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The research aims to investigate the effects of proportion and age of
maintenance on the strength and economy of filling materials, in order to
provide theoretical guidance and technical support for the management of
coal mined-out area. Firstly, adjustments are made to the proportioning and
maintenance age of the fill materials, and experiments are conducted to
explore the strength performance of materials under different proportions.
Secondly, GANs is utilized to expand the dataset, and an MLP-LSTM network
is constructed to predict the strength of materials experiencing different
maintenance ages under various proportions. Finally, integrating practical
engineering applications, an economic viability prediction analysis is conducted
to examine the cost of fill materials under different proportions andmaintenance
ages, along with their influencing factors. The results indicate that appropriate
adjustments to proportioning can effectively enhance the strength of fill
materials, whereas excessively high or low proportions may lead to unstable or
surplus strength. Extending the maintenance age can to some extent improve
the material’s strength, but it also increases maintenance costs, necessitating
a comprehensive balance in terms of economic viability. Consequently, this
research offers a theoretical foundation and practical guidelines for optimizing
mixture proportions and selecting appropriate curing ages, providing valuable
insights for enhancing the efficiency and cost-effectiveness of coal mined-out
area filling treatments.
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1 Introduction

The rapid economic growth has led to an increasing demand for natural resources,
significantly driving the development of mining enterprises. Consequently, the scale of
mineral resource extraction is expanding annually. In the coal mining at the same time
will produce a large area of coal mined-out area, the large area of the mined-out area
of the roof will trigger the roadway roof topping, underground water, mine earthquake
and mine ground subsidence and other issues, the management of the mined-out area
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FIGURE 1
Technical route.

is also the focus of attention to the safety of coal mine mining
(Zheng and Li, 2005; Zhou et al., 2022; Cao et al., 2022). In recent
years, in order to meet the needs of the sustainable development
strategy of the environment, the cementation filling method has
become the most commonly used method for the treatment
of coal mined-out area due to its ability to utilize solid waste
resources (Guo et al., 2022). The conventional cementation filling
method predominantly relies on cement as the binding material,
which poses several challenges, including high costs, difficulties in
determining the optimal curing age, and low utilization of solid
waste. Notably, some mines utilize inappropriate material ratios,
resulting in a misalignment between filling costs and performance.
Additionally, extended curing times can lead to excessive strength,
incurring unnecessary time costs. Consequently, there is a growing
emphasis on the research and development of economical filling
materials that can either partially or completely substitute cement.
These materials should ideally be low-cost and high-performance
while effectively utilizing solid waste, garnering significant
attention from scholars both domestically and internationally
(Zhao H. et al., 2024).

The strength of backfill materials refers to their resistance to
external forces and is one of the crucial indicators for evaluating
their quality and performance (Cao et al., 2015). The curing age
refers to the duration after the pouring of backfill materials during
which the moisture within the backfill constantly exchanges with
the ambient air. During this period, the particles of the material
undergo more thorough hydration, thereby enhancing the strength
of the backfill material (Liu et al., 2021). A too short curing age can
result in the backfill material failing to reach the desired strength
requirements, while an excessively long curing age can lead to
unnecessary time and cost consumption due to excessive strength
(Cao et al., 2016). Wang C and his team conducted orthogonal
experiments using coarse fly ash-based binder and coal gangue
as aggregates. They performed range analysis on the strength and
transportation requirements of the filling paste and determined
the optimal mix ratio using the comprehensive balance method
(Wang et al., 2019). Roy R and their team developed a new gravity
grouting blind hole backfilling method for abandoned mine gap.
Through laboratory experiments, they selected appropriate backfill
materials and established empirical equations between void volume,
solid flow velocity, and solid concentration in the gravity grouting
method. They determined the optimal (30% bottom ash, 70% sand)

