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Compared to the traditional alloys, high entropy alloys exhibit exceptional
strength and outstanding ductility, making them highly attractive for use in
demanding engineering applications. However, the atomic-scale deformation
behavior of HEAs with precipitate under the low-cycle loading conditions has
not been well studied. Here, we utilize molecular dynamics simulations to
investigate the low cycle fatigue behavior of AlCoCrFeNi HEAs with AlNi-rich
phase, in order to better understand the cyclic deformation, work hardening,
and damage mechanisms. In the stress-strain hysteresis loops, the stress in
the elastic stage exhibits a gradual linear increase, followed by fluctuations
at yielding and plastic deformation. The strain hardening depends on the
cycle number after the yielding stage. With an increase in the number of
cycles, the activation mode of stacking faults gradually transitions from a
multi-slip system to a single-slip system, attributed to the gradual phase
transformation. A thorough examination of dislocation evolution is crucial in
understanding the strengthening and plastic behavior of materials under cyclic
loading. The generation of more stair-rod dislocations further suppresses the
movement of dislocations. The combined effects of element diffusion, structural
transformation, and incoherent precipitation play a critical role in enhancing
the mechanical properties of AlCoCrFeNi HEAs. The strength of high entropy
alloys is improved through interface strengthening caused by element diffusion
and structural transformation, along with dispersion induced by incoherent
precipitation. This work provides a detailed atomic-level understanding of the
cyclic deformation-induced strengthening mechanism, in order to design high-
strength and ductile HEAs with specific desired properties.

KEYWORDS

high entropy alloys, lowcycle fatigue, deformation behaviour, precipitation,mechanical
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1 Introduction

Distinct from the conventional alloy, high entropy alloys (HEA) with the characteristic
of multi-principal elements have attracted widespread attention for their outstanding
properties, such as high strength (Lei et al., 2018; Yan et al., 2022), high corrosion resistance
(Nene et al., 2019; Luo et al., 2020), and superior resistance to wear (Yang et al., 2022;
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FIGURE 1
Atomic model of AlCoCrFeNi HEA, which is colored according to the atom type (A). Al , Co , Cr , Fe , and Ni . Element distribution of
AlNi-rich phase in HEA (B). The corresponding microstructure based on the CNA value (C). BCC , FCC , and other . The distribution of Al, Co,
Cr, Fe, and Ni element (D).

TABLE 1 Computational parameters used in the MD simulations.

Material AlCoCrFeNi HEA AlNi-rich phase

Composition Al 11.8, Co 19.1, Cr 4.4, Fe 34.7, Ni 30.0 (at%) Al 23.1, Co 16.0, Cr 2.3, Fe 23.4, Ni 35.3 (at%)

Phase FCC BCC

Lattice parameter 3.622 Å 2.877 Å

Dimension 25.3 × 25.3 × 25.3 nm3 5.4 nm

Atomic count 1,315,595 56,449

Time step 1 fs

Temperature 300 K

Strain rate 1 × 108 s−1

Wang et al., 2024). These alloys exhibit extensive application
prospect in some key fields such as aerospace, nuclear industry
and transportation attributed to their unique structure and
the remarkable performance (Kaushik et al., 2022; Li F. et al.,
2024). However, higher demands are placed on the fatigue
performance of alloys in long-term service environments. It
is essential to thoroughly examine and uncover the evolution
process of microstructures, such as grain structure and second-
phase particles, as well as their influence on performance during
cyclic deformation. This investigation is crucial for enhancing

fatigue performance through the implementation of microstructure
design strategies.

Recently, considerable research efforts have been dedicated to
developingHEAswith improved fatigue resistance and investigating
the mechanisms underlying their fatigue resistance (Li W. et al.,
2020; Picak et al., 2021; Hu et al., 2024). For example, by studying
the low cycle fatigue behavior of the CoCrFeMnNi HEA with two
different grain sizes, it is found that the fatigue life and hardening
behavior are determined by refined grain size, high-density
dislocation walls, and the annihilation of existing dislocations
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FIGURE 2
(A) Cyclic stress-strain curves with the increasing cycles. (B) The cyclic stress-strain curves for 1st, 10th, 30th, 60th, and 90th cycles.

