
TYPE Original Research
PUBLISHED 18 September 2024
DOI 10.3389/fmats.2024.1412701

OPEN ACCESS

EDITED BY

Jincheng Du,
University of North Texas, United States

REVIEWED BY

Ahmed El-Fiqi,
National Research Centre, Egypt
Haizheng Tao,
Wuhan University of Technology, China

*CORRESPONDENCE

Jayadeva,
jayadeva@ee.iitd.ac.in

N. M. Anoop Krishnan,
krishnan@iitd.ac.in

RECEIVED 05 April 2024
ACCEPTED 22 July 2024
PUBLISHED 18 September 2024

CITATION

Zaki M, Jayadeva and Krishnan NMA (2024),
Interpretable machine learning for
understanding compositional and testing
condition effects on refractive index, density,
dielectric constant, and loss tangent of
inorganic melts and glasses.
Front. Mater. 11:1412701.
doi: 10.3389/fmats.2024.1412701

COPYRIGHT

© 2024 Zaki, Jayadeva and Krishnan. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Interpretable machine learning
for understanding compositional
and testing condition effects on
refractive index, density,
dielectric constant, and loss
tangent of inorganic melts and
glasses

Mohd Zaki1, Jayadeva2,3* and N. M. Anoop Krishnan1,3*
1Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India, 2Department
of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India, 3Yardi School of
Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India

Artificial intelligence (AI) and machine learning (ML) have enabled property-
targeted design of glasses. Several machine learning models and open-
source tools in the literature allow researchers to predict the optical, physical,
mechanical, and electrical properties of glasses as a function of their chemical
compositions. However, these properties also depend on testing conditions. In
this paper, we train machine learning models by considering composition and
wavelength, temperature, and frequency to predict the refractive index, density,
and the two electrical properties, i.e., dielectric constant and loss tangent of
glasses, respectively. The predictions of trainedmodels are explained using SHAP
analysis, revealing that testing conditions, such as wavelength and temperature,
interact majorly with network formers while predicting refractive index and
density. In the case of electrical properties, network formers and frequency
have the highest interactions, followed by network modifiers and intermediates,
and hence govern predictions of dielectric constant and loss tangent. Overall,
AI/ML models that can predict the properties of glasses as a function of
their composition and testing conditions, coupled with SHAP plots, provide
a practical tool to develop a range of glasses for application under varying
conditions.

KEYWORDS

inorganic glasses, material discovery, machine learning, testing conditions, dielectric
constant, loss tangent, refractive index

1 Introduction

Applications of inorganic glasses in different fields are widely documented. However,
developing glasses for targeted applications remained a resource-intensive task until the
following pioneering works (Dreyfus and Dreyfus, 2003; Brauer et al., 2007; Echezarreta-
López and Landin, 2013), where the authors demonstrated that AI/ML models could learn
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FIGURE 1
Visualizing data of refractive index (A) Chemical components and their frequency, (B) Number of multicomponent glasses, and (C) Histogram of
property values.

the compositional dependence of different properties. Later,
researchers used data-driven machine learning to predict various
properties of glasses by using large datasets (Anoop Krishnan et al.,
2018; Bishnoi et al., 2019; Liu et al., 2019; Alcobaça et al., 2020;
Deng, 2020; Cassar et al., 2021b; Bishnoi et al., 2021; Cassar et al.,
2021a; Zaki et al., 2022b; Mannan et al., 2023; Singla et al., 2023).
Recently, Cassar (2021) used a physics-informed neural network to
predict the glass transition temperature of oxide glasses. Similarly,
physics-informedmachine learningwas used byBødker et al. (2022)
to predict glass structure. Further, Bishnoi et al. (2022) used physics-
driven models to predict the optical, physical, mechanical, and
thermal properties of glasses. To further facilitate the rational
discovery of glasses, researchers released software packages like
PyGGi (pyggi–Substantial AI, n.d.), and GlassPy (Cassar, 2023).

