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Concrete structures are commonly used as secure settlements and strategic
shelters due to their inherent strength, durability, andwide availability. Examining
the robustness and integrity of strategic concrete structures in the face of super-
energy projectiles is of utmost significance in safeguarding vital infrastructure
sectors, ensuring the well-being of individuals, and advancing the course
of worldwide sustainable progress. This research focuses on forecasting the
penetration depth (BPD) through the application of robust models, such as
Multilayer Perceptron (MLP), Support Vector Machine (SVM), Light Gradient
Boosting Machine (LightGBM), and K-Nearest Neighbors (KNN) as ML models.
The dataset used consists of 1,020 data points sourced from the National
Institute of Standards and Technology (NIST), encompassing various parameters
such as cement content (Cp), ground granulated blast-furnace slag (GGBFS),
fly ash content (FA), water portion (Wp), superplasticizer content (Sp), coarse
aggregate content (CA), fine aggregate content (FAA), concrete sample age
(t), concrete compressive strength (CCS), gun type (G-type), bullet caliber (B-
Cali), bullet weight (Wb), and bullet velocity (Vb). Feature selection techniques
revealed that the MLP model, incorporating eight input variables (FA, CA,
Sp, GGBFS, Cp, t, FAA, and CCS), provides the most accurate predictions
for BPD across the entire dataset. Comparing the four models used in this
study, KNN demonstrates distinct superiority over the other methods. KNN,
a non-parametric ML model used for classification and regression, possesses
several advantages, including simplicity, non-parametric nature, no training
requirements, robustness to noisy data, suitability for large datasets, and
interpretability. The results reveal that KNN outperforms the other models
presented in this paper, exhibiting an R2 value of 0.9905 and an RMSE value of
0.1811 cm, signifying higher accuracy in its predictions compared to the other
models. Finally, based on the error analysis across iterations, it is evident that
the final accuracy error of the KNN model surpasses that of the SVM, MLP, and
LightGBM models, respectively.

KEYWORDS

strategic structure, concrete structures, bullet penetration depth, machine learning,
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Highlights

• Bullet penetration crucial for protecting personnel and assets.
• 4 ML techniques predicted bullet penetration (14,280 data).
• Feature selection determined accurate MLP model with eight
variables.
• KNN predicts ballistic performance in concrete blocks
accurately.

1 Introduction

Concrete, a fundamental material used in constructing
secure dwellings, is a composite made up of cement, water,
and aggregates like sand, gravel, or crushed stone. It serves as
a significant reinforcing material in ensuring the construction
of robust and durable structures (Brandt, 2008). Its versatility,
excellent compressive strength, and ability to withstand various
environmental conditions make it an indispensable component
in the construction industry (Amaguaña et al., 2023; Srivani and
Mohan, 2023). One of the key features that makes concrete
stand out is its remarkable compressive strength (Jiao et al., 2023;
Kumar et al., 2023). This property makes it an ideal material for
supporting heavy loads and resisting deformation under pressure,
making it particularly suitable for constructing high-rise buildings,
bridges, dams, and other structures where weight-bearing capacity
is paramount (Bentz, 2007). Moreover, concrete structures are
renowned for their durability and longevity (Rabi et al., 2022).When
properly designed and maintained, concrete can withstand the test
of time and endure harsh weather conditions, chemical exposure,
and other external factors, ensuring the structural integrity of the
building over an extended period (Fahimizadeh et al., 2022).

Beyond its strength and durability, concrete offers versatility in
forming complex shapes. It can be molded into various forms and
sizes, allowing for creative and innovative architectural designswhile
maintaining structural strength and functionality (Li et al., 2022). Its
proven track record over the years has solidified its position as the
backbone of modern infrastructure, contributing significantly to the
advancement and safety of the built environment (Habibi Rad et al.,
2022). Because of the fact that concrete structures possess this
inherent ability, the concrete has been widely utilized in the
construction of important superstructures and civil infrastructures,
such as bridges, dams, hydroelectric power plants, nuclear power
plants, and significant strategic and transit hubs (Rich et al., 2022).

There is a necessity for conducting fundamental research on
strategic structures. Given the strategic significance of concrete
structures, it is essential to assess the structural requirements
and security protocols that enable them to withstand potential
destructive threats. One such threat is the vulnerability of concrete
structures to the forceful impact of super-energetic projectiles
(Liu J. et al., 2022). Super-energetic projectiles are projectiles
(objects or devices launched or fired through the air) that possess
high levels of energy or force. These projectiles are often designed
to travel at high speeds and deliver a significant amount of impact
or damage upon impact with a target. Many critical infrastructures,
such as military bases, power plants, government buildings, and
transportation hubs, are potential targets for threats involving super-
energetic projectiles (Wang et al., 2023). Understanding how cement

and concrete compositions can influence the resistance of these
structures to such threats is important for enhancing their protection
(Cheng et al., 2023). With the evolving nature of security threats, it’s
important for governments and corresponding organizations to stay
ahead in terms of technology andmaterials. Research in this area can
lead to improvements in buildingmaterials and protectivemeasures,
ensuring higher levels of national security. By studying the impact of
super-energetic projectiles on cement and concrete compositions,
civil engineers can better design structures to minimize harm to
surrounding communities during such events (Park et al., 2023).
The research can also provide valuable insights into developing
more robust and resilient construction materials for both strategic
and civilian structures, making them safer against various threats,
including natural disasters.