FIGURE 3
The microstructures for dislocation interacting with AlNi-rich phase in the first cycle loading at the strain: 0, 1%, 6%, 0%, −6%, and 0%. Here, the 1/6 <
112> ( green line),1/6 <100> ( pink line), 1/2 < 111> <110> ( blue line), 1/3 <001> ( yellow line), 1/3 < 111> ( sky blue line), and
other ( red line) dislocations.

(Lu et al., 2021; Picak et al., 2021). In addition, the deformation
twinning plays a crucial role in high cycle fatigue process of
CoCrFeMnNi HEA. The formation of deformation twinning
enhances the yield strength and working hardening behavior of
this HEA, but the presence of a large amount of deformation
twinning can generate micro voids, thereby acceleration the
initiation and propagation of cracks (Kim et al., 2019). Compared
to traditional alloys, the formation of nanotwin in two-phase FCC

Al0.5CoCrCuFeNi HEA leads to strengthening during fatigue
process, providing great durability limits and crack initiation
resistance (Tang et al., 2015). The difference in deformation
behavior between the cyclic loading and uniaxial tension of
Fe30Mn10Co10Cr0.4C HEA is compared, and it is found that the
ε-martensitic hardening effect is weaker during cyclic deformation
due to the planarity of slip and partial reversibility of deformation
compared to that in uniaxial tension (Shams et al., 2022a).
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FIGURE 4
The microstructures for the cycle number: 1st, 20th, 40th, 60th, 80th, and 100th. BCC , HCP , and other .

Several studies have indicated that the martensitic transformation
and ductile-to-transformable properties of multicomponent B2
precipitates in HEA have the potential to enhance resistance to
fatigue crack initiation and improve fatigue performance at low
strain amplitudes (Feng et al., 2021).

Based on the research mentioned, it is evident that investigating
the dynamic evolution mechanism of microstructure during the
cycling process is advantageous for expediting the development of
fatigue-resistant HEAs. However, it is difficult to reveal the dynamic
interaction ofmicrostructure during the cyclic deformation through
experiments. Thus, MD simulation method is widely used to
investigate the dynamic interaction of microstructures during
deformation (Li J. et al., 2020; Peng et al., 2021; Yin et al., 2021;
Zhang et al., 2022; Wang Y. et al., 2023). The cyclic nanoindentation
simulation is conducted using MD method. It is found that
the amorphous transition occurred at different loading rates,
and the rate dependence of deformation behavior increased with
increasing number of cycles (Luo et al., 2024). During the cyclic
deformation process of AlCrCuFeNi HEA under tension and
compression, the partial dislocation interactions lead to lattice
disorder, which hinders the reverse slip of dislocations and
reduces the Bauschinger effect (Nguyen et al., 2023). The low
cycle cycling of nanocrystalline refractory HEA with different
grain sizes is simulated by MD method. The grain growth
behavior during the cycling process drive the dynamic Hall-petch
strengtheningmechanism. As the grain size decreases, the dominant
deformation mechanism changes from dislocation dominated to

deformation twinning (Peng et al., 2020). By studying the cyclic
loading deformation response under different strain amplitudes, the
phase transition mechanism activated under high strain amplitude
loading is revealed (Zhang et al., 2024).The atomic scalemechanism
of unique precipitation behavior near grain boundaries under cyclic
loading conditions has been studied (Li L. et al., 2024).

Taking into account the current problems, the low cycle loading
of AlCoCrFeNi HEAs with precipitated phases is carried out
at atomic scale in the present work. The interaction behavior
between precipitates and microstructure during the cycling process
is investigated, which helps to understand the work hardening and
cyclic deformation mechanism under the influence of cyclic cycles
and precipitates, and accelerates the design of fatigue resistant high
entropy alloys.

