Check for updates

OPEN ACCESS

EDITED BY Dongqi Zheng, Apple Inc., United States

REVIEWED BY

Sunbin Deng, Georgia Institute of Technology, United States Yaoqiao Hu, The University of Texas at Dallas, United States

*CORRESPONDENCE Jie Zhang,

⊠ jayzhang@xmu.edu.cn

[†]These authors have contributed equally to this work

RECEIVED 10 May 2024 ACCEPTED 23 May 2024 PUBLISHED 13 June 2024

CITATION

Sun Q, Lin Y, Han C, Yang Z, Li Y, Zeng Y, Yang W and Zhang J (2024), Gallium-incorporated TiO_2 thin films by atomic layer deposition for future electronic devices. *Front. Mater.* 11:1430884. doi: 10.3389/fmats.2024.1430884

COPYRIGHT

© 2024 Sun, Lin, Han, Yang, Li, Zeng, Yang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Gallium-incorporated TiO₂ thin films by atomic layer deposition for future electronic devices

Qingxuan Sun^{1†}, Yingzhen Lin^{1†}, Chaoya Han², Ze Yang¹, Ying Li¹, Yuping Zeng³, Weifeng Yang¹ and Jie Zhang^{1*}

¹Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering, Xiamen University, Xiamen, China, ²Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States, ³Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States

Titanium dioxide (TiO₂) with advantages including abundance in earth, nontoxicity, high chemical stability, surface hydrophobicity in dark, and extremely high permittivity could be highly promising for advanced electronics. However, the thermal stability and low bandgap (E_{α}) of TiO2 pose a big challenge for TiO₂ to be used as dielectric, which could be resolved by doping with other metal cations. In this work, we studied the impact of gallium incorporation on electrical and material characteristics of TiO₂ thin films. These TiO₂ and Ti_xGaO films with thickness of 15 nm were derived by atomic layer deposition (ALD) and then annealed in O₂ ambient at 500°C, where the levels of Ga incorporation were tuned by the cycle ratio (X) of TiO_2 to that of Ga_2O_3 during ALD growth. Both thin film transistors (TFTs) using Ti_xGaO (TiO₂) thin films as the channel and metal-oxide semiconductor capacitors (MOSCAPs) using Ti_xGaO (TiO₂) thin films as the dielectric were fabricated to unravel the impact of Ga incorporation on electrical properties of TiO_2 thin films. It is found that the Ga incorporation reduces the conductivity of TiO₂ thin films significantly. Pure TiO₂ thin films could be the ideal channel material for TFTs with excellent switching behaviors whereas Ga-incorporated TiO2 thin films could be the dielectric material for MOSCAPs with good insulating properties. The leakage current and dielectric constant (k) value are also found to be decreased with the increased Ga content in Ti_xGaO/Si MOSCAPs. Additionally, the density of interface trap (D_{it}) between Ti_xGaO and Si were extracted by multi-frequency conductance method, where a "U-shape" trap profile with similar level of D_{it} values can be observed for Ti_XGaO MOSCAPs with varying Ga contents. Material characterizations show that the Ga incorporation destabilizes the crystallization and enlarges the bandgap (E_{a}) of TiO₂ while maintaining a smooth surface. Interestingly, Ga incorporation is found to decrease the overall oxygen content and introduce more oxygenrelated defects in the film. As a result, the reduction of leakage current upon Ga incorporation in MOSCAPs could be explained by amorphization of the film and enlarged band offset to Si rather than oxygen defect passivation. These Gaincorporated TiO₂ films may found promising usage in future electronic device applications such as trench capacitors in dynamic random-access memory, where the emerging high-k dielectrics with low leakage currents and high thermal stability are demanded.

KEYWORDS

Ga incorporation, atomic layer deposition, crystallinity, high-permittivity dielectric, band alignment, interface traps, thin film transistor, dynamic random-access memory

1 Introduction

Metal oxides have enabled many emerging applications in advanced electronics such as CMOS back-end-of-line (BEOL)compatible logic and memory components (Datta et al., 2019; Charnas et al., 2023; Kim et al., 2023). For instance, In-based oxides have been actively explored as channel material for BEOLcompatible transistors due to its high electron mobility, large area uniformity, excellent conformity on complex structure, and lowtemperature processability (Samanta et al., 2020; Han et al., 2021; Si et al., 2022; Zhang et al., 2022; Zheng et al., 2022; Liao et al., 2023; Zhang et al., 2023). Hf-based oxides are also currently used as highk dielectric in Si-based logic transistors and storage capacitors in dynamic random-access memory (DRAM) arising from its relatively high permittivity value (10-25), suitable band offsets to Si, sufficiently large bandgap (Eg), and high thermal stability (Wilk et al., 2001; Kim et al., 2013; Wang B. et al., 2018). Compared to other metal oxides, TiO₂ have unique advantages such as abundance in earth, non-toxicity, high chemical stability, surface hydrophobicity in dark, and extremely high permittivity (50-80) (Campbell et al., 1999; Kim et al., 2013; Park, 2018). In this regard, the usage of TiO₂ thin films in advanced electronics could be promising, providing a class of material of cost-effective and ecofriendly. In the literature, TiO₂ films could be semiconducting or insulating, which are dependent on the concentration of oxygen vacancy in the film (Kim et al., 2013). However, the reported mobility of semiconducting TiO2 films is small with typical value lower than $1 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ (Katayama et al., 2008; Park et al., 2008; Park et al., 2009; Zhong et al., 2012), which cannot meet the high current requirements. On the other hand, for insulating TiO2 films the low E_{σ} of TiO₂ (<4 eV) could induce high leakage currents, thereby impairing its dielectric performance (Campbell et al., 1999). These attributes have impeded the usage of TiO₂ films in advanced electronics, thus calling for more in-depth studies on the electrical and material properties of TiO₂-based thin films.