It is obvious that the ability of unreinforced concrete to
withstand super-energetic projectiles may have its limitations,
especially in comparison to reinforced concrete or other specialized
materials designed explicitly for such purposes. Today, although
structures made with reinforced concrete have taken a very large
role in strengthening the strength and protective role of tactical
structures, however, for a deep understanding in fundamental
research, it is necessary to measure the efficiency of non-reinforced
concrete structures in terms of the qualitative role of the structural
composition in supporting safety against super-energetic projectiles
and its ability to absorb destructive projectile energy. Investigating
the role of unreinforced cement and concrete composition on
the ability to control and penetrate super-energetic projectiles
involves considering various factors that influence the strength and
performance of the material against such projectiles.

One key factor is the cement type used in the concrete
components. While ordinary Portland cement (OPC) is commonly
used, other types such as Portland pozzolana cement (PPC) or
slag cement can offer improved properties (Chintalapudi and
Pannem, 2022; Derakhshani et al., 2023). Higher-strength cement
types generally provide better performance for projectile resistance
(Wang et al., 2016). The water-to-cement ratio (w/c) significantly
influences both the strength and durability of concrete. A reduced
w/c ratio typically results in increased strength and enhanced
durability of the concrete mixture (Vu et al., 2009). Too much water
in the mix can weaken the concrete (Surahyo et al., 2019) and make
it more susceptible to damage from severe local collisions.

The choice of aggregates, such as gravel or crushed stone,
and their particle size significantly impact concrete properties
(Haach et al., 2011). Well-graded, dense aggregates with suitable
particle sizes can enhance the concrete’s ability to resist penetration
by projectiles (Dancygier et al., 2007).

Admixtures are chemical additives used to modify concrete
properties. Certain admixtures like silica fume, fly ash, or
superplasticizers can be used to enhance projectile resistance
by improving strength, reducing permeability, and increasing
the density of the concrete (Wang et al., 2016). The precise
proportioning of cement, aggregates, and water in the mix is
important for achieving the desired strength and performance
of the concrete. Proper mix design is essential for optimizing the
material’s ability to withstand the impact of intensive external forces
(Day, 2006). Adequate curing is essential for concrete to achieve its
maximum strength capacity. Proper curing ensures that the cement
hydrates fully, forming a strong matrix. Inadequate curing can lead
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to lower strength and increased susceptibility to damage (Pawar
and Kate, 2020). Lower porosity and permeability are desirable in
concrete meant to resist super-energetic projectiles. High porosity
allows easier penetration and can lead to spalling when exposed to
projectile impacts. The bond between the cementitious matrix and
the aggregate particles, known as the aggregate-cement interface, is
important for overall concrete strength (Liu Y. et al., 2022). A robust
interfacial bond enhances the concrete’s capacity to endure dynamic
loads and impact stresses.

Concrete gains strength over time due to the ongoing hydration
process (Neville and Brooks, 1987). Older concrete is generally
stronger and more durable than freshly placed concrete, making the
age of the concrete an important factor in its resistance to projectiles.

Data-driven research and the application of machine learning
(ML) offer several advantages in various fields, particularly in
cement and concrete research. By utilizing data-driven research
methods, scientists and engineers can comprehensively analyze
vast amounts of data from diverse sources like lab experiments,
simulations, and field tests (Brunton and Kutz, 2022). This
comprehensive approach leads to more robust and reliable
conclusions. Furthermore, ML models have the capability to
identify complex patterns and correlations in data that may not
be apparent through traditional analytical methods (Uddin et al.,
2022). The ability to uncover these intricate relationships helps
researchers identify critical factors that influence the performance
of concrete. Furthermore, the utilization of ML facilitates the
refinement of cement and concrete formulations tailored to
particular circumstances and challenges. By utilizing these models,
researchers can develop tailored, high-performance materials that
excel in particular environments.

Another advantage of ML is that it helps reduce experimental
costs (Mohamadian et al., 2021). By using ML models to predict
outcomes and behaviors, extensive physical testing becomes
less necessary, saving both time and resources. Moreover, ML
enables rapid prototyping by generating and evaluating numerous
hypothetical scenarios. This ability to quickly assess different
possibilities accelerates the research and development process
(Beheshtian et al., 2022).

The ML models are also adaptable, as they can be updated
and improved as new data becomes available. This ensures that
research remains up-to-date and relevant, reflecting the latest
information. Lastly, ML allows for multi-factor analysis, enabling
the simultaneous examination of multiple influencing factors. This
holistic approach provides a thorough understanding of how cement
and concrete behave under different conditions.

This study uses a data-driven researchmodel and the application
of ML to reveal the hidden, complicated and deep aspects of
the complex relationships of the role of concrete individual
compositions in creating resistance strength against intense
localized collisions with super-energetic objects. This research
on the interaction of super-energy projectiles with cement and
unreinforced concrete provides a deep understanding based on
the insights gained from application of data-driven ML models,
which has not been addressed in the field so far. Based on the
best knowledge of the authors, this groundbreaking research
offers a novel outlook on the utilization of data-driven ML
capabilities for the surveillance of quality control and safety
aspects in concrete structures. It achieves this by investigating

the correlation between the composition of concrete structures
and their capacity to withstand the impact of highly energetic
projectiles. Firstly, it enhances resistance by providing insights
into how different compositions and structural designs respond
to high-velocity impacts. This understanding allows engineers to
create structures that are more resistant to penetration and damage
caused by super-energetic projectiles. Secondly, this research
offers cost-effective solutions. By optimizing cement and concrete
compositions, it becomes possible to achieve higher levels of
protection without significantly increasing construction costs. This
allows for the development of structures that provide enhanced
security at a reasonable cost. Furthermore, the outcomes of this
research can guide the retrofitting of existing strategic structures. By
applying the knowledge gained, existing structures can be improved
to increase their resilience against emerging threats. Figure 1,
show the graphical parameter’s effect on the non-reinforced
concrete bulk.

