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In this study, Cu-Cr composites were studied by nanoindentation. Arrays of
indents were placed over large areas of the samples resulting in datasets
consisting of several hundred measurements of Young’s modulus and hardness
at varying indentation depths. The unsupervised learning technique, Gaussian
mixture model, was employed to analyze the data, which helped to determine
the number of “mechanical phases” and the respective mechanical properties.
Additionally, a cross-validation approach was introduced to infer whether the
data quantity was adequate and to suggest the amount of data required for
reliable predictions–one of the often encountered but difficult to resolve issues
in machine learning of materials science problems.
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1 Introduction

Nanoindentation has emerged as a powerful technique for characterizing the
mechanical properties of materials at small length scales (Shen, 2019; Golovin, 2021). By
applying a force to a sharp indenter tip, while measuring the resulting displacement of
the tip into the material, nanoindentation enables the characterization of the mechanical
behavior, including hardness and elasticmodulus (Oliver and Pharr, 1992), with high spatial
resolution. In recent years, there has been growing interest in the application of statistical
approaches to nanoindentation data analysis, offering new insights into material properties
and behavior.

The traditional approach to nanoindentation testing involves conducting individual tests
on small regions of a sample surface and averaging the resulting mechanical properties
to obtain a representative value. While this method provides valuable information, it
may overlook variations in mechanical properties within the material that may arise
from statistical heterogeneity. Statistical nanoindentation techniques, on the other hand,
seek to capture and analyze the full distribution of mechanical properties across a
sample, allowing for a more comprehensive assessment of its mechanical behavior. Grid
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indentation (Constantinides et al., 2006; Nohava et al., 2012;
Sanchez-Camargo et al., 2020), for example, is not only used
for statistical analysis of the mechanical properties of multiphase
materials (Ulm et al., 2007; Haušild et al., 2016; Hintsala et al.,
2018), but also formapping themechanical properties (Tromas et al.,
2012; Hintsala et al., 2018) to study the correlations between
microstructural features and corresponding properties. Due to
progress in equipment, it has become popular to study vast numbers
of indents, which nowadays can be measured in remarkably little
time. For example, around 500,000 indentations were reported
in a study of an Al-Cu eutectic alloy and a duplex stainless
steel (Besharatloo and Wheeler, 2021), 100,000 indentations were
performed to analyze the properties of the Taza meteorite (Wheeler,
2021), and 212,500 indents were performed in a study of thermal-
barrier coatings (Vignesh et al., 2019).

An important aspect of statistical nanoindentation is the
application of advanced data analysis and machine learning
techniques (Puchi-Cabrera et al., 2023) to extract meaningful
information from indentation data. For example, data deconvolution
can be performed by assuming multi-modal Gaussian distributions
and fitting the probability distribution functions (Sorelli et al.,
2008; Randall et al., 2009) or applying expectation maximization
techniques (Veytskin et al., 2017). Recently, the effectiveness of
different deconvolution methods was studied (Besharatloo and
Wheeler, 2021). A convolutional neural network-based classifier
(Kossman and Bigerelle, 2021) was developed to identify whether
pop-in events were present in the load-displacement curves from
nanoindentation tests to help understand the process that created
pop-ins. Graph neural networks have been used for supervised
learning of indentation data obtained from a polycrystalline steel in
conjunctionwith electron back-scatter diffraction (EBSD)mappings
(Karimi et al., 2023); they are able to also consider non-local
information. In another study (Vignesh et al., 2019), the phase level
features were extracted from spatial hardness and elastic modulus
maps using a deconvolutionmethod based on theKMeans clustering
algorithm. The method was also employed for the examination of
dual phase and high-strength low-alloy steels (Jentner et al., 2023).
Similarly, Bayesian inference methods (Becker et al., 2022; Puchi-
Cabrera et al., 2023) offer a probabilistic framework for estimating
material properties and uncertainties, providing a more robust and
comprehensive analysis of nanoindentation data.

In this study, we utilized Cu-Cr composites with controlled
heterogeneity as a model material, characterized by varying
fractions of the two material components. Our objective was
to assess the effectiveness of the statistical nanoindentation
technique in detecting variations in mechanical properties within
a material. While the microstructures of the selected materials
allow for precise positioning of indents and a conventional analysis,
this controlled heterogeneity served as a basis for exploring
fundamental methodological aspects, such as data processing,
uncertainty quantification, and model selection. Unlike more
complex materials with multiple, possibly unknown, phases and
heterogeneous microstructures, the controlled heterogeneity in our
composites simplifies the interpretation of the nanoindentation
data by eliminating the complexities associated with unknown
heterogeneity. Another key question that arises in the context
of statistical nanoindentation is: How much data is necessary to
obtain reliable and meaningful results? We address this question

by systematically investigating the effects of data quantity on the
statistical analysis of the nanoindentation data.