Previously, we demonstrated high-performance TiO₂ thin film transistors (TFTs) using O₂-annealed TiO₂ channel and high-k ZrO₂ dielectric (Zhang et al., 2019a; Zhang et al., 2019b; Zhang et al., 2020; Zhang et al., 2021a). These TiO₂ TFTs could achieve a high on/off current ratio (I_{on}/I_{off}) and low subthreshold swing (SS), which is comparable to that of InGaZnO counterparts (Zhang et al., 2019a), thus validating TiO₂ as channel material for TFT application. The excellent performance was attributed to the passivation of oxygen vacancy in TiO₂ channel from O₂ annealing, the usage of high-k ZrO₂ dielectric, resulting in high electron mobility of 5 cm²V⁻¹s⁻¹ and low interface trap density (D_{it}) of ~10¹² eV⁻¹cm⁻² (Zhang et al., 2021b). Furthermore, the crystallinity of TiO₂ is found to be crucial for electron transport.

The conductivity of TiO₂ transits from insulting to semiconducting when the crystallinity of the TiO₂ film changes from amorphous to anatase polycrystalline by controlling the annealing temperature (Zhang et al., 2021a; Zhang et al., 2021c). Functional TiO₂ TFTs based on anatase polycrystalline TiO2 channel could be achieved using a low temperature process of 300°C, meeting the requirements for BEOL transistors (Zhang et al., 2021a; Zhang et al., 2021c). On the other hand, the amorphous TiO₂ thin films also show a great promise for high-k dielectric application with a k value of ~ 28 (Zhang et al., 2021c). However, the thermal stability poses a big challenge for TiO₂ dielectrics considering the fact that TiO₂ thin film could crystallize at a low temperature of 300°C. For instance, the fabrication process for DRAM is typically above 500°C, the temperature of which would induce the crystallization of TiO₂ and cause high leakage current. Additionally, the relatively low E_{σ} of TiO₂ (<4 eV) may also limit its dielectric usage to narrow bandgap channel materials. Doping TiO₂ with other metal cation may potentially resolve these issues, however, there are few studies on the electrical properties of doped TiO₂ in the literature.

In this work, we systemically investigated the effects of Ga incorporation on electrical and material characteristics of TiO2 thin films by ALD, where the Ga incorporation was controlled by the cycle ratio (X) between TiO2 and Ga2O3 during ALD growth. These films underwent O_2 annealing at 500 °C for 30 min after deposition. Then both TFTs and MOSCAPs were fabricated using these Gaincorporated TiO₂ thin films. The conductivity of TiO₂ thin films is found to be reduced significantly upon Ga incorporation. The TiO₂/ZrO₂ TFTs show excellent switching behavior whereas the TixGaO/Si MOSCAPs exhibit well-behaved dielectric properties. It is noted that X represents the cycle ratio during ALD instead of atomic percentage for Ti_X GaO. The leakage current and k value are also found to be decreased with the increased Ga content in Ti_XGaO/Si MOSCAPs, while the D_{it} value between Ti_XGaO and Si maintain roughly at the same level. A series of material characterizations were performed including Grazing incidence Xray diffraction (GI-XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM). It is revealed that the Ga incorporation destabilizes the crystallization and enlarges the Eg of TiO₂ while maintaining a smooth surface. Furthermore, the Ga incorporation is found to decrease the overall oxygen content and introduce more oxygen-related defects in the film. Thus, it is believed that the reduction of leakage current in MOSCAPs upon Ga incorporation could be explained by amorphization of TiO₂ and enlarged band offset rather than oxygen defect passivation. These Ga-incorporated TiO₂ films with well-behaved dielectric property under a process temperature of 500 °C may found promising usage in future electronic device applications such as trench capacitors in DRAM.