2 Research background

Bullet penetration depth (BPD) or projectile impact in concrete
blocks represents a important and extensively studied research
area that holds significance construction industries. Numerous
investigations have been conducted to elucidate the underlying
mechanisms of BPD in concrete blocks, as these findings inform
building design, protective coatings, and the development of
materials resistant to ballistic impact. This review provides a
comprehensive overview of existing research pertaining to BPD in
concrete blocks.

Lai et al. (2018) present research findings demonstrating the
significant advantages of using ultra-high-performance concrete
(UHPC) in terms of increased resistance to high-velocity projectiles
and enhanced energy absorption capacity compared to conventional
concrete. The paper examines various properties of UHPC,
including compressive and flexural strengths, energy absorption
capability, and penetration depth. Additionally, numerical models
are developed to predict the performance of UHPC under various
types of multiple bullet impacts (Lai et al., 2018). Zhang et al. (2020)
investigate the important parameters influencing the depth of
penetration caused by impacts from small caliber non-deformable
projectiles in cement-based materials.The authors used two distinct
systems to assess the penetration resistance of the material: a
drop-weight impact test and a ballistic test. Their observations
indicate that concrete exhibits superior penetration resistance
compared to mortar, with compressive strength being the most
influential parameter affecting penetration depth (Zhang et al.,
2020). In another study, Cao et al. (2020) explore the efficiency
of ultra-high-performance fiber-reinforced concrete (UHPFRC) as
a structural material in high-risk applications with respect to its
ballistic tolerance.The study focuses on investigating the behavior of
coarse-aggregated layered UHPFRC through numerical simulations
(Cao et al., 2020). Additionally, a study conducted by Li et al. in
2020 analyzed the impact of significant design factors of ultra-high-
performance fiber-reinforced concrete on its resistance to bullets.
The authors conducted experiments to investigate the relationship
between impact velocity, concrete thickness, and bullet resistance.
The results indicated that increasing the thickness of the concrete
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FIGURE 1
Graphical parameter’s effect on the non-reinforced concrete bulk.

layer and utilizing high-performance fibers led to improved bullet
resistance performance (Li et al., 2020). The research conducted
by Mina et al. (2021) undertakes an evaluation of the capability
of optimized ultra-high-performance fiber-reinforced concrete
(UHPFRC) to withstand high-velocity impacts from projectiles.The
findings demonstrate that the new UHPFRC exhibits the capacity
to withstand projectile impacts with velocities exceeding 500 m/s,
highlighting its potential for use in structures requiring exceptional
durability and impact resistance. The study uses a series of impact
tests, and the authors conclude that the optimized UHPFRC
showcases notable enhancements in impact resistance compared
to conventional concrete materials (Mina et al., 2021). In a recent
publication in Scientific Reports, Campbell et al. (2022) investigate
the impact of bullets on building stones, revealing that such
impacts result in conical-shaped craters on the targeted materials.
The researchers conducted experiments utilizing sandstone and
limestone and observed that the crater shape and size were
influenced by the strength and hardness of the respective stones
(Campbell et al., 2022). Wu et al. (2022) contribute insights into
the deflection of projectiles upon penetrating composite concrete
targets. Their article discusses the influence of projectile mass,
velocity, and angle of incidence on the deflection response (Wu et al.,

2022). A study by Abbas et al. (2023) examines the behavior
and effectiveness of reinforced concrete composite blocks when
subjected to projectile impact forces. The findings offer valuable
insights into understanding the response of such structures when
faced with projectile impacts (Abbas et al., 2023).

Prior studies have established that BPD into concrete is
influenced by factors such as bullet caliber, bullet velocity,
bullet weight, and concrete strength. The incorporation of fiber
reinforcement and additives like steel can improve the concrete’s
resistance. However, previous studies have not utilized ML models
to predict the depth of BPD. This research seeks to bridge this gap
through the utilization of a substantial dataset and using four robust
MLmodels with diverse computational approaches, thereby offering
valuable ML insights for the engineering of defense structures.

3 Materials and methods

3.1 Data gathering

The present research has made use of an extensive and
comprehensive dataset consisting of 1,020 datapoints. These
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FIGURE 2
Methodology of the operational methodology of the SVM model.

datapoints were obtained from the National Institute of Standards
and Technology’s (NIST) Open-Source Data (OSD), which
encompasses multiple datasets. Additionally, the dataset has been
supplemented by the Materials in Extreme Dynamic Environments
(MEDE) program of the U.S. Army Research Laboratory (ARL),
which provides penetration data and concrete samples. Moreover,
the dataset incorporates data from previously published articles. It is
noteworthy that the dataset specifically accounts for a constant firing
distance and firing angle, with all shots recorded at a safe distance of
10 m and an angle of 90°. This dataset encompasses a wide array of
information, including various input features comprising of cement
composition (Cp), Ground granulation blast-furnace slag (GGBFS),
fly ash content (FA), water portion (Wp), super plasticizing agent
(Sp), coarse aggregate content (CA), fine aggregated portion (FA),
concrete sample age (t), concrete compressive strength (CCS),
gun type (G-type), bullet caliper (B-Cali), bullet weight (Wb),
and bullet velocity (Vb). The output variable of interest is the
bullet penetration depth (BPD). Each feature contributes to a
comprehensive understanding of the factors that influence bullet
penetration in cement. The MLP model’s ability to predict BPD
relies on the interplay of these features, reflecting both the properties
of the cement mass and the ballistic parameters of the bullet.
By including a diverse set of features, the model can capture the

complex physical interactions that occur during bullet impact and
penetration, leading to more accurate and reliable predictions.