2 Materials and methodology

Cu-Cr composites as a two-phase model material with
different compositions were evaluated. Four materials were studied
with different fractions of Cr, i.e., 25 wt% Cr and 60 wt% Cr
corresponding to 29.95 at% and 64.40 at% Cr, respectively, as well
as Cu and Cr as reference samples. All materials were produced
via field-assisted sintering technique (FAST) as described in detail
in (von Klinski-Berger, 2015). Briefly, Cu powder with 99.9 at%
purity and technically pure Cr powder (99.5 at%) were used and
compacted at a temperature of 950°C and a pressure of 40 MPa,
except for the Cr sample that was compacted at a temperature of
1,450°C. The composite samples (Figure 1) will be referred to as
CuCr25 and CuCr60 according to their nominal compositions. For
indentation testing, the sample surfaces were prepared applying
standard grinding and polishing techniques using SiC paper and
diamond suspensions with decreasing grain size down to 0.1 µm.

A nanoindenter G200 XP (Agilent/Keysight Technologies, Inc.,
CA, United States) equipped with a diamond Berkovich tip was used
to investigate the mechanical properties of the composite samples.
The samples were indented to different depths using the so-called
Express Test option. Arrays of indents covering areas up to 500 μm×
500 µm were made in different locations on the sample surface. The
indentation depths ranged from 200 to 2,000 nm and the distance
between individual indents was maintained approximately constant
between 20 and 23 µm for all depths. Hardness H and Young’s
modulus E were determined assuming 1,141 GPa and 0.07 for
Young’smodulus andPoisson’s ratio, respectively, of the diamond tip.
The Poisson ratio of the materials was fixed at 0.25. Figure 2 shows
an example distribution of hardness andYoung’smodulus of CuCr60
for an average indentation depth of 1 µm. The marginal hardness
distribution is a bimodal distribution, while a trimodal distribution
can be seen for the marginal histogram of Young’s modulus.

The Cu-Cr composites consisted of two distinct phases with
average Cr particle diameters of approximately 30 µm on the
indented surface; thus, upon indenting the surface we assume that
either one or the other element dominates or the properties of
a mixture of both phases is measured. However, the “mixture of
elements”might as well bemore than “just the sum of its parts” since
additional effects, e.g., related to the presence of interfaces, might
occur during indentation. Furthermore, we assume that similar local
microstructural or chemical properties lead to similar measurement
data and that themechanical properties exhibit gradual changes over
the surface.

Thus, the data-science task is to analyze a number of data records
consisting of the given feature variables E (Young’s modulus) and
H (hardness), measured for four different materials and at different
depths, i.e., 300, 400 and 1,000 nm. The whole dataset D consists of
N data records and can be written as the set of pairs

D = {(Ei,Hi)}i=1 …N.

The goal of this work is to perform a clustering analysis, during
which data points with similar elastic properties are grouped

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2024.1440608
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Zhang et al. 10.3389/fmats.2024.1440608

FIGURE 1
Optical micrographs of Cu-Cr composites produced by field-assisted sintering technique with (A) 25 wt% Cr, (referred to as CuCr25), and (B) 60 wt% Cr
(referred to as CuCr60) were investigated by indentation.

FIGURE 2
Scatter plot with marginal histograms of all obtained values for
Young’s modulus and hardness measured for CuCr60 at an average
indentation depth of 1 µm.

together, i.e., for each pair (Ei,Hi) in the feature space, we determine
the categorical variable yi that gives the number of the respective
cluster. Additionally, the total number of different clusters needs to
be determined. Since annotated training data does not exist, this has
do be done in an unsupervised manner.

For the clustering, we use the Gaussian mixture model
(GMM), which is a robust and well-established probabilistic
clustering model in the statistics literature [see, e.g. (Bishop and
Nasrabadi, 2006; Reynolds, 2009; Reynolds and Rose, 1995)]. The
GMM technique has been used successfully in a wide range of
materials science applications. It has, for example, been applied
to the automated analysis and visualization of continuum fields
in atomistic simulations to extract distributions of total strain,
elastic strain, and rotation for individual grains (Prakash and

Sandfeld, 2022), or to determine the so-called grain orientation
spread based on electron back-scatter diffraction (Yeo et al., 2023).
In the analysis of high resolution high-angle annular dark-field
scanning transmission electron microscopy data, the GMM was
used to estimate the number of atoms of crystalline nanostructures
assuming that the total scattered intensity is proportional to
the number of atoms per atom column (De Backer et al.,
2013). Furthermore, X-ray diffraction investigations using GMM
allowed the automatic extraction of charge density wave order
parameters and the detection of intraunit cell ordering and
its fluctuations from a series of high-volume X-ray diffraction
measurements (Venderley et al., 2022).