FIGURE 1

(A) Schematic of Ga-incorporated TiO_2 thin films by atomic layer deposition, where the incorporated Ga level is controlled by cycle ratio (X) of TiO_2 to that of Ga_2O_3 . (B) Grazing incidence X-ray diffraction (GI-XRD) spectrum of 15 nm TiO_2 and Ti_xGaO films after 500°C O_2 annealing. (C) Transfer curves of thin film transistors (TFTs) under V_{DS} of 10 V using 15 nm TiO_2 and Ti_xGaO films as the channel materials. Inset: schematic of Ti_xGaO TFTs. (D) Leakage current density-voltage characteristic of TiO_2 /Si and Ti_xGaO /Si metal-oxide semiconductor capacitors (MOSCAPs). Inset: schematic of Ti_xGaO .

2 Results and discussions

Figure 1A shows the schematic of ALD growth of Gaincorporated TiO₂ film. The supercycle of Ti_xGaO film growth consists of X cycles of TiO2 followed by one cycle of Ga2O3. The ALD growth of TiO₂ started with the pulse of Ti precursor (Ti(NMe₂)₄) for 0.1 s followed by N₂ purge for 20 s. Then, H₂O was pulsed into the chamber for 0.015 s followed by N2 purge for 20 s, forming one growth cycle of TiO₂. Similarly, one Ga₂O₃ growth cycle consists of a pulse of Ga precursor $(Ga_2(NMe_2)_6)$ for 1 s, a N₂ purge for 30 s, a pulse of H₂O for 0.015 s, and another N₂ purge for 30 s. These TiO₂ and Ti_XGaO films were deposited at 150°C on lightly-doped p-type Si substrates with a resistivity of 5 Ω cm for MOSCAP fabrication and on heavily-doped p-type Si ($10^{-3} \Omega$ cm) with 260 nm thermally oxidized SiO₂ for TFT fabrication. The samples were pre-heat at 150°C in the chamber for 10 min before film deposition. The thickness of Ti_xGaO films were controlled by the number of supercycles, and all films have the same thickness of 15 nm as confirmed by an ellipsometer. These films were then undergone 500°C O₂ annealing for 30 min by rapid thermal

processing (RTP). The fabrication process of TFTs is consistent with our previous work (Zhang et al., 2019a; Zhang et al., 2019b; Zhang et al., 2020; Zhang et al., 2021a). Briefly, TiO₂/Ti_xGaO mesa isolations were formed by F-based inductively coupled plasma (ICP) etching on Si/SiO₂ substrates. Then, 250 nm Al was deposited as the source/drain contacts using e-beam evaporation. After that, 10 nm ZrO₂ was deposited by ALD as gate dielectric at 130°C. The TFT fabrication is finished by the evaporation of Ni/Au (170 nm/80 nm) as the gate metal stack by e-beam evaporation. The fabricated TFTs are in top-gate architectures with gate length (L_G) of 3 µm, gatesource/drain offset (L_{GS}/L_{GD}) of 1.5 µm and gate width (W_G) of 70 µm. For fabricating MOSCAPs, an array of metal contacts to TiO2 or TiXGaO films were formed with Ni/Au (180 nm/70 nm) by e-beam evaporation. The metal contacts are square shapes with area of $200 \times 200 \,\mu\text{m}^2$, which is defined by photolithography. The schematic of fabricated TFTs and MOSCAPs are shown in the inset of Figures 1C, D, respectively.

Figure 1B exhibits the grazing incidence X-ray diffraction (GI-XRD) spectrum of 15 nm TiO_2 and Ti_XGaO films after 500°C O_2 annealing. Distinct diffraction peaks at 25.4° and 48.2° can be

observed for the TiO₂ film, corresponding to the (101) and (200) facets of anatase TiO₂, respectively (Zhang et al., 2019a). On the other hand, no observable peaks can be seen for Ti_XGaO films, indicating their amorphous nature. Thus, Ga could function as crystallization retarder to TiO₂ host, destabilizing its crystallization under 500°C process. Figure 1C exhibits transfer curves of TFTs under V_{DS} of 10 V using 15 nm TiO₂ and Ti_XGaO films as the channel materials. The TiO₂ TFTs show excellent switching behavior including a low SS of ~102 mV/dec and a high I_{on}/I_{off} of >10⁹, being consistent with our previous work (Zhang et al., 2019a). On the other hand, the Ti_XGaO TFTs exhibit insignificant currents, which is also agree with the observation that the amorphous TiO₂ film presents insulating properties in our previous study (Zhang et al., 2021a).