3.2 Machine learning models

TheML specially ANN models is a powerful tool for predicting
key factors across various domains (De Lautour and Omenzetter,
2009; John et al., 2023). Four robust and leading models in
their class, including the powerful regressor of Support Vector
Machine (SVM), non-parametric technique of K-Nearest Neighbors
(KNN), classifier-regressor of Light Gradient Boosting Machine
(LightGBM) and the veteran successful artificial neural network
of multilayer perceptron (MLP), were proposed for application on
the dataset. Normalization is an important preprocessing step in
machine learning that involves scaling input variables to a standard
range, typically 0 to one or -1 to 1, to ensure that each feature
contributes proportionately to the final prediction. In this study
some comprehensive measures have taken to address the potential
impact of outliers or noise on our feature selection technique.
These steps are integral to our methodology, ensuring that proposed
model’s performance is robust and reliable. The normalization
technique used was min-max scaling, which transforms the data
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FIGURE 3
Methodology of the working mechanism of the MLP model.

FIGURE 4
Flow chart for implementing four ML models.
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TABLE 2 Allocation of unique code for variables in the feature selection
step.

Variable Unit Code

Cp (kg/m3) ξ1

GGBFS (kg/m3) ξ2

FA (kg/m3) ξ3

Wp (kg/m3) ξ4

Sp (kg/m3) ξ5

CA (kg/m3) ξ6

FAA (kg/m3) ξ7

t (day) ξ8

CCS (Mpa) ξ9

G-Type - ξ10

B-Cali (mm) ξ11

Wb (grains) ξ12

Vb (m/s) ξ13

according to Eq. 1:

x′ = max(x) − min(x)x− min(x) (1)

where x represents the initial value, x′ denotes the normalized value,
and min(x) and max(x) signify the minimum and maximum values
of the feature, respectively.

SVM is a meticulous regression and classification model that
operates by identifying the hyperplane that optimally separates the
data points into distinct classes. In the case of a numerical dataset,
SVM seeks to locate and adjust a hyperplane that maximizes the
margin between the different classes. To achieve this, SVM initially
transforms the numerical features into a higher-dimensional space
using a kernel function, such as the radial basis function (RBF)
or polynomial kernel. This enables SVM to identify a nonlinear
decision boundary capable of separating the data points effectively.
Subsequently, SVM endeavors to identify the hyperplane optimizes
the separation margin between distinct classes. The margin refers
to the distance between the hyperplane and the closest data points
from each class. By maximizing this margin, SVM aims to establish
a robust decision boundary that remains resilient to noise and
can generalize well to new data instances. In scenarios where the
data is not linearly separable, SVM permits a certain degree of
misclassifications through the introduction of slack variables that
penalize such misclassifications. The degree of penalty is controlled
by a regularization parameter, which helps prevent overfitting issues
(Pisner and Schnyer, 2020). Figure 2 represents the operational
methodology of the SVMmodel.

The KNN model is a type of non-parametric learning method
suitable for both regression and classification. Its methodology
entails identifying the K nearest neighbors within the training

dataset relative to a specific input data point and leveraging their
labels or values to forecast the label or value of the input data
point. For numerical datasets, K-Nearest Neighbors (KNN) employs
a distance metric, like Euclidean or Manhattan distance, to gauge
the resemblance between data points. The algorithm assesses the
input data point against each instance in the training set, selecting
the K closest neighbors based on their proximity. Notably, one of
the key strengths of KNN lies in its simplicity and user-friendliness,
as it does not require any assumptions about the data distribution
(Abu Alfeilat et al., 2019).Themost commonly used distancemetric
in KNN, calculated as (Eq. 2):

d(x,y) =
p√(

n

∑
i=1
|xi − yi|

p) (2)

where, d(x,y) is distribution distance of sample data between test and
train data; xi is the test data sample; yi is the train data sample.

LightGBM, is a gradient-boosting framework specifically
designed to handle vast and complex datasets with numerous
dimensions. Its operation involves creating multiple decision trees,
with each subsequent tree aiming to correct the deficiencies of its
predecessor. When dealing with numerical datasets, LightGBM
uses a histogram-based model to bin the numerical features
into discrete values. This approach reduces memory usage and
accelerates the training process. LightGBM also utilizes a feature
parallelism technique, dividing the dataset into smaller subsets to
train multiple decision trees in parallel. During training, LightGBM
optimizes a loss function, such as mean squared error or log loss,
using a gradient-based approach to minimize the discrepancy
between predicted and actual values. It uses a leaf-wise growth
strategy, adding leaves to the tree based on the largest reduction
in the loss function. One noteworthy feature of LightGBM is its
ability to effectively handle imbalanced datasets through weighted
sampling and gradient-based re-sampling techniques. Additionally,
it supports early stopping to mitigate overfitting issues and enhance
the generalization performance of the model (Al Daoud, 2019).

