the calibration and initial
evaluation, simple scanning profiles of the platform were obtained,
as shown in Figure 4. In addition, various U-shaped and step-slope
preliminary measurements were realized to determine the optimal
step scan and timings. The OCT signal was almost comparable to
that obtained previously with the at-line MIR-OCT system (i.e.,
the DC and AC components do not differ significantly), with the
sensitivity being about 80 dB.

The MIR-OCT system was extensively tested for inline
monitoring of the LCM process, where characteristic
microstructured green parts were designed and printed. Typical B-
scans of such green parts with internal microchannels were imaged
during the inline process, as depicted in Figure 5. It should be noted
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TABLE 1 Prediction performance metrics (for four classes) when using ResNet18.

Set 1 (A) Reference [%] Contamination [%] Crack [%] Layer defect [%]

Precision 77 75 62 80

Recall 66 66 90 71

F1 score 71 71 73 76

Set 2 (B) Reference [%] Contamination [%] Slit/Hole [%] Air bubble
inclusion [%]

Precision 63 100 90 76

Recall 100 63 60 87

F1 score 77 77 72 81

Precision = truepositives

truepositives+falsepositives

Recall = truepositives

truepositives+falsenegatives

F1score = 2×truepositives
2×truepositives+falsepositives+falsenegatives

that smallmachine vibrations during the automated printing process
can pose challenges for inline inspection andmay require additional
technical measures for compensation.

3.2 Learning and classification

3.2.1 Characterizing defect classes of
LCM-printed samples

The automated analysis and validation of recorded image data
from specimens is of great importance for process monitoring.
By applying DL concepts, typical defects in printed ceramics
specimens, such as large pores/air bubbles, contamination, and
cracks (Harrer et al., 2017), were defined and labeled for both green
parts and sintered components.The labeling of the training data was
performed by an expert on ceramics. Two sets of defective ceramic
samples, as illustrated in Figure 6, were chosen.

• Set 1 contained the following classes: correct parts (“ok” as
references), contaminations, cracks, and layer defects recorded
from real samples directly during the LCM/AM inline process.

• Set 2 contained the following classes: correct parts (“ok” as
references), air bubble inclusions, (dirt/paper) contaminations,
and slits/holes recorded fromartificial sampleswith deliberately
inserted defects to enable better ground truth data.

These defects expressed in the MIR-OCT B-scans
are shown in Figure 7. It is emphasized that these cross-sectional
MIR-OCT images of printed ceramics showing internal inclusions
and layers at depths of tens of micrometers were recorded in a non-
destructivemanner from above the surface.The delineation between
the defect classes in the 3D OCT scans are occasionally hampered
since combinations of defects may sometimes occur within the
imaging volume. In such cases, the most pronounced defect class is
defined as the input for the learning method.

3.2.2 Image database
The image database was generated using the accumulated and

labeledMIR-OCT image datasets gathered for various LCM-printed
ceramic parts. OCT images were recorded for various materials;
however, the printed materials are currently composed of mainly
alumina and zirconia. Since the image data on defective parts
are less than the those on correct parts, imbalanced behaviors
are introduced (Dablain and Chawla, 2023; He and Garcia, 2009),
for which the available data are increased by augmentation;
this includes translation, rotation, tilting, and mirroring of the
OCT volume sets, as schematically illustrated in Figure 8. In
total, after augmentation, Set 1 included training data of 1,959
samples (for four classes) and 1,348 samples (for three classes
after excluding layer defects), while Set 2 comprised training data
of 336 samples.

3.2.3 Machine learning/DL framework
The established DL-based framework using the ResNet18

structure enables transfer learning. Therefore, the ResNet model
is advantageous for including additional new or modified
defect classes with only moderate effort for retraining or
completely deriving new models. The DL-based framework
used herein that consists of dataset training, network model
generation, and classification is schematically illustrated
in Figure 9.