and suboptimal (40% bottom ash, 60% sand) solid compositions
of bottom ash and sand for blind hole backfilling (Roy et al.,
2023). Hefni M utilized an air-entraining agent to incorporate
prefabricated foam in the backfill mixture to develop a new type
of mine backfill material, foam mine fill (FMF), which achieves a
honeycomb structure and minimizes the adverse effects of potential
backfill failure (Hefni and Hassani, 2020). Rong K and their team
developed a filling material using hemihydrate gypsum instead
of cement. The results showed that the strength of the backfill
reached the expected target strength of 2.5 MPa after 3 days. The
rapid solidification of the backfill material is advantageous for safe
underground construction in mines (Rong et al., 2020). Hong Z
and their team developed a novel filling material composed of
a mixture of coal gangue and fly ash as the main components,
with finely ground slag, quicklime, and gypsum mixture serving
as the binder. Experimental results demonstrated that the new
material exhibited high compressive strength. Even after damage
and fracture along a certain angle, the strength could still recover
(Hong et al., 2023). Kennedy C and their team used Nano-Silica
(NS) as a mortar enhancement material and employed advanced
machine learning techniques to predict its compressive strength
(Onyelowe et al., 2024a). Ding Z and their team utilized ordinary
Portland cement, sulphate aluminum cement, and alkali-activated
cement as binders to prepare high-water content tailings materials
with varying water-cement ratios for filling. They analyzed the
influence of different binders and water-cement ratios on the
strength (Ding et al., 2023).

In addition to the strength of backfill materials, the selection
of the curing age also has a significant impact on the engineering
quality. The strength of backfill materials is closely related
to their mix ratio, while the curing age directly affects the
early strength development and overall durability of the backfill
materials. Choosing an appropriate curing age can effectively
enhance the early strength development of backfill materials
(Zhang et al., 2021; Onyelowe et al., 2022a). Qiu J and their team
prepared backfill samples with varying tailings powder content
and curing age. They conducted experimental tests to investigate
the influence of different tailings powder content and curing
time on the samples. The experimental results indicated that
samples containing 50% tailings powder showed themost significant
improvements in both macroscopic and microscopic properties
(Qiu et al., 2023).
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TABLE 1 Chemical composition of raw Materials (wr%).

SiO2 Al2O3 CaO MgO Fe2O3 SO3 Other

Coal Gangue 60.75 21.73 2.89 1.78 7.76 0.63 4.46

Fly Ash 44.86 18.11 16.44 2.12 12.02 3.05 3.40

Cement 19.23 4.61 64.35 1.78 3.36 2.36 4.31

In mining backfill engineering, exploring appropriate mix ratios
and curing age to optimize the strength and economy of backfill
materials is a highly significant issue (Onyelowe et al., 2024b).
The strength of backfill materials is closely related to their mix
ratios, while the curing age directly affects the early strength
development and overall durability of backfill materials. In order
to accurately evaluate and predict the performance of backfill
materials as well as their economic viability, empirical models and
mathematical models have been established to predict the variation
patterns of backfill body properties (Wagner and Rondinelli, 2016).
Traditional empirical and mathematical models may require more
manual intervention for feature selection andmodeling, thus having
limitations. Therefore, some scholars utilize deep learning networks
for predictive analysis. The adaptability, nonlinear function fitting
ability, and tunability of structural parameters in deep learning
networks alignwell with the fuzzy complexity, irregular nonlinearity,
and time-varying parameters of coal mine backfill material
composition regarding strength and flowability (LeCun et al., 2015).
Niaki M H and their team utilized deep neural networks (DNN)
to predict the material strength of concrete composite materials,
achieving high accuracy (Niaki et al., 2022). Feng F and their team
constructed a three-layer neural network to predict the strength
of CBSWF (coal-based solid waste filler) at different curing age,
with the advantages of fast prediction speed and high accuracy
(Feng et al., 2021).

This paper aims to conduct an in-depth study on the properties
of backfill materials, predicting and analyzing the strength of
different mixed backfill materials under various curing age. The
goal is to explore the variation patterns of the main physical
and mechanical properties of backfill materials at different curing
age, providing a scientific theoretical basis for the selection of
material ratios and curing age in mining backfill processes.
Firstly, Generative Adversarial Networks (GANs) is employed to
expand the strength data of backfill materials at different curing
age, generating strength data with similar characteristics through
adversarial networks to increase the diversity and quantity of the
dataset.Then, a neural network model combining Long Short-Term
Memory (LSTM) with Multilayer Perceptron (MLP) is selected.
MLP and LSTM are combined to address the mixed problem of
non-sequential and sequential data. Past strength data of backfill
materials within certain time frames are used as input to predict
the strength variation at different curing age.This method considers
the temporal characteristics of backfill material strength and fully
utilizes historical data and trend information to improve the
accuracy and stability of predictions. The research technical route
is shown in Figure 1.