Using nanoindentation data to investigate the distribution of
heterogeneous materials has great potential, provided the GMM
technique is applied properly and a sufficient amount of data
is available. Here, each “phase” is assumed to correspond to an
individual Gaussian distribution of Young’s modulus and hardness.
These materials “phases” are commonly referred to as components
in the context of machine learning. We assume that the distribution
of experimental data was generated by a combination of Gaussian
processes, which are represented by the probability density functions
(PDFs) N for each component j. The resulting superposition is
then given by

p (D;Φ) =
k

∑
j=1

αj N (D ∣ θj) ,

where k is the number of components of the model, αj > 0
are the weights of each component j, the θj are the vectors of
parameters for the Gaussian, andΦ = {α1,…,αk,θ1,…,θk} is a short
notation for the whole set of parameters governing the Gaussian
mixture model. For a multivariate Gaussian, the component j of
the superimposed function is given by the parameters θj = {μj,Σj},
where μj and Σj are the mean value and the covariance matrix,
respectively. μj describes the location of the component j in the
feature space, while the covariance matrix Σj characterizes the j-
th component data distributed around μj. The objective of the
training process is to estimate the values for the model parameters
of the Gaussian distribution that best align with the training data
Dtrain ⊂D. The model parameters Φk are iteratively determined
while assuming the number of clusters k to be predefined. Typically,
the superposition of Gaussians is computed using the maximum
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likelihood method based on a set of candidate models that
differ in the number of clusters generated using the expectation
maximization algorithm. For further details of the algorithm used,
please refer to the appendix.

The Bayesian Information Criterion (BIC) is employed as a
selection criterion to identify the optimalmodel. It is well established
and commonly applied inmodel selection (Gideon, 1978), providing
a measure for assessing the accuracy of the unsupervised GMM:

BIC = −2 lnL+ d ln N, (1)

where d denotes the number of parameters of the model, and L is
the maximum likelihood achieved by the model used. The first term
represents the maximized likelihood of a model, and the second
term introduces a penalty for the number of parameters to mitigate
the risk of overfitting.Themodel with the lowest BIC value indicates
the highest likelihood which has the best predictive capability
for the observed data. In this study, the GMM analysis has been
implemented using the open-source Python package “scikit-learn”
(Pedregosa et al., 2011). A comparison in Section 3.4 additionally
justifies the choice of the GMM model.

3 Results and discussion

In the following, we will start with the description of the
data cleaning process and the analysis of the one-component
metallic composites using a 1D Gaussian mixture model. Then, the
CuCr25 and CuCr60 composites are investigated using both 1D
and 2D GMM for an average indentation depth of 1 µm. Finally,
a comprehensive analysis is conducted to examine the influence of
sample size on the robustness of the model as well as the influence
of indentation depth.

3.1 Preparation of the datasets

Figure 3A illustrates the original datasets comprising the
measured E and H values of the four materials tested. Due to
variations in the height of the materials’ regions on the polished
surface, the actual recorded maximum indentation depths ranged
from 200 to 2,000 nm, deviating from the nominal values set in
the experiments. Here, we focused our analysis on depths ranging
from 800 to 1,200 nm. Subsequently, the data underwent cleaning
and filtering processes to remove measurement errors, particularly
outliers with unrealistically high values as well as other invalid
data. For CuCr25, data within the ranges of 100 ≤ E ≤ 400 GPa
and 0.8 ≤ H ≤ 4.5 GPa were retained, while for CuCr60 the data
range was 100 ≤ E ≤ 500 GPa and 1.0 ≤ H ≤ 5.0 GPa. The resulting
cleaned data, comprising approximately 98% of the original data, is
presented in Figure 3B. Notably, the distributions of the two pure
metals exhibit lower variances compared to the Cu-Cr composites.
Further preprocessing of the data, such as standardization, was
found to have no significant impact on the training results and was
therefore not included in this study.