2 Method

The cyclic loading of AlCoCrFeNi HEA is carried out using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) (Plimpton, 1995), as shown in Figure 1A. According
to previous study, the as-deposited AlCoCrFeNi HEA comprises of
FCC and BCC phase (Shen et al., 2021a; Shen et al., 2021b). Thus,
in the present work, the structure of the HEA is characterized
by the FCC phase (Shen et al., 2021a; Shen et al., 2021b), with the
AlNi-rich phase exhibiting an ordered BCC phase (Figures 1B,C).
The lattice parameters of the FCC and BCC phases are 3.622
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FIGURE 5
The dislocation characteristics for the cycle number: 1st, 20th, 40th, 60th, 80th, and 100th. Here, the 1/6 <112> ( green line),1/6 <100> ( pink
line), 1/2 < 111> <110> ( blue line), 1/3 <001> ( yellow line), 1/3 < 111> ( sky blue line), and other ( red line) dislocations.

FIGURE 6
(A) The total length of dislocation line, and (B) the types and lengths of dislocation line for the cycle number: 0, 20, 40, 60, 80, and 100.

and 2.877 Å, respectively (Shen et al., 2021a; Shen et al., 2021b).
The embedded atom method (EAM) is utilized in the analysis of
the AlCoCrFeNi HEA (Farkas and Caro, 2020). The dimensions
of the HEA sample are 25.3 nm × 25.3 nm × 25.3 nm, with a
sphere precipitate radius of 5.4 nm. The sample consists of a total
of 903,000 atoms. Figure 1D showcases the element distribution

of both the matrix and precipitate phases, with each element
being evenly dispersed. The specific computational parameters can
be found in Table 1. The orientation of both AlCoCrFeNi HEA
and AlNi-rich phase are defined by the x, y, and z directions,
which correspond to [100], [010], and [001], respectively. Periodic
boundary conditions are applied in all three directions (Li et al.,
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FIGURE 7
The strain distribution for the cycle number: 1st, 20th, 40th, 60th, 80th, and 100th. The red atoms refer to the high strain region while blue atoms
represent the low strain region.

2018; Li J. et al., 2020; Li et al., 2022b). The deformation occurs
along the x-axis at a constant rate of 1 × 108 s−1, which is
widely used in previous studies (Li L. et al., 2020; Peng et al., 2021;
Li et al., 2022b). Initially, the sample system is in its minimum
energy state at a temperature of 300 K. The open visualization
tool OVITO is utilized for post-processing the simulation data
(Stukowski, 2009). The microstructures are analyzed by using
common neighbor analysis (CNA) (Clarke and Jónsson, 1993), and
dislocation analysis (DXA) (Stukowski et al., 2012).

3 Results and discussion

Figure 2 shows the cyclic stress-strain behavior of AlCoCrFeNi
HEA as the cycle number increases. In the stress-strain hysteresis
loops, the stress in the elastic stage shows a linear increase,
followed by gradual fluctuations at yielding and plastic deformation
up to 6% strain. This pattern is consistent with results from
monotonic loading. Depending on the cycle number, strain-
softening or strain-hardening can occur after the yielding stage
(Juan et al., 2015; Juan et al., 2016), as depicted in Figure 2A. For
the cycle numbers below 60, strain-hardening intensifies with

increasing cycles, while strain-softening is observed at the yielding
strain. Conversely, at low cycle numbers, strain-softening occurs
initially, followed by gradual strengthening of strain-hardening
at higher cycle numbers (Figure 2B). The presence of strain-
hardening/softening in stress-strain curves is attributed to changes
in microstructure, such as dislocation nucleation/movement and
deformation twinning during cyclic loading (Lam et al., 2020;
Feng et al., 2021). This cyclic stress response aligns with findings
from previous studies on HEAs using both experiments and MD
simulations (Picak et al., 2021; Lam et al., 2023).

The dislocation evolution within the first cycle loading is
exhibited in Figure 3. When the strain increase from 0% to 6%, the
dislocations first proliferate from the interface of phase during the
tension stage. When the strain recovers from 6% to 0%, dislocations
annihilate due to the recovery of the atom lattice. Subsequently,
during the reverse loading process, dislocation proliferate again.
However, the dislocation density during compression process is
significantly lower than that during tensile process.