By predicting the strength of filling materials at different curing
ages, this study enables construction personnel to better plan
the filling schedule and resource allocation, selecting the optimal
curing age for filling construction to maximize the effectiveness and
efficiency of the filling process.

2 Experimental materials and methods

2.1 Experimental materials and procedures

2.1.1 Experimental materials
In this experiment, cement-based backfill material was used,

with the main components being coal gangue, cement, and fly ash,
while the liquid component primarily consisted of water (H2O).
X-ray fluorescence spectroscopy analysis was conducted separately
on the solid materials, and the chemical compositions obtained
are shown in Table 1.

In this experiment, coal gangue sourced from a Yulin City
coal mine in Shaanxi Province was used as the aggregate for
backfill material. It was initially crushed to under 50 mm with
a jaw crusher and then further reduced to below 16 mm with
an impact crusher, resulting in a particle size distribution
of 26.8% at 0–0.30 mm, 65.7% at 0.30–4.75 mm, and 7.5%
at 4.75–16.00 mm. Ordinary Portland cement, chosen for its
strength, durability, cost efficiency, and controllability, served as
the primary binder (Onyelowe et al., 2022b). Fly ash, sourced
from a power plant in Yulin, was used as a supplementary
cementitious material to enhance backfill performance,
improve project efficiency, and promote environmental
sustainability. Tap water from the laboratory was used throughout
the experiment.

2.1.2 Experimental procedures
In order to investigate the effects of fly ash content and slurry

mass concentration variations on the flow properties of backfill
materials, a total of 575 sets of experimental samples were prepared
according to the experimental ratios shown in Table 2. Here, the
mass concentration represents the ratio of the mass of solids
(including fly ash, cement, and coal gangue) to the total mass
(including water, fly ash, cement, and coal gangue). The fly ash
contents were 0%, 5%, 10%, 15%, 20%, 25%, 30%, and 35%, while
the cement contents were 6%, 8%, 10%, 12%, and 14%. According
to the ratios in Table 2, the respective raw materials were weighed
and poured into a mortar mixer, followed by the addition of varying
amounts of tap water (with solid mass to total mass ratios of 72%,
74%, 76%, 78%, and 80%) for mixing. After the slurry mixing
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TABLE 2 Experimental mixing ratios.

Mass concentration Fly ash content Cement content Coal gangue content

72%

0%

6%, 8%, 10%, 12%, 14%

86%, 88%, 90%, 92%, 94%

5% 81%, 83%, 85%, 87%, 89%

10% 76%, 78%, 80%, 82%, 84%

15% 71%, 73%, 75%, 77%, 79%

20% 66%, 68%, 70%, 72%, 74%

25% 61%, 63%, 65%, 67%, 69%

30% 56%, 58%, 60%, 62%, 64%

74%

0%

6%, 8%, 10%, 12%, 14%

86%, 88%, 90%, 92%, 94%

5% 81%, 83%, 85%, 87%, 89%

10% 76%, 78%, 80%, 82%, 84%

15% 71%, 73%, 75%, 77%, 79%

20% 66%, 68%, 70%, 72%, 74%

25% 61%, 63%, 65%, 67%, 69%

30% 56%, 58%, 60%, 62%, 64%

76%

0%

6%, 8%, 10%, 12%, 14%

86%, 88%, 90%, 92%, 94%

5% 81%, 83%, 85%, 87%, 89%

10% 76%, 78%, 80%, 82%, 84%

15% 71%, 73%, 75%, 77%, 79%

20% 66%, 68%, 70%, 72%, 74%

25% 61%, 63%, 65%, 67%, 69%

30% 56%, 58%, 60%, 62%, 64%

78%

0%

6%, 8%, 10%, 12%, 14%

86%, 88%, 90%, 92%, 94%

5% 81%, 83%, 85%, 87%, 89%

10% 76%, 78%, 80%, 82%, 84%

15% 71%, 73%, 75%, 77%, 79%

20% 66%, 68%, 70%, 72%, 74%

25% 61%, 63%, 65%, 67%, 69%

30% 56%, 58%, 60%, 62%, 64%

0% 86%, 88%, 90%, 92%, 94%

5% 81%, 83%, 85%, 87%, 89%

(Continued on the following page)
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TABLE 2 (Continued) Experimental mixing ratios.