3.2 Mechanical properties of the pure Cu
and pure Cr specimens

Themechanical properties of pureCu and pureCrwere analyzed
for the indentation depth of 800–1,200 nm. The probability density
function (PDF) plots of E and H are depicted in Figure 4A-E
showing the mean values of E = 118.80GPa and H = 0.91GPa for
pure Cu, and E = 371.24GPa and H = 3.21GPa for pure Cr. The
bin size was selected to ensure an approximately equal number
of bins covering the range of all PDFs. To utilize the GMM, it
is important to demonstrate that the distributions are roughly
normally distributed, despite the GMM’s inherent robustness. Thus,
the Shapiro-Wilk test was employed to assess the normality of the
distributions (Öztuna et al., 2006), resulting in p-values of 0.95 for
E and 0.14 for H in pure Cu, and 0.95 for E and 0.14 for H in
pure Cr. The test accepts the normality hypothesis, when the p-
value exceeds 0.05, confirming that the data are sufficiently normally
distributed. The optimal number of components was 1 for both the
Cu and Cr specimens (as shown in Figure 4C and Figure 4F), as
determined by the BIC analysis. Regarding determination of the
component numbers, the result of 1DGMM for Ewith high p-values
is therefore more reliable than the fit of H. Nonetheless, because
H is strongly correlated with local microstructure details, such as
phase and grain boundaries or dislocations, the fitting result of H
can be used to infer local microstructural characteristics. This can
also be seen from the small variation at the beginning of the BIC
plot for hardness in Figure 4F, where the BIC values for k = 2 differ
only marginally from the one at k = 1 that we had identified as the
optimal one.

3.3 Mechanical properties of the CuCr25
and CuCr60 specimens

The histograms of E and H of the CuCr composites, together
with their best-fitmodels are shown in Figure 5A and Figure 5D (left
panel) and Figure 5B and Figure 5E (middle panel). The right panel
(Figure 5C andFigure 5F) shows theBIC as a function of the number
of components.

The BIC values for both the modulus and the hardness cover
a range of around 500 and ≈200, respectively, if k = 1 is excluded.
Though not obvious, this is an important difference as compared to
the previous investigation of pure Cu and Cr, as detailed below.

How many free parameter need to be determined by how
many data points? Taking CuCr60, for example, there are N ≈
300 valid measurements for E determined at an average depth
of 1 µm. Assuming an optimal number of clusters of k = 3, the
number of parameters to be measured in a 1-dimensional analysis
are three mean values (μ1,μ2,μ3), three variance values (σ2

1,σ
2
2,σ

2
3),

and two coefficients that determine the relative weights of the three
Gaussians (α1,α2). Given that the sum of all weights should be
1, which means ∑kj=1αj = 1 and α3 = 1− (α1 + α2), the number of
parameters to be determined is d = 8. Thus, as a first estimate we
conclude that the amount of data should be more than sufficient in
this case (assuming that the variance of the data is small).

Are the differences of the BIC values as a function of k large or
small? To answer this question, we need to understand how much
variation results from a small change in the dataset. The calculated
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FIGURE 3
The experimentally obtained distributions of Young’s modulus and hardness for 0 wt%, 25 wt%, 60 wt% and 100 wt% Cr content. (A) The experimental
data in its original form, (B) The cleaned and preprocessed data set used in our analysis. The rectangle in (A) indicates the region illustrated in (B).

FIGURE 4
Probability density functions (left and middle column) and plot of BIC (right column) of pure Cu and Cr. The BIC values are shown for both, Young’s
modulus (left “y” axis) and hardness (right “y” axis). The top row shows the data for Cu (A–C), the bottom row for Cr (D–F).

values of the logarithm of L (cf. Equation 1) of this dataset are
between −10 and −4. According to Equation 1, the first term varies
between −2× − 4 = 8 and −2× − 10 = 20 and the second term is 8×
ln 300 ≈ 45. The sum of the two terms is in between 53 and 65.
Assuming a minor variation in 1 out of 300 data points, the BIC
variation should fall between 53 and 65. In other words, the BIC
very effectively captures changes in the data. If the BIC difference
between the twomodels for this dataset is greater than≈50, it already
suggests that the corresponding number of components k is indeed
the more likely one. In this example, the difference between a BIC

value for k and k+ 1 is only slightly smaller which suggests that
the differences are relevant and not just “noise”. Additionally, taking
a look at larger values of k, there is a very clear trend that points
to the minimum. In conclusion, our 1D GMM analysis of Young’s
modulus reveals that both composites have three mechanical phases
at 1 µm depth. Table 1 summarizes the results of the Gaussian
mixture models evaluated for the four different materials.

As stated above, our GMM analysis of CuCr25 shows the
presence of three mechanical phases as well as differences in the
properties of nominally identical phases. In CuCr25, for example,
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FIGURE 5
1D GMM results of CuCr25 and CuCr60 at 800–1,200 nm indentation depth. CuCr25: (A) Histogram of Ei and the best fit (solid line), (B) Histogram of
Hi and the best fit (solid line), (C) BIC of H and E; CuCr60: (D) Histogram of Ei and the best fit model, (E) Histogram of Hi and the best fit model, (F) BIC
of H and E.