3.2.4 Feedback unit on quality information
After generating the model, the derived classifications and

percentages of defective parts based on the classified defects were
considered as the basis for feedback. By introducing a threshold
for the defect numbers in the dataset, feedback information was
provided to the user.Theoperator receives a “green signal” label if the
image dataset is alright or a “red signal” label if the defect probability
is high for the investigated 3D-printed component, as schematically
illustrated in Figure 10.
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FIGURE 11
Confusion matrices of the prediction results using the ResNet18 model (A) for dataset 1 with the four-class classification task and (B) for dataset 2 with
the three-class classification task; (C) before and (D) after finetuning the ResNet structure by additionally unfreezing the third layer and adjusting the
regularization mechanism (weight decay). The diagonal elements represent correct predictions, while the off-diagonal elements indicate the
misclassifications. The values in green indicate the percentage of samples recognized correctly, and the values in red indicate the percentage of
incorrectly recognized samples; the values shown in white (bottom row) are the respective real numbers of samples per class.

3.2.5 Optimizing AI tools for increasing LCM
process reliability

The DL-based classification and feedback tool was finally
optimized to obtain a higher classification accuracy. Here, the

learning rate that affects how strongly the weights of the model are
adapted to the loss gradient during training was optimized. Next,
a learning rate scheduler was additionally implemented to reduce
the step size during advanced learning to obtain the minimum
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value as accurately as possible. Two parameters were thus chosen,
namely, step size of the gradient descent and frequency of step size
reduction.Weight decay was applied as a regularizationmechanism.
The best performance of the neural network was achieved when
the last two layers, namely, layers 3 and 4, were retrained based
on these modifications. The metrics of prediction performance,
such as precision, recall, and F1 score, from both sets of samples
containing four classes each are summarized in Table 1 and
Figures 11A, B.

Since the layer defects were not strongly observed and showed
highly variable manifestations, the classification was repeated by
omitting this type of defect.The confusionmatrix for the three-class
classification task is shown in Figure 11C. Testing was conducted by
varying the batch size and number of epochs to optimize the results,
as shown in terms of the confusion matrix in Figure 11D before
and after finetuning the ResNet structure.Through this optimization
step, the accuracy of classification for the three-class task improved
from 83.8% to 87.3%.

4 Summary and conclusions

We demonstrate an MIR-OCT system combined with DL for
classification and in-process feedback as a versatile tool for at-
line and inline quality control in ACM. In at-line monitoring,
the green and sintered ceramics parts can be evaluated directly
at the printing facility; the at-line system is shown to provide
valuable and functional morphological data on the defects. In
contrast, the inline monitoring system was more challenging
to implement under the harsh printing conditions but allowed
monitoring of the LCM printing process directly with the potential
to access polymerization defects and misprints. The inline solution
demonstrated here for the first time is characterized by reduced
imaging depth than that for the at-line system owing to the
presence of the absorbing liquid-phase slurry on the samples
and system vibrations. However, since the layers were printed
sequentially, this was compensated by aggregating the resulting
images of the most recently printed layers at the highest visibility.
We expect that additional engineering solutions may be needed to
stabilize the inline system, such as maintaining cleanliness of the
optical window and mechanical adaptation between the print and
optical sensing cycles.

Beyond the MIR-OCT-based solution, we demonstrate an
intelligent concept for classifying defective AM parts (and multiple
types of defects) from flawless parts using OCT imaging and AI
methods. Here, the implementation and training using ResNet-
based DL was proven to be a flexible and customizable tool for
classifying defects in the inspected and monitored ceramic samples
(green parts). A feedback approach for informing the LCM printer
operator of the accuracy is also presented briefly.

Given the rapid developments inMIR-based photonics and fiber
optic solutions, furtherminiaturization of the interferometric sensor
unit with progressively increasing speeds is expected to be easy to
achieve as the next step. This is expected to boost the performance
of the inline MIR-OCT system via integration with a 3D printer.
Furthermore, extending the spectral range beyond 5 µm or working
with lower power levels will help advance the combined MIR-OCT
and LCM printer system.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors without undue reservation.