This can be explained by the structural disorder induced gap states of amorphized TixGaO film preventing electrons from transport within the Ti_xGaO film (Zhang et al., 2021a; Zhang et al., 2021c). Figure 1D shows the current density-voltage (J-V) characteristic of $\rm TiO_2/Si$ and $\rm Ti_XGaO/Si$ MOSCAPs, where the voltage is applied on top metal with Si substrate grounded. Consistent J-V behavior can be observed among 8 MOSCAPs for all the ${\rm Ti}_{\rm X}{\rm GaO}$ and ${\rm TiO}_2$ films, which suggests the high uniformity of ALD-derived films. The TiO₂/Si MOSCAPs show a high leakage current with J value reaching 4.5×10^{-2} A/cm⁻² under -2 V bias and 3.5×10^{-2} A/cm⁻² under +2 V bias. The similarly large J values under both polarities of biases suggest that the TiO₂ film could not provide sufficient barrier for both electrons and holes from Si to transport into TiO₂ film by tunneling or field emission. The J values under both polarities of biases are decreased significantly upon Ga incorporation. Under -2 V bias, the J value decreases from 1.7×10^{-3} A/cm⁻² to 2.1×10^{-4} A/cm⁻² and 1.3×10^{-5} A/cm⁻² for Ti_xGaO films when X reduces from 9 to 3 and 1, respectively. Similarly, under +2 V bias, the J value decreases from 1.9×10^{-5} A/cm⁻² to 4.5×10^{-6} A/cm⁻² and 2.4×10^{-6} A/cm⁻² for Ti_xGaO films when X reduces from 9 to 3 and 1, respectively. The much-reduced J value under both bias voltages suggests that the increased barrier height for both electrons and holes from Si to transport into Ti_xGaO film by tunneling or field emission upon Ga incorporation. Additionally, the J values under +2 V bias are also lower than that of under -2 V bias, indicating that barrier height is larger for electrons compared to that of holes.

Figure 2A exhibits the capacitance-voltage (C-V) characteristics of TiO₂/Si and Ti_xGaO/Si MOSCAPs at frequency of 1 kHz. It is interesting to find that no depletion region can be observed under positive bias voltage (Vbias) in C-V characteristic of TiO2/Si MOSCAPs, which agrees with the high J value under positive V_{bias} in Figure 1D. On the other hand, C-V characteristics of Ti_xGaO/Si MOSCAPs exhibit depletion regions, which can be explained by the low J value under positive V_{bias} after Ga incorporation. The maximum capacitances (C_{MAX}) of these MOSCAPs are also marked in Figure 2A. Both Ti₃GaO and Ti₁GaO MOSCAPs reach C_{MAX} under V_{bias} of -2 V, in contrast to that Ti₉GaO and TiO₂ MOSCAPs reach C_{MAX} under V_{bias} of -1.44 V and -0.44 V, respectively. The sudden drop of capacitance of Ti₉GaO and TiO₂ MOSCAPs under more negative V_{bias} could be due to their high leakage currents (Bonkerud et al., 2021). The dielectric constant (k) value can be estimated according to:

$$k = \frac{C_{\text{MAX}} \times d}{\varepsilon_0},\tag{1}$$

where d is the thickness of TiO₂ and Ti_XGaO films, and ε_0 is the permittivity of free space (8.85 × 10⁻¹² F/m). Figure 2B exhibits the statistically extracted *k* values for TiO₂ and Ti_XGaO films based on 8 MOSCAPs according to Eq. 1. The *k* value monotonically reduces from 23.86 for TiO₂ to 13.77 for Ti₉GaO, 6.56 for Ti₃GaO, and 4.59 for Ti₁GaO, respectively. The reduction of *k* value with the increased Ga incorporation can be understood by the fact that TiO₂ have a higher permittivity than that of Ga₂O₃ (Wilk et al., 2001; Wang B. et al., 2018). It needs to note that the *k* values of our TiO₂ and Ti₉GaO films can be underestimated due to their high leakage currents.

X-ray photoelectron spectroscopy (XPS) measurements were conducted to uncover the modification of chemical states of TiO_2 upon Ga incorporation, where spectra were taken from 15 nm TiO_2/Ti_X GaO films on Si after 500°C O_2 annealing. Figures 3A, B shows the Ti 2p and Ga 2p core-level spectrum, respectively. It is

expected to observe that the intensity of Ti 2p spectrum is decreased whereas that of Ga 2p spectrum is increased with the decreased TiO₂ to Ga₂O₃ cycle ratio X. The peak position of Ti spectrum is also shifted to a lower binding energy level upon Ga incorporation in Figure 3A, where a negative binding energy shift (ΔE) of -0.17 eVcan be observed from TiO₂ to Ti₁GaO. This is in contrast to that no distinct ΔE can be observed for Ga 2p spectrum in Figure 3B. Both Ti 2p and Ga 2p spectrum exhibit broadening features, where the full width at half maxima (FWHM) is increased from 0.81 eV for TiO₂ to 1.27 eV for Ti1GaO in Figure 3A and that is increased from 1.28 eV for Ti₉GaO to 1.43 eV for Ti₁GaO in Figure 3B. The shifts and broadening features of spectrum could be due to the Ga substitution of Ti in TiO₂ host, where a stronger Ti-O bond (776 kJ/mol) is replaced by Ga-O bond (374 kJ/mol) (Wang et al., 2018; To et al., 2023). Figure 3C shows the O 1s spectrum of TiO_2 and Ti_XGaO films, where two peaks are fitted representing O bonding with metal cations (M-O) and O-related defects (V_O) such as oxygen vacancy and hydroxyl. A positive ΔE of 0.45 eV can be observed in the M-O peaks from TiO₂ to Ti₁GaO, which is accompanied by an increase of 0.54 eV in FWHM accordingly. This can be also explained by the fact that Ga substitutes Ti, leading to more O atoms bonding with Ga atoms. It is interesting to note that the V_{O} is increased upon Ga incorporation from 12% in TiO_2 to 21% in Ti₁GaO, suggesting that more O related-defects are introduced into