Mass concentration Fly ash content Cement content Coal gangue content

80%

10%

6%, 8%, 10%, 12%, 14%

76%, 78%, 80%, 82%, 84%

15% 71%, 73%, 75%, 77%, 79%

20% 66%, 68%, 70%, 72%, 74%

25% 61%, 63%, 65%, 67%, 69%

30% 56%, 58%, 60%, 62%, 64%

FIGURE 2
The model structure of GANs.

FIGURE 3
GANs Loss function curve.

was completed, it was injected into three-part plastic molds, with
specific dimensions of 70.7 mm³ × 70.7 mm³ × 70.7 mm³. When
the filled slurry injected into the molds was cured for about 24 h at
room temperature, the samples were demolded and numbered.They
were then placed in a standard curing chamber with a temperature
of (20 ± 2) °C and relative humidity of (95% ± 1%) for curing.
The curing ages were set as 3, 7, 14, 28, 56, and 90 days, and
corresponding strength tests were conducted at the respective curing
ages (Liu T. et al., 2024).

The strength of the filling material is tested according to
GB/T50080-2016 “Standard Test Methods for the Performance
of Ordinary Concrete Mixtures.” A computer-controlled ZJ-100

universal testing machine is used for strength testing, with the
loading mode controlled by displacement. The maximum load
is 100 kN, and the loading rate is 1 mm/min. Data for each
test is recorded, including maximum load and displacement, for
subsequent analysis.

The experimental design for backfill material ratios is grounded
in practical conditions, leveraging historical data from previous
experiments along with established theoretical insights to inform
the design process.This approach aims to systematically examine the
influence of multiple factors on backfill material performance while
reducing the number of experiments needed, thereby optimizing
cost and time efficiency. Using the ratios outlined in Table 2,
experiments were conducted to generate the raw dataset
for analysis.

2.2 Experimental data processing

2.2.1 Principles of Generative Adversarial
Networks

Generative Adversarial Networks (GANs) is a special
training framework proposed by Goodfellow et al. (2014). In
the GANs, there are two neural networks competing with
each other: the generator (G) and the discriminator (D). The
generator receives random noise z as input and tries to generate
fake data that looks similar to real data. The discriminator,
on the other hand, attempts to distinguish between real
data and fake data generated by the generator, outputting a
scalar in the range [0,1] representing the probability that the
data is real.
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FIGURE 4
Distribution of T-SNE downscaling.

FIGURE 5
Distribution Map of dataset data. (A) Mass Concentration Distribution Map. (B) Fly Ash Content Distribution Map. (C) Cement Content Distribution Map.
(D) Curing Age Distribution Map. (E) Strength Distribution Map.

The model is trained by minimizing the competition between
the generator and the discriminator. Specifically, the loss function is
defined using a minimax approach, as shown in Equation 1.

min
G

max
D

V(D,G) = Ex∼λ1(x)[log D(x)] +Ez∼λ2(z)[log (1−D(G(z)))] (1)

Where E represents the expectation, x denotes real data following
a certain distribution λ1(x), z signifies random noise following

a prior distribution λ2(z), D(x) represents the probability that
x is real data, G(z) denotes the noise z generating fake data
through the generator, D(G(z)) signifies the probability that G(z)
is real data.

From Equation 1, it can be inferred that during the training
process of the discriminator, the goal is to maximize the
objective function, making the output probability of D(x) tend
toward 1 and the output probability of D(G(z)) tend toward 0.
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FIGURE 6
The basic structure of MLP.

FIGURE 7
Structure of LSTM cell.

Conversely, during the training of the generator, the objective
is to minimize the objective function, aiming for the output
probability of D(G(z)) to approach 1, thus making it difficult
for the discriminator to accurately distinguish between real and
generated data.