Author contributions

BH: Writing–review and editing, Writing–original draft,
Supervision, Project administration, Methodology, Funding
acquisition, Conceptualization. IZ: Writing–review and
editing, Writing–original draft, Methodology, Investigation,
Conceptualization. KD: Writing–original draft, Software, Formal
analysis, Data curation. VK: Writing–review and editing,
Visualization, Data curation. DB: Writing–review and editing,
Validation, Methodology, Investigation. JE: Writing–review and
editing, Investigation. MS: Writing–original draft, Methodology,
Funding acquisition, Conceptualization.

Funding

The authors declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the Austrian research funding association (FFG)
within the research project “DIQACAM” (FFG project no. 877481).
This project was also cofinanced through the “HyperMAT” project
by the federal government of Upper Austria and European Regional
Development Fund (EFRE) in the framework of the EU-program
IBW/EFRE and JTF 2021-2027.

Acknowledgments

The authors acknowledge the assistance provided by Günther
Hannesschläger for the CAD design of the inline MIR-OCT optical
sensing head and for general engineering support, Michael Schmid
for support with calibrating the inline MIR-OCT measurements
for the 3D printing process, and Lukas Eminger for support with
integrating the inline MIR-OCT optical sensing head and the
3D printer.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations or those of the publisher, editors, and reviewers. Any
product that may be evaluated in this article or claim that may be
made by its manufacturer is not guaranteed or endorsed by the
publisher.

Frontiers in Materials 10 frontiersin.org

https://doi.org/10.3389/fmats.2024.1441812
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Heise et al. 10.3389/fmats.2024.1441812

References

Abdelkader, M., Petrik, S., Nestler, D., and Fijalkowski, M. (2024). Ceramics 3D
printing: a comprehensive overview and applications, with brief insights into industry
and market. Ceramics 7 (1), 68–85. doi:10.3390/ceramics7010006

Buj-Corral, I., and Tejo-Otero, A. (2022). 3D printing of bioinert
oxide ceramics for medical applications. J. Funct. Biomater. 13 (3), 155.
doi:10.3390/jfb13030155

Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., et al. (2019). 3D printing of ceramics: a
review. J. Eur. Ceram. Soc. 39 (4), 661–687. doi:10.1016/j.jeurceramsoc.2018.11.013

Dablain, D., and Chawla, N. (2023). Towards understanding how data augmentation
works with imbalanced data Available at: https://api.semanticscholar.org/CorpusID:
258079391.

del Amor, R., Morales, S., Colomer, A., Mogensen, M., Jensen, M., Israelsen, N.
M., et al. (2020). Automatic segmentation of epidermis and hair follicles in optical
coherence tomography images of normal skin by convolutional neural networks. Front.
Med. 7, 220. doi:10.3389/fmed.2020.00220

Harrer, W., Schwentenwein, M., Lube, T., and Danzer, R. (2017). Fractography of
zirconia-specimens made using additive manufacturing (LCM) technology. J. Eur.
Ceram. Soc. C 37 (14), 4331–4338. doi:10.1016/j.jeurceramsoc.2017.03.018

He, H., and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Trans. Knowl.
Data Eng. 21 (9), 1263–1284. doi:10.1109/TKDE.2008.239

He, R., Zhou, N., Zhang, K., Zhang, X., Zhang, L., Wang, W., et al. (2021). Progress
and challenges towards additive manufacturing of SiC ceramic. J. Adv. Ceram. 10 (Issue
4), 637–674. doi:10.1007/s40145-021-0484-z

Heise, B., Hannesschlaeger, G., Leiss-Holzinger, E., Peham, L., and Zorin, I. (2020).
“Optical coherence tomography in nondestructive testing,”. Optics and photonics for
advanced dimensional metrology. Editors P. J. de Groot, R. K. Leach, and P. Picart),
11352, 37. doi:10.1117/12.2556832

Heise, B., Zorin, I., Hanneschläger, G., and Su, R. (2019). Optical coherence
tomography imaging through the scales. Available at: https://nottingham-repository.
worktribe.com/output/2215850/optical-coherence-tomography-imaging-through-the
-scales.