In order to investigate the strain-hardeningmechanism, Figure 4
illustrates the evolution of microstructure at various cycle numbers.
At a strain of 6%, a significant number of stacking faults
are generated to accommodate the plastic deformation of the
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FIGURE 8
The element distribution for the cycle number: 1st, 20th, 40th, 60th, 80th, and 100th. Al , Co , Cr , Fe , and Ni .

AlCoCrFeNi HEA (Bahadur et al., 2022; Wang X. et al., 2023). It is
evident that with an increase in the number of cycles, there is a
marked change in the stacking fault structure. The focus remains
primarily on the activation of the slip system on the <112> plane.
Initially, during the cyclic loading process, stacking faults can be
activated on multiple slip planes. However, as the number of cycles
increases, the activationmode of stacking faults gradually shifts from
a multi-slip system to a single-slip system. This shift indicates that
the contribution of precipitated phases has amore pronounced effect
on the plastic deformation mechanism of the material in the early
stages, particularly on the slip system that facilitates the activation of
stacking faults. As the number of cyclic loading increases in the later
stages, the influence of precipitated phases gradually diminishes,
and eventually may no longer exhibit a significant impact on
the deformation mechanism. This transition is attributed to the
gradual transformation of body-centered cubic (BCC) precipitates
into face-centered cubic (FCC) structures induced by plastic
deformation (Lu et al., 2019; Li W. et al., 2020; Lu et al., 2021).
This transformation enhances interfacial cohesiveness, thereby
influencing the mechanical properties of HEAs.

The behavior of dislocations is a crucial factor in determining
the strength and ductility of materials (Li et al., 2023; Chen et al.,
2024). Figure 5 shows the evolution of dislocation distribution
with the increasing cycle number at a strain of 6%. During the
early stages of cyclic loading deformation, a large number of
Shockley partial dislocations form near the precipitated phase.

As the number of cyclic loading increases, the precipitated
phase undergoes a transformation from BCC to FCC system.
This trend results in a significant amount of Shockley partial
dislocations that are able to penetrate the precipitate. However,
these Shockley partial dislocations gradually shift from long,
straight lines to shorter lines, ultimately contributing to the plastic
deformation. Simultaneously, the formation of stair-rod dislocations
takes place, and the density of these dislocations increases as
cyclic loading progresses. The increase of stair-rod dislocations
plays a crucial role in strengthening the AlCoCrFeNi HEAs.
The thorough examination of dislocation evolution is essential in
understanding the strengthening and plastic behavior of materials
under cyclic loading (Zou et al., 2022).This analysis is an important
and crucial role in revealing the strain and hardening induced by
cyclic loading.

Here, to analyse the influence of cycle number on the
ductility of the HEAs, the variation of the mobile dislocation
density with the increased cycle number is counted in Figure 6,
where the Shockley partial dislocations are mobile. As the
cycle number increases, the mobile dislocation density not only
increases significantly in quantity, but also experiences a rapid
rate of multiplication (Shams et al., 2022b). The more stair-rod
dislocations are generated, further suppressing the movement of
dislocations. Therefore, it can be inferred that the larger cycle
number is advantageous for improving the ductility and strength of
AlCoCrFeNi HEAs (Suzuki et al., 2020).
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FIGURE 9
The strain gradient distribution for the cycle number: 1st, 20th, 40th, 60th, 80th, and 100th. The red atoms refer to the high deformation gradient
region while blue atoms represent the low deformation gradient region.

Here, the atomic shear strain ofAlCoCrFeNiHEA is investigated
at various cycle numbers and under a uniaxial tension strain of
6%. The distribution of shear strain is determined by calculating
the von Mises local shear invariant, with the initial configuration
prior to uniaxial tension serving as the baseline (Shimizu et al.,
2007). Figure 7 illustrates a lattice distortion field observed in
the HEA (Li et al., 2022a), with red indicating regions of high
strain and blue representing regions of zero strain. At the 1st
cycle, the high strain appears there within the phase regions. As
the number of cycles increases, local shear transformation zones
(STZs) are formed during the plastic deformation stage (Picak et al.,
2021). This is caused by the accumulation of local shear strain
in the HEA. However, AlNi-rich phase suppresses the formation
of shear bands at high cycle number (Figure 7). With the further
increase of the cycle number, the local deformation becomes more
pronounced, leading to a continued increase in shear strain that
spreads throughout the AlCoCrFeNi HEA. Numerous shear bands
are observed throughout the entirety of the deformation process,
suggesting that the AlCoCrFeNi HEA has experienced intricate
plastic deformation.