The MLP is a widely-used type of Artificial Neural Network
(ANN) that consists of multiple layers of artificial neurons, drawing
inspiration from the structure of the human brain. The MLP model
operates by iteratively adjusting the weights (W) and biases (B)
of the neurons in the network to minimize the associated error
between the estimated final target and the actual final target. This
iterative adjustment process is known as backpropagation. For the
application of the MLP model on numerical datasets, the data must
first undergo preprocessing to ensure it is in a suitable numerical
format. Once the numerical dataset has been prepared, it is then
divided into three distinct subsets: training, validation, and test sets.

During the training phase, the MLP model aims to optimize
the weights and biases of the neurons in the network using the
training set.This is achieved by repeatedly applying backpropagation
models to minimize the error between the predicted output
and the actual output for each example in the training set.
Once the intricate training process is completed, the network
is considered sufficiently trained for validation purposes. During
the validation phase, the validated dataset is utilized to evaluate
the performance of the network and ensure its adherence to
the expected output specifications. Unlike the training phase that
involved adjusting the weights and biases of the network’s neurons,
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TABLE 3 Feature selection performance ranking by MLP model.

Number of input variables Input variables RMSE (cm)

1 ξ5 0.95956

2 ξ2, ξ5 0.84695

3 ξ5, ξ2, ξ9 0.75423

4 ξ9, ξ5, ξ2, ξ7 0.63155

5 ξ2, ξ7, ξ9, ξ5, ξ6 0.52545

6 ξ9, ξ8, ξ5, ξ2, ξ6, ξ7 0.42166

7 ξ1, ξ7, ξ9, ξ8, ξ5, ξ7, ξ6 0.37214

8 ξ3, ξ6, ξ5, ξ2, ξ1, ξ8, ξ7, ξ9 0.35234

9 ξ1, ξ11, ξ3, ξ2, ξ7, ξ6, ξ9, ξ5, ξ8 0.38563

10 ξ8, ξ11, ξ1, ξ6, ξ3, ξ5, ξ12, ξ9, ξ2, ξ7 0.40633

11 ξ11, ξ2, ξ4, ξ9, ξ7, ξ8, ξ3, ξ12, ξ6, ξ1, ξ5 0.43525

12 ξ6, ξ5, ξ7, ξ4, ξ12, ξ3, ξ8, ξ9, ξ11, ξ1, ξ2, ξ13 0.45426

13 ξ10, ξ3, ξ1, ξ9, ξ11, ξ13, ξ8, ξ8, ξ2, ξ7, ξ12, ξ5, ξ6 0.47452

the validation dataset assesses the network’s effectiveness, allowing
for necessary adjustments to maintain optimal performance levels
(Camacho Olmedo et al., 2018). Figure 3 illustrates the operational
methodology of the Multilayer Perceptron (MLP) model.

3.3 Feature selection

Feature selection stands out as a essential technique in the
ML data driven researches. Its principal objective is to discern
a subset of relevant features that substantially influence the
prediction of BPD. By adeptly diminishing the dimensionality of
input data, feature selection elevates the efficacy of ML models.
Its significance stems from its capability to pinpoint pertinent
and informative features within the dataset, while concurrently
eliminating extraneous and duplicative ones. This not only
alleviates computational burdens but also guards against overfitting
challenges (Saeys et al., 2007). In academic research, diverse
models have emerged to streamline feature selection, comprising
filter, wrapper, and embedded techniques. Filter methods employ
statistical or correlation-based metrics to evaluate the relevance
of individual features. Conversely, wrapper methods employ a
designated learning model to assess subsets of features that yield
optimal performance. Embedded methods, however, rely on the
learning model to ascertain feature importance. Feature selection
profoundly influences both the efficacy and efficiency ofMLmodels.
It enhances model accuracy and generalization capacity while
concurrently diminishing the computational resources needed
for analysis.

The flowchart technique shown in Figure 4 is used to predicted
the BPD into a concrete block using ML models.

4 Results and discussion

4.1 Data analysis

In anyML-driven research frameworks, the detailed description
of the dataset is of paramount importance and must not be
overlooked. This section offers an exhaustive account of the data
employed in the study, detailing its scope, size, and quality. A
thorough understanding of the dataset is crucial to ensure the
validity and reliability of the research findings. Without a detailed
data description, replicating the study or verifying its results by other
researchers becomes impractical. Moreover, it is essential to ensure
that the dataset used in ML research is unbiased and representative
of the target population.

The dataset used in this ML-driven research paper consists of a
comprehensive collection of information regarding various variables
pertinent to the study. Table 1 provides an extensive summary of
the input and output variables critical for predicting the BPD in
concrete blocks.

4.2 Feature selection and engineering

The process of feature engineering plays an important role
in determining the optimal combination of input parameters
required for hybrid models. Given the versatility of neural networks
in addressing various regression, clustering, classification, and
stochastic problems, theMLPmodel was chosen as the foundational
model for implementing the feature selection technique. Through
the analysis of various data record subsets for both training and
testing phases, the MLP model proficiently diminishes the count
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FIGURE 5
K-fold validation based on determination of select the test/train evaluated.

of independent variables. Iterative experimentation revealed that a
two-layer MLP, configured with eight neurons in the initial hidden
layer and six neurons in the subsequent hidden layer, optimally
serves as the feature selectionmechanism.This configuration ismost
effective in minimizing the Root Mean Square Error (RMSE) of
the predicted numerical values for BPD. The determination of the
specific architecture of the MLP model with two hidden layers and
eight and six nodeswas based on a thorough andmethodical analysis
of relevant literature, empirical experimentation, and optimization
techniques to ensure the model’s effectiveness and efficiency for the
given task.