the film due to the Ga incorporation. This is corroborated by the atomic percentage analysis of the film in Figure 3D, where the overall oxygen content is reduced from 66.6% in TiO₂ to 59.5% in Ti₁GaO. The reduced overall oxygen content and the increased O relateddefects could be due to the fact that O/metal cation stoichiometry of TiO₂ (value of 2) is higher than that of Ga_2O_3 (value of 1.5) and that the bonding energies of Ti-O bond (776 kJ/mol) is stronger than that of Ga-O bond (374 kJ/mol) (Wang et al., 2018; To et al., 2023). The V_O is known to work as shallow donors and increase the electron concentration in oxides (Zhang et al., 2020; Zhang et al., 2023), which cannot explain the leakage current reduction in the MOSCAPs. It is also noted that the atomic percentage of Ga is much higher than the expected value from cycle ratio X. It might be due to the much longer pulse time of Ga precursor (1 s) compared to that of Ti precursor (0.1 s), and the different nucleation behaviors between Ti precursor on top of Ga-terminated surface and Ga precursor on top of Ti-terminated surface (Hong et al., 2021). The bandgap (Eg) of TiO2 and TiXGaO can be estimated from the O 1s plasmon energy loss feature in Figure 3E. It is found that the, E_{σ} is increased upon Ga incorporation, the value of which is increased from 3.6 eV for TiO₂ to 4.4 eV for Ti₉GaO, 4.8 eV for Ti₃GaO, and 5.2 eV for Ti1GaO. It needs to mention that the exact value of E_g should not be taken seriously due to the limits of extraction method, and it is the increasing trend that should be paid attention

to. Figure 3F exhibits the valence band (VB) edge of TiO₂ and Ti_XGaO films, where a downshift of valence band maximum (VBM) can be seen upon Ga incorporation. Overall, XPS results show that Ga incorporation induces more O-related defects, enlarges the E_g and slightly downshifts the VBM of TiO₂.

The surface morphologies of TiO₂ and Ti_xGaO films were also examined by the atomic force microscope (AFM) in Figure 4. The AFM scans were in the tapping mode with the scan area of $1 \times 1 \,\mu\text{m}^2$. All the films show a smooth surface with a low root mean square (RMS) roughness, the value of which are 0.51 nm for TiO₂, 0.33 nm for Ti₉GaO, 0.52 nm for Ti₃GaO, and 0.45 nm for Ti1GaO, respectively. The low RMS value is crucial for suppressing surface-roughness-induced leakage current and reducing the surface-roughness-related interface traps, thus benefiting to their applications in electronic devices. The density of interface trap (D_{it}) between Ti_XGaO and Si were extracted by multi-frequency conductance (G/ ω) method. Figure 5 show the conductance-voltage (G-V) measurements of TiO2/Si and Ti_xGaO/Si MOSCAPs, where the applied frequency is varied from 1 kHz to 1 MHz. The TiO₂/Si MOSCAPs show large G/ ω values under both positive and negative $\mathrm{V}_{\mathrm{bias}}$, which is consistent with high leakage currents under both polarities of V_{bias} in Figure 1D. The changes in magnitude of G/ ω values and the shifts of G/ ω curves with the increased frequency can also be observed in Figure 5, which are induced by the trapping and detrapping of electrons through the interface traps. It is also well-known that two types of interface traps, acceptor-like traps and donor-like traps, exist at Si/oxide interfaces with "U" shape (Sze and Ng, 2006), which contributes to the frequency response of G/ ω curves.

The behavior of equivalent parallel conductance (G/ω) as a function of angular frequency (ω) can be modelled by the equation (Liu et al., 2015; Chandrasekar et al., 2017):

$$\frac{G}{\omega} = \frac{e\omega\tau_{it}D_{it}}{1 + (\omega\tau_{it})^2},$$
(2)

where e is the elementary electron charge, D_{it} is the density of interface trap, τ_{it} is the trap lifetime constant. Figure 6 show the fitting results of the measured G/ ω from TiO₂/Si and Ti_XGaO/Si MOSCAPs using Eq. 2, where the lines are the fitting results and symbols are the experimental data, matching each other well. Under a fixed bias voltage for every MOSCAP, each curve can be fitted into two trap states, suggesting the existence and contribution of two distinct trap states. The extracted D_{it} with corresponding τ_{it} can be mapped into the trap energy level relative to the conduction band of Si (E_C-E_T) by the Schockley-Read-Hall statistics (Liu et al., 2015; Chandrasekar et al., 2017):