TABLE 1 1D mechanical property fitting based on the optimal BIC results at 800–1,200 nm depth.

Cr (wt%) Number of data Mechanical property Average (GPa) Standard deviation Percentage (%)

0 (pure Cu) 30
E1 118.80 9.45 100

H1 0.91 0.06 100

25 (CuCr25) 513

E1 145.55 14.12 64.5

E2 226.50 38.42 22.6

E3 337.02 31.69 12.9

H1 1.14 0.09 50.1

H2 1.47 0.23 22.6

H3 2.92 0.62 27.3

60 (CuCr60) 364

E1 177.35 24.17 52.2

E2 272.17 29.75 22.4

E3 379.32 34.34 25.4

H1 1.45 0.22 50.0

H2 2.96 0.56 50.0

100 (pure Cr) 31
E1 371.24 10.54 100

H1 3.21 0.10 100
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the Cu-rich phase accounts for 64.5 vol% (defined by E1 as the lowest
value, closest to pure Cu), while the combined volumes of E2 and
E3 amount to 35.5 vol%. These results indeed coincide well with
the 35.5 vol% Cr estimated by optical microscopy (Bos, 2019). The
lowest modulus value for the Cu phase was found in the compacted
Cu sample (i.e., E1), followed by E1 of CuCr25 and CuCr60. The
highest modulus of the Cr phase was found for CuCr60 (i.e., E3) and
the compacted pure Cr sample (i.e., E1 in Table 1) almost reaching
the modulus value of pure Cr.

These differences in the mechanical properties fitted by GMM
are likely related to the diffusion of one phase into the other,
the presence of foreign particles or pores, or the influence of the
surrounding material. Assuming that a small amount of Cr, i.e.,
0.4 at% - 3 at%, can be dissolved in the Cu matrix (Jacob et al.,
2000; Chakrabarti and Laughlin, 1984), the Cr solid solution likely
contributes to the difference of the modulus of the Cu phase in the
composite samples. In addition, the presence of Cr nanoparticles of
100–200 nm in size was reported (von Klinski-Berger, 2015), which
as well results in a higher Young’s modulus value of the Cu phase
in CuCr25 and CuCr60. Finally, considering the relative densities of
99.4% and 98.3% for CuCr25 and CuCr60, respectively, compared
to 97.7% for the pure Cu sample, a Young’s modulus value with an
estimated reduction up to 9% (Lebedev et al., 1995) can be expected.
The reduction of themodulus of theCr phase inCuCr25 (i.e.,E3) can
be explained by the surrounding softer Cu phase. While in general
also the hardness fitting of CuCr25 supports the presence of three
mechanical phases, the phase fractions are different. Again, this is
not surprising, since hardness is a local property and strongly related
to microstructural details.

We now take a look at the outcomes of the 2D GMM with
independent feature variables E and H shown in Figure 6. The
distribution of three and four components or mechanical phases
of CuCr25 and CuCr60, respectively, are shown in Figure 6A-Band
Figure 6D-E. The red points in the graphs represent the average
value of each component, while the concentric ellipses with different
orientations (covariance) represent the different components. The
model selection criteria BIC are shown as a function of the number
of components in the right panel (Figure 6C and Figure 5F).

Based on Figure 6C, one could say that four mechanical phases
are the ideal match for the CuCr25 composite. Given the anomaly
in the upper left corner of Figure 6B, though, the best assumption
remains at three, which will be further discussed in Section 3.4. As
shown in Table 2, in the 2D GMM, which combines both E and H,
the estimated amount of Cr in CuCr25 was 38.9 vol%, which is close
to the actual experimental findings (Bos, 2019).

The 2D GMM analysis (in Figure 5F) also reveals that
CuCr60 contains three mechanical phases in the depth range of
800–1,200 nm. The fitted result for the volume of Cr in 1D is
47.8 vol% based on the modulus values, which is less than the
nominal value (i.e., 65 vol% Cr). By contrast, the 2D GMM result
indicates a Cr volume fraction of 56.6 vol% (Table 2). The difference
between the 1DGMM (E) and 2DGMMresults is related toH, while
the difference between the fitting results and the experimental data
is due to the amount of data and variation of microstructures over
the samples. Note that the number of datapoints for CuCr60 is by
40% less than that for CuCr25; an insufficient amount of data can be
the source of inaccuracies, which we are addressing in the following.