Israelsen, N. M., Petersen, C. R., Barh, A., Jain, D., Jensen, M., Hannesschläger, G.,
et al. (2019). Real-time high-resolution mid-infrared optical coherence tomography.
Light Sci. and Appl. 8 (1), 11. doi:10.1038/s41377-019-0122-5

Jang, D., Ryu, H., Maeng, I., Lee, S., Seo, M., Oh, S. J., et al. (2023). All-
dielectric terahertz metalens using 3D-printing. Opt. Lasers Eng. 171, 107834.
doi:10.1016/j.optlaseng.2023.107834

Kollenberg, W. (2017). Technische keramik. 3rd ed. Vulkan-verlag Gmbh ISBN:
9783802730818. https://www.lehmanns.de/shop/technik/70492816-9783802730818-
technische-keramik.

Kopycinska-Müller,M., Schreiber, L., Schwarzer-Fischer, E., Günther, A., Phillips, C.,
Moritz, T., et al. (2023). Signal-decay based approach for visualization of buried defects

in 3-D printed ceramic components imagedwith help of optical coherence tomography.
Materials 16 (10), 3607. doi:10.3390/ma16103607

Lee, C. S., Baughman, D. M., and Lee, A. Y. (2016). Deep learning is effective for
the classification of OCT images of normal versus Age-related Macular Degeneration.
BioRxiv, 094276. doi:10.1101/094276

Ly, M., Spinelli, S., Hays, S., and Zhu, D. (2022). 3D printing of ceramic biomaterials.
Eng. Regen. 3 (1), 41–52. doi:10.1016/j.engreg.2022.01.006

Nohut, S., Schlacher, J., Kraleva, I., Schwentenwein, M., and Bermejo, R. (2023). 3D-
printed alumina-based ceramics with spatially resolved porosity. Int. J. Appl. Ceram.
Technol. 21, 89–104. doi:10.1111/ijac.14512

Ramírez, I. S., Márquez, F. P. G., and Papaelias, M. (2023). Review on
additive manufacturing and non-destructive testing. J. Manuf. Syst. 66, 260–286.
doi:10.1016/j.jmsy.2022.12.005

Schwentenwein, M., and Homa, J. (2015). Additive manufacturing of dense alumina
ceramics. Int. J. Appl. Ceram. 12 (1), 1–7. doi:10.1111/ijac.12319

Senthooran, V., Weng, Z., and Wu, L. (2024). Enhancing mechanical and thermal
properties of 3D-printed samples using mica-epoxy acrylate resin composites—via
digital light processing (DLP). Polymers 16 (8), 1148. doi:10.3390/polym16081148

Stampfl, J., Schwentenwein, M., Homa, J., and Prinz, F. B. (2023). Lithography-based
additive manufacturing of ceramics: materials, applications and perspectives. MRS
Commun. 13, 786–794. doi:10.1557/s43579-023-00444-0

Su, R., Kirillin, M., Chang, E. W., Sergeeva, E., Yun, S. H., and Mattsson,
L. (2014). Perspectives of mid-infrared optical coherence tomography for
inspection and micrometrology of industrial ceramics. Opt. Express 22 (13),
15804. doi:10.1364/OE.22.015804

Sun, J. G., Liu, Z. P., Pei, Z. J., Phillips, N. S. L., and Jensen, J. A. (2008).
Optical methods for nondestructive evaluation of subsurface flaws in silicon nitride
ceramics. Corros. Wear, Fatigue, Reliab. Ceram. Ceram. Eng. Sci. Proc. 29, 181–188.
doi:10.1002/9780470456347.ch18