During the training process, the goal of the generator is
to generate “realistic data” as much as possible to deceive the

discriminator, while the goal of the discriminator is to distinguish
between the fake data generated by the generator and the real
data as much as possible. In this way, the generator and the
discriminator form a dynamic “game process”, and eventually the
generator can generate data that is indistinguishable from real
data. The framework structure of the GAN network is illustrated
in Figure 2.
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FIGURE 8
Original data structure.

2.2.2 Results of GANs expanded dataset
There are 175 sets of raw data, obtained from experiments

conducted according to the ratios in Table 1. Each set of
data includes the backfill material ratios and the strengths
of the backfill materials at curing ages of 3, 7, 14, 28, 56,
and 90 days.

Since there is a need to predict the strength based on
the backfill ratios data, the existing dataset is insufficient to
obtain accurate training results. Therefore, Generative Adversarial
Networks (GANs) are used for data augmentation. The training
objective is to obtain the strengths corresponding to different
ratios of backfill materials and different curing ages, facilitating
subsequent analysis. In this study, traditional random noise is
replaced by different ratios of backfill materials as the input to the
generator. The generator learns the internal connections between
inputs and outputs, generating new data that outputs the strengths
corresponding to different ratios of backfill materials at different
curing ages. Subsequently, the discriminator judges whether the
generated new data has a similar data structure to real data. Using
the trained generator, new ratios that have not been experimentally
tested can be input to generate more data.

Figure 3 shows the loss function curves of the generator and
discriminator during GANs training.

As shown in Figure 3, initially, the generator was unable
to effectively capture the data features, and the discriminator’s
discriminatory ability was poor, resulting in abrupt changes and
fluctuations in the curves. As the adversarial process progressed,
the generator gradually learned the features of real data, and the
discriminator gradually learned to distinguish between the real
distribution and the generated distribution. When the generator
had iterated approximately 142 times, the loss gradually stabilized
and approached 0. Similarly, when the discriminator had iterated
approximately 167 times, the loss also gradually stabilized and
approached 0, indicating that the adversarial game between the
generator and discriminator had reached a balance. At this point,
the generated data tended to be similar to the original data.

Ideally, the generated data should be statistically similar to the
original data.

To ensure that the generated data effectively improves the
predictive performance of the model, it is necessary to ensure
its similarity to the original data. To evaluate the similarity
between the original and synthesized data, the T-SNE similarity
measurement method was used to compare the real and
generated data.

T-distributed stochastic neighbor embedding (T-SNE) is a
nonlinear technique used for data dimensionality reduction and
visualization (Cieslak et al., 2020). It maps high-dimensional data
into a lower-dimensional space while preserving the local structure
of the data points as much as possible. In high-dimensional
space, T-SNE uses Gaussian distributions to represent the similarity
between data points, while in low-dimensional space, it employs
t-distributions to represent similarity.

To confirm the similarity between synthetic and real data,
Figure 4 presents a comparison of the dimensionality-reduced
distributions of real and synthesized gait data. There is a notable
overlap between the generated data (blue samples) and the original
data (red samples), which suggests that their distributions are similar
(Onyelowe et al., 2023). The data distribution of the final dataset
is shown in Figure 5.

In which, Figure 5A–D show the distribution of the input data,
while Figure 5E shows the distribution of the output data. Analyzing
Figures 4, 5, it can be seen that the data generated by GANs has a
similar distribution to the original data, indicating homogeneity and
suitability for subsequent model training.

2.3 Intensity prediction network
construction

2.3.1 Principles of Multilayer Perceptron
TheMultilayer Perceptron (MLP) is an artificial neural network

model belonging to the category of feedforward neural networks
(Taud and Mas, 2018). It consists of multiple layers of neural
networks, with each layer containing multiple neurons (nodes),
including an input layer, at least one or more hidden layers, and an
output layer. The basic structure is depicted in Figure 6.

The MLP is trained using the backpropagation algorithm,
with the objective of minimizing the error between the predicted
output and the true labels by adjusting the network parameters.
During the training process, the backpropagation algorithm utilizes
gradient descent or its variants to update the weights and biases of
the network.