In the above analysis of CuCr60, the size of the dataset was
364, collected over an area of 500 × 500 μm2. To increase the
size of the dataset, we merged it with two more nanoindentation
areas (100 × 100 μm2 and 300 × 300 μm2) and analyzed the
data using the procedures described above. The results are
summarized in Tables 3, 4. Merging the three datasets now includes
indentation depths ranging from 500 nm to almost 2,000 nm with
97.8% of the data lying between 800–1,200 nm indentation depth.
As shown in Figure 7A, the distribution ranges of the data are
congruent indicating that the microstructure of the material was
comparable over the different areas indented.

As shown in Figure 7B, the most likely number of phases
determined by analyzing Young’s Modulus is three, while two
phases are most probable when analyzing the hardness. The 2D
fit, though, also indicates k = 3, as can be seen in Figure 7C.
The individual 2D fits for the different areas of 300 × 300 μm2

and 500 × 500 μm2, each reflect three mechanical phases with
67.1 vol% Cr and 59.5 vol% Cr, respectively. Not unexpectedly, the
merged data then yielded a Cr fraction of 61.5 vol%. The somewhat
different results reflect the variation of the microstructure over the
sample surface and underscores the importance of identifying the
characteristic microstructures or increasing the size of the dataset.
How should one decide if this is a two or three phase system?
From the point of materials science, one would probably choose
only 2 phases, however, the analysis showed, that the properties
of the third “phase” are rather distinct and can be recognized as a
separate one.

3.4 Cross-validation of GMM

The amount of required training data has been an often
encountered concern in clustering algorithms for machine learning.
In contrast to the model selection criteria used in the GMM with
BIC, we will now focus on the robustness and validity of the
clustering results as a function of the size of the dataset. Clustering
together with cross validation is used to evaluate the effect of data
size on the results and to identify the amount of experimental data
required to achieve the same level of performance. We applied the
following procedure:

1. Given the whole dataset D, the categorical variable yi is
generated by a clustering algorithmAk. It constructs a solution
Y≔ Ak(D), where Y = {y1,…,yi}, and yi = {1,…,k} is assigned
to the cluster. In our case, labels yi were generated using the
KMeans and GMM clustering algorithms, with the prediction
of the optimal GMM algorithm serving as the ground truth.

2. k-fold cross-validation is conducted on the dataset D: First,
divide the data set into k equal parts (the “folds”), then choose
(k− 1) folds for training and the remaining fold for testing.
Then, validate the model using the testing data set Dtest after
training the model with the training data set Dtrain. Perform
k rounds of cross-validation using multiple training datasets.
Note, that k indicates the number of folds and not the number
of clusters as above!

3. The adjusted Rand index (ARI) is used to represent the
performance level of the clustering algorithms. In general,
the ARI approaches 0.0 for random clustering, reaches 1.0
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FIGURE 6
2D Gaussian mixture model clustering of CuCr25 and CuCr60. CuCr25: (A) Three components. (B) Four components and (C) 2D BIC; CuCr60: (D)
Three components (E) Four components and (F) 2D BIC. The ellipses in A, B, D, and E are isolines of the Gaussian distributions and the red points
represent the average values of the different components.

TABLE 2 2D mechanical property fitting based on the optimal BIC results at 800–1,200 nm depth.

Cr (wt%) Number of data Average E (GPa) Average H (GPa) Percentage (%)

25 (CuCr25) 513

144.91 1.17 61.1

220.92 2.25 27.1

340.52 3.18 11.8

60 (CuCr60) 364

172.32 1.42 43.4

262.63 2.67 34.6

383.35 3.02 22.0

for identical clusterings, but can go as low as −0.5 for highly
discordant clusterings (Chacón and Rastrojo, 2023).

Figure 8A illustrates the outcomes of k-fold cross-validation
conducted on 364 sets of CuCr60 data (500 × 500 μm2) using two
distinct clustering techniques, i.e., KMeans and GMM. The GMM
algorithm consistently outperformed KMeans, as evidenced by
the results. Figure 8B presents the results of k-fold cross-validation
using the GMM algorithm across varying data sizes for CuCr60.

For the CuCr60 composite, a total of 571 datapoints were
collected by merging data from three different indentation areas.
We developed an approach to assess varying sizes of datasets,
starting with taking 50 data records as the dataset of interest, and
increasing by increments of 50 until reaching a dataset containing
550 data points. During the process of training a model, a fraction

of (k− 1)/k of the entire datadataset was used as training dataDtrain.
For example, for 5-fold cross validation (k = 5), this entailed using
40, 80, 120, … 440 datapoints for training, accompanied by 10, 20,
30, … 60 datapoints for testing the model. During k-fold cross-
validation, unique selections of training data were made, resulting
in a total of five iterations for each fixed amount of datapoints.
This iterative approach was adopted to gain insights into model
performance concerning various data quantities, while minimizing
any inaccuracies that may arise due to sampling bias.