The primary objective of the feature selection technique is
to identify the optimal configuration of the 13 input variables
listed in Table 2. This entails identifying the most favorable
set of features capable of yielding the lowest RMSE values
for penetration depth. Failing to identify the ideal feature
combination could result in inaccurate or erroneous outcomes,
thereby undermining the credibility of the entire implementation
process. Hence, selecting the most suitable features becomes
imperative in order to maximize the precision and reliability of
the analysis.

The findings of the feature selection analysis have been
succinctly presented in Table 3 to facilitate comprehension. The
table clearly indicates the attainment of an optimal pore pressure
root mean square error (RMSE) value of 0.35234 cm, achieved
through the utilization of a distinct combination of eight variables.
The significance of this discovery cannot be overstated, as it
underscores the critical role of feature selection in enhancing the
accuracy and precision of the obtained results. It is important to

emphasize that any model incorporating more than 13 features
is expected to exhibit a higher RMSE value in comparison
to the identified combination of eight variables (ξ3, ξ6, ξ5,
ξ2, ξ1, ξ8, ξ7, and ξ9), which has been demonstrated as the
most effective. Therefore, the identification of the appropriate
feature combination becomes imperative in order to achieve
optimal outcomes.

The Cp plays an important role in determining strength
as it binds the cement grains together and influences the
amount of BPD. Similarly, the Sp also has a significant impact
on strength. The compressibility of cement, measured by the
CCS, affects the BPD due to its influence on the amount of
compression. Additionally, the industry by-product known
as GGBFS is utilized as a strength-enhancing additive in
cement. The CAA is an important parameter for determining
compressive strength, representing the pressure applied to
the cement for strength evaluation. The t is a fundamental
parameter for cement and its durability since cement gradually
loses its effectiveness over time, thereby affecting BPD. The
FA significantly affects the rheological, mechanical, and
strain properties of cement. Furthermore, the FAAA greatly
impact cement mortar and consequently influence BPD. On
the other hand, the G-Type, B-Cali, Wb, and Vb remain
constant and are not highly influential in feature selection for
predicting BPD.

Following the determination of the optimal architecture
for the ML, several techniques were investigated to create
distinct, mutually exclusive training and test data subsets for
model evaluation. Initially, a method was employed where
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TABLE 4 Determination of statistical parameter related to BPD prediction using artificial intelligence models for train, test and validation data.

Dataset Models
Units

APD
(%)

AAPD
(%)

SD
(cm)

RMSE
(cm)

R2

-

Train
data

KNN −0.055 0.249 0.176 0.1756 0.9981

SVM 0.033 0.405 0.361 0.3610 0.8986

MLP 0.088 0.362 0.385 0.3850 0.8898

LightGBM 0.035 0.430 0.405 0.4051 0.8758

Test data

KNN −0.025 0.324 0.181 0.1811 0.9905

SVM −0.090 0.531 0.367 0.3677 0.8969

MLP −0.012 0.454 0.363 0.3634 0.8883

LightGBM 0.050 0.476 0.406 0.4063 0.8743

Validation
data

KNN 0.046 0.326 0.185 0.1863 0.9914

SVM 0.034 0.540 0.350 0.3503 0.8973

MLP 0.068 0.540 0.340 0.3408 0.8890

LightGBM −0.117 0.459 0.445 0.4475 0.8815

FIGURE 6
Illustrates a cross-plot to prediction of BPD based on the testing dataset utilizing four ML models such as SVM, KNN, LightGBM, and MLP.
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FIGURE 7
Illustrates of the relative error for prediction of BPD based on the test dataset utilizing four ML models such as SVM, KNN, LightGBM, and MLP.

30% of the available data records were randomly selected
for the test subset, with the remaining 70% allocated to
the training subset. However, this approach fell short in
preventing overfitting during feature selection, as certain features
disproportionately influenced the predictions. To address this
issue, a more effective approach was adopted using the 6-
fold cross-validation technique, which effectively mitigated the
problem of overfitting. The rationale behind choosing 6-fold
cross-validation for evaluating feature selection performance
was to balance computational efficiency, statistical robustness,
and the trade-off between bias and variance in performance
estimation.

The 6-fold cross-validation approach entails partitioning the
complete dataset into six mutually exclusive segments. One segment
is used as the evaluation subset, while the remaining five serve
as the training subset. Each configuration involves assessing the
machine learning model 60 times, corresponding to 10 repetitions
for each training and test subset combination. The model with the
lowest Root Mean Square Error (RMSE) for predicting BPD, as
compared to the observed BPD, was selected for each of the ten
training/test subset combinations. The mean of the ten optimal
RMSE values across six iterations was considered indicative of
the predictive accuracy and overall performance of the feature
selection process. This 6-fold validation procedure is illustrated
in Figure 5.