2.3.2 Principles of Long Short-Term Memory
Long Short-Term Memory (LSTM) is a variant of Recurrent

Neural Networks (RNNs) designed specifically for handling
sequential data with the ability to maintain long-term dependencies
(DiPietro and Hager, 2020). It is tailored for processing and
predicting time series data.The core idea behind LSTM the problem
of long-term dependencies by controlling the flowis to address
of information. It introduces an internal memory unit called the
“cell state” and a series of “gates”, including the forget gate, input
gate, and output gate, to regulate the update of the cell state and
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FIGURE 9
Structure of the MLP-LSTM network.

selectively forget information. The structure of an LSTM unit is
illustrated in Figure 7.

2.3.3 MLP-LSTM network construction and
training

Predicting the strength based on the composition of
the filling material and the curing time holds significant
engineering implications. Through strength prediction, excessive
material usage and time costs can be avoided, thus reducing
construction expenses.

Currently, there are four inputs X1, X2, X3, T, where X1, X2,
and X3 represent the proportions of fly ash, cement, and gangue,

respectively, and T represents the curing age, measured in days. The
output is the corresponding strength Y of the filling material. The
curing times are currently set as T = 3, 7, 14, 28, 36, and 90 days, with
their corresponding proportions of X1, X2, andX3.The original data
structure is depicted in Figure 8.

In this scenario, selecting LSTM combined with MLP to
construct the neural network, which has four input nodes and
one output node, is appropriate. Using MLP as the neural
network structure allows learning complex nonlinear relationships,
demonstrating strong fitting capabilities. Meanwhile, the LSTM
model can capture long-term dependencies between strength data
and curing time data. CombiningMLP and LSTM can handlemixed
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TABLE 3 Environment and parameter setting.

Gpu Nvidia GeForce RTX 4060 laptop
GPU

CPU 12th Gen Intel(R) Core(TM) i7-12650H

Development Environment PyCharm

Epoch 200

Batch size 4

Optimizer Adam

Learning rate 0.001

Loss function Mean Squared Error

problems of non-sequence and sequence data. By leveraging the
advantages of both MLP and LSTM, the network can learn complex
feature representations and consider their temporal relationships,
thus improving the accuracy of strength prediction for filling
materials. The structure diagram of the MLP-LSTM network is
illustrated in Figure 9.

The training process is as follows:

(1) Data preparation and pre-processing. The data used is
augmented data obtained through GANs, consisting of a total
of 3,400 sets, with the specific distribution shown in Figure 5.
Each set of data includes the content of fly ash, cement,
coal gangue, curing age (d), and strength (MPa). Correlation
analysis is conducted to ensure that the material content

and curing age are independent of each other, followed by
normalization.

(2) The dataset is randomly divided into training, testing, and
validation sets at a ratio of 7:3:1.

(3) The training data is fed into the constructed MLP-LSTM
model, employing grid search and cross-validation methods,
along with performance evaluation metrics to select the
optimal parameters, and training begins.

(4) The trained model is then tested and evaluated.

The operating environment and the optimized parameter
settings determined through experiments are shown in Table 3.

Statistical analysis is conducted on all data in the training and
validation sets, and the box plots are shown in Figure 10.

Figure 10 provides a visual comparison of the mean positions
of the training and validation sets. The upper and lower boundaries
of the box plots display the range of the data, facilitating the
observation of their coverage. The width of the boxes and
the degree of data dispersion reflect the standard deviation
and variance, indicating that the training and validation sets
exhibit similar statistical characteristics and can be used for
further training.

The loss curves for the training and validation sets during the
training process are shown in Figure 11.

Figure 11 shows that around the 75th iteration, the validation
set’s loss stabilizes, indicating the model has effectively learned
the data features and can generalize to unseen data. Meanwhile,
the training set’s loss continues to decrease, suggesting a potential
risk of overfitting. Predictions were made on the test set using a
random selection of 200 data sets for comparison, as illustrated
in Figure 12.

We use Root Mean Square Error (RMSE) as evaluation metrics
to assess the model. RMSE measures the square root of the average

FIGURE 10
The box plots of dataset.
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FIGURE 11
Train and validation loss.