Overall, our analysis indicates that the GMM algorithm exhibits
superior accuracy when the averagemodel performance approaches
0.9. Nevertheless, in the pursuit of enhanced generalizability, we
aim to minimize errors further, ideally pushing the lower boundary
of performance beyond 0.9. To achieve this, it is recommended
to initiate the training process using a dataset comprising more
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TABLE 3 1D mechanical property fitting of CuCr60 based on the optimal BIC results at 500 nm–2000 nm depth encompassing data of three
different arrays.

Indentation area
(µm2)

Number of data Mechanical
property

Average (GPa) Standard
deviation (GPa)

Percentage (%)

100 × 100 23

E9 — — —

H1 1.83 0.21 39.1

H2 3.15 0.29 60.9

300 × 300 154

E1 157.79 12.02 29.2

E2 280.30 70.47 70.8

H1 1.42 0.18 37.3

H2 3.02 0.74 62.7

500 × 500 394

E1 177.86 24.92 49.5

E2 275.26 31.88 24.9

E3 378.94 35.93 24.6

H1 1.44 0.22 45.5

H2 2.95 0.62 54.5

merged data 571

E1 175.12 24.10 46.0

E2 269.55 34.10 28.5

E3 373.37 37.46 25.5

H1 1.45 0.22 42.8

H2 2.98 0.65 57.2

TABLE 4 2D mechanical property fitting of CuCr60 based on the optimal BIC results at 500 nm–2000 nm depth encompassing data of three
different arrays.

Indentation area (µm2) Average E (GPa) Average H (GPa) Percentage (%)

100 × 100
252.19 2.46 78.4

393.06 3.27 21.6

300 × 300

159.47 1.39 32.8

229.10 2.29 31.9

337.91 3.51 35.2

500 × 500

172.25 1.41 40.5

267.99 2.74 38.1

383.12 3.01 21.4

merged data

170.49 1.42 38.5

264.73 2.78 40.4

379.28 3.70 21.1
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FIGURE 7
(A) Distribution of the CuCr60 data over the depth range of 500–2,000 nm (combined datasets for indentation arrays of 100 × 100 μm2, 300 ×
300 μm2, and 500 × 500 μm2) (B) 1D BIC for E and H, and (C) 2D BIC for E and H.

FIGURE 8
k-fold cross validation results of CuCr60. (A) the performance of two unsupervised models, KMeans and GMM, measured by the ARI value and as a
function of the number of folds of the k-fold cross-validation. (B) ARI values of k-fold cross-validation using GMM with varying the amount of
training data.

than 400 datapoints as a starting point, as it appears to yield more
reliable results.

The identical approach for sampling was employed in the
examination of CuCr25. Figure 9 shows the outcomes of k-fold
cross validation of CuCr25 with different numbers of clusters. Based
on the 2D GMM analysis described above, the optimal model
contained three clusters. However, we also notice that the BIC
values determined for four and five components are comparable to
those determined for three (Figure 6C). When the BIC values do
not indicate a significant difference, the k-fold cross-validation can
certainly provide a hint as to which model is superior. In the case
of three clusters, the ARI values increased with the amount of data,
whereas with other numbers of clusters the values did not exhibit
an upward trend in conjunction with predicted values lower than
0.8. As a supplement to BIC, the k-fold cross-validation method
can be used to determine how robust a certain number of clusters

is and, more importantly, whether the amount of data is sufficient
for training.

3.5 Effect of indentation depth

Figure 10A shows the 2D mapping of E for the CuCr25 dataset
containing indents in the depth range between 200 and 600 nm.
White color indicates positions for which no nanoindentation data
was collected, blue represents the Cu-rich zones, and red represents
the Cr-rich zones with color gradients in the vicinity of phase
boundaries. Figure 10B shows the 1D Gaussian mixture model
fitting results for Young’smodulus indicating that themicrostructure
primarily consists of three mechanical phases, with the third
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FIGURE 9
k-fold cross validation results of CuCr25 with different numbers of clusters for the GMM model and data size. (A) two component (B) three component
(C) four component (D) five component. A total of 513 datapoints were collected for the CuCr25 at 1 µm depth. The proportion of datapoints used as
training data in a k-fold cross-validation is determined by the value of k.