4.3 Model performance

This research aims to establish and focus on four main ML
based strategies: SVM, KNN, LightGBM, and MLP. These models
were trained on an extensive dataset comprising experimental
data encompassing various bullet types and concrete block
configurations. The findings of our study demonstrate that data-
driven ML models can be remarkably effective in predicting BPD
in concrete blocks, with potential applications in diverse real-world
scenarios.

During the evaluation and comparison of these models
use various metrics, including Eqs 3–7. The Average Percentage
Difference (APD), AbsoluteAverage PercentageDifference (AAPD),
Standard Deviation (SD), Root Mean Square Error (RMSE), and
the Correlation Coefficient (R2) are metrics used to evaluate
model performance. Specifically, the Correlation Coefficient (R2)
quantifies the proportion of variance in the dependent variable that
is attributable to the independent variable.

APD =

n

∑
i=1
( BPDCal.−BPDPred.

BPDCal.
x100)

i

n
(3)

AAPD =

n

∑
i=1
|( BPDCal.−BPDPred.

BPDCal.
x100)

i
|

n
(4)
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FIGURE 8
Error histogram plot prediction of BPD using four ML models (SVM, KNN, LightGBM, and MLP).

SD =
√

n

∑
i=1
(( 1

n

n

∑
i=1
(BPDCal.i −BPDPred.i))

i
−( 1

n

n

∑
i=1
(BPDCal.i −BPDPred.i))imean)

2

n− 1
(5)

RMSE = √ 1
n

n

∑
i=1
(BPDCal.i −BPDPred.i)

2 (6)

R2 = 1−

N

∑
i=1
(BPDPred.i −BPDCal.i)

2

N

∑
i=1
(BPDPred.i −

∑nI=1BPDCal.i

n
)
2

(7)

Four robust models, namely, SVM, KNN, LightGBM, and
MLP, were used to predict the BPD. Each model underwent
separate execution to train and validate the models, followed by
independent testing. To determine the accuracy, the dataset was
divided into three subsets. Specifically, 70% of the data records
were assigned to the training subset, 15% were allocated for
independent testing, and the remaining 15% were set aside for
model validation.

This article has comprehensively evaluated the performance of
multiple models, including SVM, KNN, LightGBM, and MLP, for
the prediction of BPD. The outcomes of these models have been
meticulously presented in Table 4, incorporating the data values
from the training, testing, and validation subsets.

The findings of the validation data set are presented in Table 4,
revealing the exceptional performance of the KNN model with
respect to the root mean square error (RMSE), average percentage
difference (APD), absolute average percentage difference (AAPD),
and standard deviation (SD), which stand at 0.1811 cm−0.025,
0.324, and 0.181, respectively. A comparison of the KNN
model’s precision with the other three models on the validation
subset underscores its superiority in accurately predicting BPD.
Specifically, the SD value of 0.181 achieved by the KNN model
surpasses the respective SD values of 0.406, 0.367, and 0.363
obtained by the evaluated SVM, MLP, and LightGBMmodels.

TheR-square parameter serves as a important statisticalmeasure
for evaluating and comparing various parameters. It evaluates the
model’s fit to the data by measuring the proportion of variance
in the dependent variable that is explained by the independent
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FIGURE 9
Determination of error vs. iteration using four ML models (SVM, KNN, LightGBM, and MLP).

FIGURE 10
Illustration for the Pearson correlation versus input variables for prediction of BPD based on ML models.

variables. Figure 6 presents cross plots illustrating the predicted
BPD values for the training, testing, and validation datasets,
demonstrating significantly higher prediction accuracy compared to
other evaluated models.

To evaluate the accuracy of the KNNmodel, the results shown in
Table 4 and Figure 6 for the training, testing, and validation subsets
were analyzed. The analysis indicates that the KNN model achieves
exceptionally low errors for BPD, with RMSE values of 0.4389,
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0.1811, and 0.1863 cm, and R2 values of 0.9965, 0.9970, and 0.9969,
respectively. Comparing the BPD prediction performance of the
four ML models, the KNN model emerged as the best performer,
followed by the SVM and MLP models, while the LightGBM
model demonstrated the least favorable prediction performance.
These findings provide valuable insights into the effectiveness
of different ML models for BPD prediction and underscore the
importance of parameter optimization in achieving accurate and
reliable predictions across various applications.

Figure 7 illustrates the relative error for predicting of BPD based
on the test dataset using four ML models: SVM, KNN, LightGBM,
and MLP. This figure effectively demonstrates the performance
accuracy of the models for RE. The graphical representation in
this figure allows for the conclusion that the models’ performance
accuracy and the computational errors for each test dataset have
been effectively determined. According to this figure, it is evident
that the computational error for KNN is within the range of −1 <
RE < 1, while for the other models, it is within the range of −8 < RE
< 4. This clearly indicates the high accuracy of the KNN model for
accurate and precise prediction of BPD.

Figure 8 presents an error histogram plot that showcases the
prediction errors for BPD using four robust ML models: Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), LightGBM,
andMLP. Each of the five histograms represents the prediction error
BPD for each model and demonstrates a normal distribution of
predict errors centered around zero, with a relatively narrow spread
and no discernible positive or negative bias. This plot enables a
comprehensive analysis of the models’ performance, facilitating the
identification of the model that exhibits the best performance with a
normal error distribution. Upon thorough examination, it becomes
apparent that theKNNmodel’s normal distribution of data surpasses
that of the other models, indicating a superior and more accurate
standard deviation. Considering the comparison of these models
based on the information presented in Table 4 and Figure 8, it can
be concluded that the performance accuracy of the models can be
ranked as follows: KNN > SVM >MLP > LightGBM.