FIGURE 12
Comparison of predicted and ideal prediction.

of the squared differences between predicted values and actual
values. It reflects the magnitude of prediction errors, and its unit
is the same as that of the dependent variable. A smaller RMSE
indicates higher prediction accuracy. The formula for RMSE is

shown in Equation 2.

RMSE = √ 1
n

n

∑
i=0
(yi − ̂yi)

2 (2)

The RMSE of the model is 0.0101, which is relatively
small, indicating that the model’s predictions have a small
average deviation from the observed values. The R2 value
of 0.9822, close to 1, indicates that the model can explain
the variance in the observed data very well, showing a very
high level of fit. Overall, the model performs exceptionally
well and can be used for subsequent predictions of the
target variable.

3 Analysis of results and economics

3.1 Prediction results and analysis

Using the trained model for further prediction, we obtained
the strength values of filling materials for different filling
ratios with curing ages ranging from 3 to 90 days. We selected
three sets of contents with solid mass concentrations of 74%
and 76%, where the ash content was 20% and the cement
content varied at 8%, 10%, and 12% respectively for prediction.
The fitted curves of the prediction results are shown in
Figure 13.

Based on Figure 13, it can be observed that with the extension
of the curing age, the rate of change in the strength of the
filling material initially increases and then decreases. This
indicates that the curing age has a significant impact on the
strength of the filling material. Under different mixing ratio
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FIGURE 13
Predicted Results at Different Concentration Levels. (A) Variation of strength with curing time (Concentration:74%). (B) Variation of strength with curing
time (Concentration:76%). (C) Variation of strength with curing time (Concentration:78%).

conditions, the trend of strength variation in the filling material
remains consistent. The predicted results are in accordance with
the experimental results and consistent with the findings in
literature (Zhou, 2022).

By reviewing the literature Zhou (2022), Cui et al. (2018) and
analyzing Figure 10, the curing age is typically chosen around
28 days. Disregarding economic considerations for now, curing age
of 14, 28, and 42 days are selected for quantitative analysis of the
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FIGURE 14
Trend of intensity with mass concentration.

mixing ratios of the filling material. This analysis aims to investigate
the relationship between different mixing ratios and the strength of
the filling material. As shown in Figure 14.

At curing age of 14, 28, and 42 days, the average strengths
of different filling ratios are obtained under various mass
concentrations of the filling material, as illustrated in Figure 12. As
depicted in Figure11, there exists a positive correlation between
the strength of the filling material and its concentration, with
consistent trends across different curing age. Moreover, after the
curing age reaches 28 days, further extension of the curing age does
not significantly increase the strength of the material, aligning with
the predictions from Figure 10.

Under a filling material mass concentration of 78%, quantitative
analysis of strength variation is conducted at different curing
age while keeping the fly ash content and cement content fixed,
as shown in Figure 15.

Figure 15A depicts the strength variations of filling materials
at different cement contents. This graph illustrates the changes
in filling material strength under fixed concentrations of filling
material and fly ash content but at different curing age. The plotted
data points represent the averages of corresponding data from the
original dataset. Consistently across different curing age, there is a
notable increase in strength with an increase in cement content.This
trend occurs because cement serves as the primary binder in filling
materials and is the main source of strength (Feng et al., 2016).

Figure 15B illustrates the variation in filling material strength
with fly ash content. This graph depicts changes in filling material
strength under fixed concentrations of filling material and cement
content but at different curing age, with averages taken from
corresponding data in the original dataset. As shown in Figure 15B,
the trends in strength variation are consistent across different
curing age. Strength initially increases and then decreases with

an increase in fly ash content. This is because fly ash, as a
fine powder material, can fill the voids in concrete, forming a
denser structure. In an alkaline environment, it reacts with calcium
hydroxide (C-H) to produce hydrated calcium silicate (C-S-H),
which helps improve material strength. However, excessive fly
ash can hinder the formation of hydration products. Moreover,
an excessive fly ash content can lead to a reduction in coal
gangue content. Since fly ash is fine-grained, an excess of
fine particle size fly ash gradually reduces the strength of the
filling material (Yang et al., 2022). The inflection point occurs at
a fly ash content of 20%, aligning with experimental data and
actual conditions.