Figure 8 presents the composition evolution of an ordered
AlNi-rich phase. The cyclic loading induces element diffusion
within the AlNi-rich phase, leading to the transformation-induced
plasticity effect (Wang et al., 2019). This phenomenon results

in element segregation and phase transformation within the
metastable single-phase HEA. Additionally, the fluctuations in
elemental distribution caused by element diffusion may dissolve
AlNi-rich nano-precipitates, ultimately enhancing strength without
compromising ductility (Jiang et al., 2017). The combined effects
of element diffusion, structural transformation, and incoherent
precipitation play a critical role in enhancing the mechanical
properties of AlCoCrFeNi HEAs. These mechanisms offer a range
of possibilities for designing new alloys that offer improved strength
and ductility simultaneously.

The lattice vectors for each atom are identified for both the
reference and current configurations, allowing for the calculation
of the deformation gradients for each individual atom. Figure 9
shows the deformation gradients at a strain of 6% for various
cycle numbers. As is well known, the nucleation and movement
of dislocations can significantly decrease the elastic strain. In other
words, localized plastic deformation decreases the elastic strain
in regions experiencing increased strain after yielding. In the
low cycle number, the deformation gradient can be more clearly
observed with the activation of more plastic behavior (Figure 9).
The element diffusion, structural transformation, and incoherent
precipitation inhibit the strain gradient. This is the microscopic
root cause of strain hardening in AlCoCrFeNi HEAs on
the atomic level.
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FIGURE 10
The microrotation distribution along the z direction for the cycle number: 1st, 20th, 40th, 60th, 80th, and 100th. The red atoms refer to the region of
high microrotation in a clockwise direction while blue atoms represent the region of low microrotation.

The previous work demonstrates that the microrotation is not
only a useful measure for determining deformation (Guo et al.,
2020), but also able to capture the nanoscale deformation
(e.g., dislocation slip, grain boundary sliding, and migration)
(Tucker et al., 2012). Figure 10 shows the distribution of the
microrotation fields along the z-axis. Atoms are color-coded based
on the computed microrotation. Interestingly, certain regions
display a noticeable microrotation despite the absence of high
strain (see Figures 8, 9). Additionally, the microrotation patterns
surrounding the ordered phase (Figure 10) closely resemble those
illustrated in Figure 9. Thus, the strength of HEA is enhanced
through interface strengthening caused by element diffusion
and structural transformation, as well as dispersion induced by
incoherent precipitation.

4 Conclusion

In present work, MD simulations have been conducted to study
the microscopic cycle deformation mechanism and mechanical
properties of AlxCoCrFeNi HEAs with the AlNi-rich phase, and
the effects of cycle number are taken into account. In stress-
strain hysteresis loops, the stress in the elastic stage shows a
gradual linear increase, followed by fluctuations at yielding and

plastic deformation. The degree of strain hardening is influenced
by the number of cycles after yielding. As the number of cycles
increases, the activation mode of stacking faults shifts from a
multi-slip system to a single-slip system due to gradual phase
transformation. Understanding the evolution of dislocations is
essential in comprehending the strengthening and plastic behavior
of materials under cyclic loading. The formation of additional stair-
rod dislocations further impedes the movement of dislocations.The
combined effects of element diffusion, structural transformation,
and incoherent AlNi-rich precipitation significantly enhance the
mechanical properties of AlCoCrFeNi HEAs. The strength of HEA
is bolstered through interface strengthening from element diffusion
and structural transformation, as well as dispersion induced by
incoherent precipitation. The present study offers valuable insights
into the nanoscale deformation mechanism of complex HEAs,
and serves as a catalyst for more in-depth experimentation in
microstructure design.
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