Wits, W. W., Carmignato, S., Zanini, F., and Vaneker, T. H. J. (2016). Porosity testing
methods for the quality assessment of selective laser melted parts. CIRP Ann. 65 (1),
201–204. doi:10.1016/j.cirp.2016.04.054

Zorin, I., Brouczek, D., Geier, S., Nohut, S., Eichelseder, J., Huss, G., et al. (2022).
Mid-infrared optical coherence tomography as a method for inspection and quality
assurance in ceramics additive manufacturing. Open Ceram. 12 (October), 100311.
doi:10.1016/j.oceram.2022.100311

Zorin, I., Gattinger, P., Brandstetter, M., and Heise, B. (2020). Dual-band infrared
optical coherence tomography using a single supercontinuum source. Opt. Express 28
(6), 7858. doi:10.1364/OE.386398

Zorin, I., Su, R., Prylepa, A., Kilgus, J., Brandstetter, M., and Heise, B. (2018). Mid-
infrared Fourier-domain optical coherence tomographywith a pyroelectric linear array.
Opt. Express 26 (25), 33428. doi:10.1364/OE.26.033428

Frontiers in Materials 11 frontiersin.org

https://doi.org/10.3389/fmats.2024.1441812
https://doi.org/10.3390/ceramics7010006
https://doi.org/10.3390/jfb13030155
https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
https://api.semanticscholar.org/CorpusID:258079391
https://api.semanticscholar.org/CorpusID:258079391
https://doi.org/10.3389/fmed.2020.00220
https://doi.org/10.1016/j.jeurceramsoc.2017.03.018
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1007/s40145-021-0484-z
https://doi.org/10.1117/12.2556832
https://nottingham-repository.worktribe.com/output/2215850/optical-coherence-tomography-imaging-through-the-scales
https://nottingham-repository.worktribe.com/output/2215850/optical-coherence-tomography-imaging-through-the-scales
https://nottingham-repository.worktribe.com/output/2215850/optical-coherence-tomography-imaging-through-the-scales
https://doi.org/10.1038/s41377-019-0122-5
https://doi.org/10.1016/j.optlaseng.2023.107834
https://www.lehmanns.de/shop/technik/70492816-9783802730818-technische-keramik
https://www.lehmanns.de/shop/technik/70492816-9783802730818-technische-keramik
https://doi.org/10.3390/ma16103607
https://doi.org/10.1101/094276
https://doi.org/10.1016/j.engreg.2022.01.006
https://doi.org/10.1111/ijac.14512
https://doi.org/10.1016/j.jmsy.2022.12.005
https://doi.org/10.1111/ijac.12319
https://doi.org/10.3390/polym16081148
https://doi.org/10.1557/s43579-023-00444-0
https://doi.org/10.1364/OE.22.015804
https://doi.org/10.1002/9780470456347.ch18
https://doi.org/10.1016/j.cirp.2016.04.054
https://doi.org/10.1016/j.oceram.2022.100311
https://doi.org/10.1364/OE.386398
https://doi.org/10.1364/OE.26.033428
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Lithography-based ceramic manufacturing (LCM) printing
	2.2 MIR-OCT
	2.3 Integrating MIR-OCT into the LCM machinery
	2.4 Data analysis

	3 Results
	3.1 Inspection and monitoring
	3.1.1 At-line inspection of LCM-printed ceramics for micron-scale defects
	3.1.2 Inline monitoring during LCM printing

	3.2 Learning and classification
	3.2.1 Characterizing defect classes of LCM-printed samples
	3.2.2 Image database
	3.2.3 Machine learning/DL framework
	3.2.4 Feedback unit on quality information
	3.2.5 Optimizing AI tools for increasing LCM process reliability


	4 Summary and conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