Analyzing Figure 15A, B, it is observed that with the extension
of the curing age, there is an improvement in strength. However,
the rate of strength increase slows down after a curing age of
28 days. Economic analysis is required on this basis to minimize
project costs while ensuring material performance to the greatest
extent possible.

3.2 Economic analysis

To conduct an economic analysis of the performance of
filling materials, it is necessary to calculate their costs. The main
components of the filling materials are cement, fly ash, coal
gangue, and water, while other materials are disregarded. The
prices are as follows: fly ash at 40 yuan/ton, cement at 300
yuan/ton, and coal gangue at 6 yuan/ton. The prices used are
the average values in the Chinese market for the period from
September 2023 to March 2024. The curing cost per ton of
material is considered in terms of time cost, which lacks a specific
monetary value estimation. However, generally, the lower the time
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FIGURE 15
Trend of intensity with mass concentration. (A) Fly ash content fixed, cement content variable. (B) Cement content fixed, fly ash content variable.

cost, the better. Ideally, the cost per ton of filling material and
its corresponding curing age can be calculated. The purpose of
economic analysis is to minimize costs while maintaining suitable
performance. Under the premise of appropriate strength, the goal
is to select a shorter curing age that aligns more with engineering
objectives.

Among these, cement is the main contributor to the cost of
filling materials, and adding an appropriate amount of fly ash can
enhance material strength. Therefore, to improve cost-effectiveness
while ensuring that the strength meets engineering requirements,

it is advisable to minimize the use of cement as much as possible.
Changes in coal gangue content also affect the strength of the filling
material. Increasing the coal gangue content can reduce cement
consumption, but it may affect strength performance. Additionally,
as the curing age increases, the strength of the filling material also
increases, but the rate of increase slows down with longer durations.
A curing age that is too short may result in insufficient strength,
failing to meet engineering requirements, while an excessively long
curing age may lead to unnecessary increases in project costs due to
surplus strength.
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Generally, the strength requirements for filling materials range
between 5 and 8 MPa. It is known that the cost per ton of filling
material and the material content are positively correlated with
the curing age. Based on the analysis combining Figures 13–15,
experimental data, and real-world scenarios, it is recommended to
control the concentration between 77% and 79%, fly ash content
between 17.9% and 22.7%, cement content between 10.8% and
12.6%, coal gangue content between 64.7% and 71.3%, andmaintain
the curing age between 28 and 48 days, as this range is more
appropriate. Costs can be controlled within the range of ¥33.7 to
¥43.3 per ton.

4 Conclusion

(1) This study utilizes a Long Short-Term Memory network
(LSTM) combined with a Multilayer Perceptron (MLP) to
construct a neural network model for predicting the strength
of filling materials that involve both non-sequential and
sequential data. The model exhibits a small average difference
between predicted and observed values, effectively explains
the variance of the observed data, and demonstrates a high
degree of fit, making it suitable for subsequent target variable
predictions.

(2) Combining deep learning networks with practical
considerations, the results indicate that the strength of filling
materials increases with the concentration of filling materials
and cement content. The strength initially increases and then
decreases as the fly ash content increases. There is a positive
relationship between the curing time and the strength of the
filling materials; however, when the curing age extends to
28 days, the rate of strength growth slows down.

(3) The constructed predictive model provides reference strength
for different fillingmaterial ratios at various curing ages, aiding
in the selection of material ratios in practical engineering.This
allows for optimization of the ratios and curing ages to meet
technical requirements and economic benefits for filling. The
study suggests maintaining concentrations between 77% and
79%, fly ash content between 17.9% and 22.7%, cement content
between 10.8% and 12.6%, coal gangue content between 64.7%
and 71.3%, and a curing age between 28 days and 48 days, with
costs controlled between 33.7 and 43.3.

In future research, further exploration of the impact of different
environmental conditions (such as temperature and humidity) on
the strength of filling materials can be undertaken, as well as the
introduction of additional variables into the deep learning model to
enhance prediction accuracy. Additionally, the study could consider
incorporating the characteristics of raw materials from different
regions into the model to improve its broad applicability and
practicality. Optimal ratios and curing ages can be selected based

on actual filling requirements to maximize the effectiveness and
economic benefits of the filling process.
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