$$\tau_{it} = \frac{1}{\nu_{th}\sigma_{n(p)}N_C} \exp\left(\frac{E_C - E_T}{kT}\right),\tag{3}$$

where v_{th} is the thermal velocity of Si (10⁷ cm/s), $\sigma_{n(p)}$ is the capture cross section of electrons or holes (2 × 10⁻¹⁶ cm²), and N_C is the effective density of states of Si (2.8 × 10¹⁹ cm⁻³) (Sze and Ng, 2006).

Figure 7A exhibits the extracted D_{it} as a function of the E_{C} - E_{T} for TiO₂/Si and TixGaO/Si MOSCAPs based on Eqs 2, 3. A "U-shape" profile of interface trap can be observed for all the MOSCAPs, with a similar level of D_{it} values ranging from $4 \times 10^{11} \text{ eV}^{-1} \text{ cm}^{-2}$ to $10^{13} \text{ eV}^{-1} \text{ cm}^{-2}$. This similar level of D_{it}

can be originated from the growth schematic of our TixGaO films, which starts with TiO2 growth cycle and may result in similar interface quality between TixGaO and Si. Thus, the reduced leakage current in TixGaO/Si MOSCAPs with increased Ga incorporation could not be explained by interface trap passivation, which is also corroborated by XPS results showing increased Orelated defects by Ga incorporation. Figure 7B shows the band alignment of Si, TiO2, and Ti1GaO derived from XPS results (Figure 3), where the valence band (E_V) offset is increased by 0.24 eV and the conduction band (E_C) offset is increased by 1.36 eV with Ga incorporation. The increased band offset can function as potential barrier for carriers, thereby reducing the leakage current. The asymmetric band offset could also explain why leakage currents of TixGaO/Si MOSCAPs are lower under positive V_{bias} than that of under negative V_{bias} in Figure 1D, where electrons are more difficult to overcome the larger E_C offset. Base on the above information, it is believed that the reduction of the leakage current in TixGaO/Si MOSCAPs upon Ga incorporation could be explained by the amorphization of ${\rm Ti}_{\rm X}{\rm GaO}$ film and the enlarged band-offset to Si rather than defect passivation.

3 Conclusion

In summary, we demonstrate that the Ga incorporation could be an effective way to improve the dielectric performances of TiO_2 films. Pure TiO_2 thin films could be the channel material for TFT application whereas Ga-incorporated TiO_2 thin films could be used as high-*k* dielectric with good insulating properties. The leakage current and *k* value are decreased with the increased Ga content, while the D_{it} value between Ti_xGaO and Si maintain roughly at the same level. The reduction of leakage current upon Ga incorporation is believed to be due to that the amorphization of TiO₂ and enlarged band offset to Si rather than oxygen defect passivation. These Ga-incorporated TiO₂ films with well-behaved dielectric property under a process temperature of 500 °C may found promising usage in future electronic devices such as trench capacitors in DRAM.

FIGURE 6

Equivalent parallel conductance (G/ ω) as a function of angular frequency (ω) for interface trap (D_{it}) extraction using conductance method for (A) TiO₂/Si; (B) Ti₉GaO/Si; (C) Ti₃GaO/Si; and (D) Ti₁GaO/Si MOSCAPs. The lines are the fitting results and symbols are the experimental data.

FIGURE 7

(A) Extracted D_{it} as a function of the trap energy level relative to the conduction band of Si (E_C-E_T) for TiO₂/Si and TixGaO/Si MOSCAPs. A "U-shape" profile of interface trap can be observed and the differences of D_{it} values between TixGaO/Si MOSCAPs are not pronounced. (B) Band alignment of Si, TiO₂, and Ti₁GaO, where the leakage current reduction could be due to the amorphization of TiO₂ and the enlarged band-offset upon Ga incorporation.

Data availability statement

The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

Author contributions

QS: Formal Analysis, Writing-original draft. YnL: Formal Analysis, Validation, Writing-original draft. CH: Data curation, Writing-review and editing. ZY: Data curation, Validation, Writing-review and editing. YgL: Data curation, Validation, Writing-review and editing. YZ: Project administration, Supervision, Writing-review and editing. WY: Project administration, Supervision, Writing-review and editing. JZ: Funding acquisition, Project administration, Writing-original draft, Writing-review and editing.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This

References

Bonkerud, J., Zimmermann, C., Weiser, P. M., Vines, L., and Monakhov, E. V. (2021). On the permittivity of titanium dioxide. *Sci. Rep.* 11 (1), 12443. doi:10.1038/s41598-021-92021-5