FIGURE 10
Elastic modulus of CuCr25 based on idents in the depth range of 200–600 nm. (A) Young’s modulus distribution over the testing area. (B) Young’s
modulus distribution of 1D GMM clustering. (C) 2D GMM clustering results (k = 4).

phase mainly located at the intersection of the Cu-rich and Cr-
rich regions. Figure 10C displays the 2D Gaussian mixture model’s
fitted results, with an additional fourth term.

The clustering results assign fractions of the Cu-phase at
different depths to the fourth mechanical phase. Therefore, datasets
containing data at different depths, need to be evaluated in subsets
when determining the number of mechanical phases. Accordingly,
we further examined the phase composition using a 1D Gaussian
mixing model for different depth ranges covering 100 nm each. The
results are shown in Table 5. Based on this analysis, the occurrence

of additional phases can be observed at higher depths, i.e., in the
400 nm and 500 nm regimes, along with a significant reduction in
Cu content.

The hardness distribution for the CuCr25 and CuCr60
composites at depths ranging from 200 nm to 1200 nm is shown
in Figure 11. The data was grouped in 50 bins of equal size with
the shaded area indicating the standard deviation. For metals
typically an indentation size effect is observed, i.e., the hardness
increases with decreasing indentation depth (Wang et al., 2021;
Ma et al., 2021; Pharr et al., 2010). This indentation size effect is
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FIGURE 11
Hardness of CuCr25 and CuCr60 composites at different indentation depths. (A) CuCr25, with 3,812 data points in the range 200–600 nm, and (B)
CuCr60, with 3,254 data points in the range 200–600 nm depth. The mean of the hardness with the respective standard deviation as shaded area is
shown. The mean hardness assumes an approximately constant value for depths greater than 600 nm.

FIGURE 12
Young’s modulus at different locations x and y and for different indentation depths (vertical axis). The colors (as well as the diameter) of the spherical
marker denote the values of Young’s modulus.

observed here for indentation depths between 450 and 600 nm,
while for lower depths it is obscured by the combined effects of
microstructural changes over the depth as well as the presence of
at least two phases. This apparent nanoscale softening may also be
influenced by the distance between indents relative to the size of the
different phases possibly favoring a particular property value.

Figure 12 depicts the distribution of Young’smodulus in CuCr25
in the range between 250–600 nm, whose 2D top view is depicted in
Figure 10A). The distribution of Young’s modulus exhibits a certain

degree of continuity, and themajority of the changes are gradual.The
green hue represents theCu-phase, while the orange color represents
the Cr-phase. Observation reveals that the yellow and light-green
portions (the third mechanical phase) can be considered the Cu and
Cr intersection region. Figure 12 depicts the marker size adjusted
according to the indent size on the surface, which increases as the
indentation depth increases. Based on this observation and also on
the analysis results listed in Table 5, we observe an increase of theCr-
phase in both the CuCr25 and the CuCr60 composites in the range

Frontiers in Materials 13 frontiersin.org

https://doi.org/10.3389/fmats.2024.1440608
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Zhang et al. 10.3389/fmats.2024.1440608

of 200–500 nm, which can explain the increase in hardness in the
low-depth regimes (cf. Figure 11). Thus, it is critical to identify the
characteristic microstructures not only on the surface tested but also
in the sub-surface region of the material.

4 Conclusion

Cu-Cr composites were studied by indentation as a model
material to evaluate the ability to determine the properties of
individual phases as well as the number of phases present. 1D
and 2D Gaussian mixture models were trained and the most likely
number of components identified based on the BIC. Using cross-
validation we showed that the GMM gave more accurate results
than KMeans clustering. Investigating the dependence of the cross-
validation results on the size of the datasets helped to understand
what a reasonable amount of data for the training of such models
might be. Our analysis revealed that 450 data-pairs were sufficient
for accurate phase volume prediction.

Clearly, the presented GMM-based method has limitations, e.g.,
it implicitly assumes that indents into different phases also result
in different properties. As a consequence, it must be expected that
the predictions are getting worse the more similar two (or more)
phases become. GMM is a simple yet robust method, which is not
able to utilize all availablemicrostructural information. For example,
locality effects due to the fact that nearby indents may be correlated
cannot be captured. Extending GMM, e.g., in terms of engineered
features, could be a possible solution.

While large datasets produced in a very short time are quite
impressive, also conventional nanoindentation approaches with
typically fewer data can be used. Variations of the phase composition
over the depth as well as the distance between indents relative to the
size of the microstructural features may favor a particular phase. To
avoid such bias indentation depth and characteristicmicrostructures
need to be critically evaluated.
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