Figure 9 illustrates the error rates for the SVM, KNN,
LightGBM, andMLPmodels as a function of iteration.The findings
of this study indicate that the MLP and LightGBM models initially
exhibit higher error values, which gradually decrease over time.
However, this trend is not observed in the KNN and SVMmodels.

Upon careful analysis of the figure, it becomes apparent that the
MLP model achieves higher accuracy than the other models at the
beginning of the iteration. At the threshold of 17, it surpasses the
LightGBMmodel with a lower error value. In the subsequent phase,
at iteration 50, the LightGBM model surpasses the MLP model,
demonstrating superior performance accuracy. Conversely, these
variations are not observed in the KNN and SVM models, where
the performance accuracy consistently decreases from the start to
the end of the iteration.

Examining the zoomed-in portion of the figure (iteration
60–100) provides a clearer depiction of the ongoing performance
patterns of thesemodels. As established, theKNNmodel exhibits the
highest performance accuracy among the models, with SVM, MLP,
and LightGBM following in descending order of accuracy.

Pearson’s coefficient (R) is a robust method for determining the
relative relationship between input and output variables. It expresses
the correlation coefficient on a scale from −1 to +1, where +1

signifies the strongest positive correlation, −1 signifies the strongest
negative correlation, and 0 indicates no correlation. The calculation
of Pearson’s correlation coefficient is given by Eq. 8.

R =

n

∑
i=1
(∂i − ∂)(∝i −∝)

√
n

∑
i=1
(∂i − ∂)

2
n

∑
i=1
(∝i −∝)

2

(8)

Figure 10 compares Pearson and Spearman correlation
coefficients, offering valuable insights into the relationships between
the input variables and BPD. Notably, a negative correlation was
observed with CCS, CA, Vb, B-Cali, t, and GGBFS, while a positive
correlation was found with Sp, G-Type, Wp, FAA, FA, Cp, and
Wb. By using both Pearson and Spearman correlation methods,
it is possible to develop models based on the predicted outcomes
for BPD. Analysis of this figure indicates that certain parameters,
including Sp, GGBFS, CCS, FAA, CA, t, Cp, and FA, have a
significant effect on BPD.

5 Conclusion

The evaluation of concrete structures’ ability to withstand
projectile penetration holds great significance, particularly from a
general defense standpoint. The objective of this investigation is
to predict the penetration depth (BPD) utilizing robust models,
including Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Light Gradient Boosting Machine (LightGBM), and
Multilayer Perceptron (MLP) as ML models. The dataset used
consists of 1,020 datapoints sourced from the National Institute
of Standards and Technology (NIST), encompassing various
parameters such as cement content (Cp), ground granulation
blast-furnace slag (GGBFS), fly ash content (FA), water portion
(Wp), superplasticizer content (Sp), coarse aggregate content (CA),
fine aggregate content (FAA), concrete sample age (t), concrete
compressive strength (CCS), gun type (G-type), bullet caliper (B-
Cali), bullet weight (Wb), and bullet velocity (Vb).

The BPD serves as the output variable, and 4 ML models
were developed using the dataset: 70% of the data was allocated
for training the models, while 15% was set aside for testing and
validation each. Feature selection techniques revealed that the MLP
model, incorporating eight input variables (FA, CA, Sp, GGBFS,
Cp, t, FAA, and CCS), provides the most accurate predictions for
BPD across the entire dataset. Hyperparameter tuning using cross-
validationwill be used in this phase tomitigate the risk of overfitting.
The results indicate that the average of the ten best Root Mean
Square Error (RMSE) values obtained from six iterations serves as a
representative measure of the prediction accuracy and performance
of the feature selection process.

Comparing the four models used in this study, KNN
demonstrates a distinct superiority over the other methods.
KNN, a non-parametric ML model used for classification and
regression, possesses several advantages, including simplicity,
non-parametric nature, no training requirements, robustness to
noisy data, suitability for large datasets, and interpretability. The
results reveal that KNN outperforms the other models presented
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in this paper, exhibiting an R2 value of 0.9905 and an RMSE
value of 0.1811 cm, signifying higher accuracy in its predictions
compared to the other models. Finally, based on the error analysis
across iterations, it is evident that the final accuracy error of the
KNN model surpasses that of SVM, MLP, and LightGBM models,
respectively.
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Glossary

AAPD Absolute average percentage difference

APD Average percentage difference

ARL Army research laboratory

B-Cali Bullet caliper

BPD Bullet penetration depth

CA Coarse aggregate content

CCS Concrete compressive strength

Cp Cement content

d(x,y) Distribution distance of sample data between test and train data

DTIC Defense technical information center

FA Fly ash content

FAA Fine aggregate content

GGBFS Ground granulation blast-furnace slag

G-type Gun type

KNN K- means, k-nearest neighbors

LightGBM Light gradient boosting machine

max(x) Maximum values of the feature

MEDE Materials in extreme dynamic environments

min(x) Minimum values of the feature

ML Machine learning

NIST National institute of standards and technology

OSD Open-source data

RMSE Root mean square error

SD Standard deviation

Sp Superplasticizer content

SVM Support vector machine

t Concrete sample age

Vb Bullet velocity

Wb Bullet weight

Wp Water portion

x The original value

x′ The normalized value

xi Test data sample

yi Train data sample
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