Campbell, S., Kim, H., Gilmer, D., He, B., Ma, T., and Gladfelter, W. (1999). Titanium dioxide (TiO₂)-based gate insulators. *Ibm J. Res. Dev.* 43 (3), 383–392. doi:10.1147/rd.433.0383

Chandrasekar, H., Bhat, K. N., Rangarajan, M., Raghavan, S., and Bhat, N. (2017). Thickness dependent parasitic channel formation at AlN/Si interfaces. *Sci. Rep.* 7, 15749. doi:10.1038/s41598-017-16114-w

Charnas, A., Zhang, Z., Lin, Z., Zheng, D., Zhang, J., Si, M., et al. (2023). Review-extremely thin amorphous indium oxide transistors. *Adv. Mater.* 36, e2304044. doi:10.1002/adma.202304044

Datta, S., Dutta, S., Grisafe, B., Smith, J., Srinivasa, S., and Ye, H. (2019). Back-Endof-Line compatible transistors for monolithic 3-D integration. *IEEE Micro* 39 (6), 8–15. doi:10.1109/MM.2019.2942978

Han, K., Kong, Q., Kang, Y., Sun, C., Wang, C., Zhang, J., et al. (2021). "First demonstration of oxide semiconductor nanowire transistors: a novel digital etch technique, igzo channel, nanowire width down to 20 nm, and I_{on} exceeding 1300 μ A/µm," in 2021 Symposium on VLSI Technology, Kyoto, Japan, 13-19 June 2021, 1–2.

Hong, T., Jeong, H.-J., Lee, H.-M., Choi, S.-H., Lim, J. H., and Park, J.-S. (2021). Significance of pairing in/Ga precursor structures on PEALD InGaO_x thin-film transistor. ACS Appl. Mater. Inter 13 (24), 28493–28502. doi:10.1021/acsami.1c06575

Katayama, M., Ikesaka, S., Kuwano, J., Koinuma, H., and Matsumoto, Y. (2008). High quality anatase TiO₂ film: field-effect transistor based on anatase TiO₂. *Appl. Phys. Lett.* 92 (13). doi:10.1063/1.2906361

Kim, S. K., Kim, K. M., Jeong, D. S., Jeon, W., Yoon, K. J., and Hwang, C. S. (2013). Titanium dioxide thin films for next-generation memory devices. *J. Mater. Res.* 28 (3), 313–325. doi:10.1557/jmr.2012.231

Kim, T., Choi, C. H., Hur, J. S., Ha, D., Kuh, B. J., Kim, Y., et al. (2023). Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. *Adv. Mater.* 35 (43), e2204663. doi:10.1002/adma.202204663

Liao, P.-Y., Khot, K., Alajlouni, S., Snure, M., Noh, J., Si, M., et al. (2023). Alleviation of self-heating effect in top-gated ultrathin In_2O_3 FETs using a thermal adhesion layer. *IEEE Trans. Electron Devices* 70 (1), 113–120. doi:10.1109/TED.2022.3221358

Liu, S., Yang, S., Tang, Z., Jiang, Q., Liu, C., Wang, M., et al. (2015). Interface/border trap characterization of $Al_2O_3/AlN/GaN$ metal-oxide-semiconductor structures with an AlN interfacial layer. *Appl. Phys. Lett.* 106 (5). doi:10.1063/1.4907861

Park, J.-W., Han, S.-W., Jeon, N., Jang, J., and Yoo, S. (2008). Improved electrical characteristics of amorphous oxide TFTs based on TiO_x channel layer grown

work was supported by the Central University Basic Research Fund of China under Grant No. 20720230040, Fujian Minjiang Distinguished Scholar Program, Xiamen Double-Hundred-Talent Program, and the National Natural Science Foundation of China under Grant No. 62171396.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

by low-temperature MOCVD. IEEE Electron Device Lett. 29 (12), 1319–1321. doi:10.1109/LED.2008.2005737

Park, J.-W., Lee, D., Kwon, H., Yoo, S., and Huh, J. (2009). Performance improvement of N-type TiOx active-channel TFTs grown by low-temperature plasma-enhanced ALD. *IEEE Electron Device Lett.* 30 (7), 739–741. doi:10.1109/LED.2009.2021587

Park, J. Y. (2018). How titanium dioxide cleans itself. Science 361 (6404), 753. doi:10.1126/science.aau6016

Samanta, S., Han, K., Sun, C., Wang, C., Thean, A. V.-Y., and Gong, X. (2020). "Amorphous IGZO TFTs featuring extremely-scaled channel thickness and 38 nm channel length: achieving record high $G_{m,max}$ of 125 µS/µm at V_{DS} of 1 V and I_{ON} of 350 µA/µm," in 2020 Symposium on VLSI Technology, Honolulu, HI, USA, 16-19 June 2020, 1–2. doi:10.1109/vlsitechnology18217.2020.9265052

Si, M., Lin, Z., Chen, Z., Sun, X., Wang, H., and Ye, P. D. (2022). Scaled indium oxide transistors fabricated using atomic layer deposition. *Nat. Electron.* 5 (3), 164–170. doi:10.1038/s41928-022-00718-w

Sze, S. M., and Ng, K. K. (2006). "Physics and properties of semiconductors—a review," in *Physics of semiconductor devices* (John Wiley and Sons, Ltd), 5–75. doi:10.1002/9780470068328.ch1

To, T., Olsen, A. A. K. R. K., Hansen, B. A., Enevoldsen, K. M., Lutken, V., Jensen, L. R., et al. (2023). Comparing the effects of Ga_2O_3 and Al_2O_3 on the structure and mechanical properties of sodium borate glasses. *J. Non-Cryst Solids* 618, 122506. doi:10.1016/j.jnoncrysol.2023.122506

Wang, B., Huang, W., Chi, L., Al-Hashimi, M., Marks, T. J., and Facchetti, A. (2018a). High-k gate dielectrics for emerging flexible and stretchable electronics. *Chem. Rev.* 118 (11), 5690–5754. doi:10.1021/acs.chemrev.8b00045

Wang, L., Chen, B., Ma, J., Cui, G., and Chen, L. (2018b). Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. *Chem. Soc. Rev.* 47 (17), 6505–6602. doi:10.1039/C8CS00322J

Wilk, G., Wallace, R., and Anthony, J. (2001). High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89 (10), 5243-5275. doi:10.1063/1.1361065

Zhang, J., Charnas, A., Lin, Z., Zheng, D., Zhang, Z., Liao, P.-Y., et al. (2022). Fluorine-passivated In_2O_3 thin film transistors with improved electrical performance via low-temperature CF_4/N_2O plasma. *Appl. Phys. Lett.* 121 (17). doi:10.1063/5.0113015

Zhang, J., Cui, P., Lin, G., Zhang, Y., Sales, M. G., Jia, M., et al. (2019b). High performance anatase-TiO₂ thin film transistors with a twostep oxidized TiO₂ channel and plasma enhanced atomic layer-deposited ZrO₂ gate dielectric. *Appl. Phys. Express.* 12 (9), 096502. doi:10.7567/ 1882-0786/ab3690 Zhang, J., Jia, M., Sales, M. G., Zhao, Y., Lin, G., Cui, P., et al. (2021b). Impact of $\rm ZrO_2$ dielectrics thickness on electrical performance of TiO_2 thin film transistors with sub-2 V operation. ACS Appl. Mater. Inter. 3 (12), 5483–5495. doi:10.1021/acsaelm.1c00909

Zhang, J., Lin, G., Cui, P., Jia, M., Li, Z., Gundlach, L., et al. (2020). Enhancement/Depletion-Mode TiO₂ thin-film transistors via O_2/N_2 preannealing. *IEEE Trans. Electron. Devices* 67 (6), 2346–2351. doi:10.1109/TED.2020.2988861

Zhang, J., Sales, M. G., Lin, G., Cui, P., Pepin, P., Vohs, J. M., et al. (2019a). Ultrathinbody TiO₂ thin film transistors with record on-current density, ON/OFF curren ratio, and subthreshold swing via O_2 annealing. *IEEE Electron Device Lett.* 40 (9), 1463–1466. doi:10.1109/LED.2019.2927571

Zhang, J., Wei, L., Jia, M., Cui, P., and Zeng, Y. (2021c). "Crystallinity engineering of stoichiometric TiO_2 : transition from insulator to semiconductor," in 2021 Device Research Conference (DRC), Santa Barbara, CA, USA, 20-23 June 2021, 1–2. doi:10.1109/drc52342.2021.9467219

Zhang, J., Zhang, Y., Cui, P., Lin, G., Ni, C., and Zeng, Y. (2021a). One-volt TiO_2 thin film transistors with low-temperature process. *IEEE Electron Device Lett.* 42 (4), 521–524. doi:10.1109/LED.2021.3060973

Zhang, J., Zheng, D., Zhang, Z., Charnas, A., Lin, Z., and Ye, P. D. D. (2023). Ultrathin InGaO thin film transistors by atomic layer deposition. *IEEE Electron Device Lett.* 44 (2), 273–276. doi:10.1109/LED.2022.3233080

Zheng, D., Charnas, A., Anderson, J., Dou, H., Hu, Z., Lin, Z., et al. (2022). First demonstration of BEOL-compatible ultrathin atomiclayer-deposited InZnO transistors with GHz operation and record high bias-stress stability. *IEDM Tech. Dig. Dec.* 2022, 1–4. doi:10.1109/IEDM45625.2022.10019452

Zhong, N., Cao, J. J., Shima, H., and Akinaga, H. (2012). Effect of annealing temperature on TiO_2 -based thin-film-transistor performance. *IEEE Electron Device Lett.* 33 (7), 1009–1011. doi:10.1109/LED.2012.2193658