Understanding how different input parameters contribute
to machine learning model predictions is as essential as
obtaining accurate property predictions. Daniel et al. (Cassar et al.,
2021a) and Zaki et al. (2022b) addressed these challenges
in glass discovery through the use of SHAP analysis to
quantify the compositional dependence of properties in oxide
glasses. Later, Ravinder et al. (Bhattoo et al., 2023) trained

25 machine learning models to predict glasses’ physical,
electrical, mechanical, optical, and electrical properties and
explained their composition dependence through SHAP analysis.
Recently, Mandal et al. (2023) designed Na-ion conducting
glasses using a machine learning model and experimental
validations.

Through past experiments, it has been known that the properties
of glasses are also a function of processing and testing conditions.
Zaki et al. (2023) used text mining and natural language processing
tools to collect data on the composition, annealing temperature,
testing load, and hardness of glasses. The authors then trained
machine learning models that considered such parameters and
predicted the hardness of oxide glasses. Their study revealed
that including processing (annealing temperature) and testing
variables (testing load) in the dataset improved predictions of
Vickers hardness. Developing functional glasses under different
testing conditions requires AI/ML models that can consider both
composition and testing conditions as input, and predict the desired
properties (Zaki et al., 2023). Glass properties such as refractive
index, dielectric constant, and loss tangent are a function of
wavelength or frequency; while density is a function of both
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FIGURE 2
Visualizing data of density (A) Chemical components and their frequency, (B) Number of multicomponent glasses, and (C) Histogram of property values.

composition and temperature (Varshneya and Mauro, 2019). The
existing models can predict the density, refractive index, dielectric
constant, and loss tangent of inorganic glasses as a function of
their compositions at fixed testing conditions. Therefore, the major
challenge is to develop machine learning models that can predict
the properties by considering the testing conditions. In this work,
we develop machine learning models to predict refractive index,
dielectric constant, loss tangent as a function of composition and
wavelength, and density as a function of glass composition and
temperature. We use SHAP analysis to explain the effect of different
input parameters on property values. Through SHAP analysis, the
interaction between chemical components and testing conditions is
also reported which will assist in appropriate selection of chemical
compounds for targeted property. The remainder of the paper is
organized as follows. First, we discuss dataset preparation, how
machine learning models are trained, and how their predictions
are explained. Subsequently, in the Results and discussion section,
we dwell on dataset details and performance of the trained
machine learning models. This is followed by a discussion of
SHAP analysis to explain the compositional and testing parameter
dependence of glass properties.The paper ends with the Conclusion
section, where we summarize key results and discuss future
research directions.

2 Methodology

2.1 Dataset preparation

Several researchers have studied the compositional governance
of optical, physical, electrical, and mechanical properties of glasses
using data from Sciglass (https://github.com/epam/SciGlass) and
Interglad Ver (2020) databases. However, very few accounted for
processing and testing conditions (Zaki et al., 2022a). Here, we use
the Interglad Ver (2020) database to obtain the composition and
wavelength associated with the refractive index, dielectric constant,
and loss tangent of glasses.We also compiled a dataset of glass density
at different testing temperatures. The compiled dataset had a few
samples for which the sum of all components did not add up to 100%.
Since these were very few, they were discarded. In some cases, the
units of testing variables were different. We converted all units to the
same scale. For example, frequencies are reported in units like Hz,
kHz, MHz, and GHz; temperature is reported in both Kelvin and
degrees Celsius.Therefore, all frequencies were scaled to GHz, and all
temperature values to degrees Celsius for the sake of consistency. In
previousworks(Bishnoi et al., 2021;Cassar et al., 2021a;Bhattoo et al.,
2023), duplicated values arising from different processing and testing
conditions; therefore, a duplicate removal step was required. In this
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FIGURE 3
Visualizing data of dielectric constant (A) Chemical components and their frequency, (B) Number of multicomponent glasses, and (C) Histogram of
property values.

work, the testing conditions are also considered as variable, andhence,
this step has been obviated.

Machine learning models perform well when trained on
sufficient good quality data. Hence, random entries were verified
with their source through natural language processing-based
approaches to ensure good quality datasets for training the models.
To reduce outliers, only those chemical components that were
present in at least 30 glasses were chosen to be part of the dataset.
After all preprocessing and cleaning steps, the dataset was split
into 80:20 ratios to obtain training and test sets. The training set
was subjected to 10-fold cross-validation, and the best-performing
model on the validation set was selected as the finalmodel. Note that
the test set is kept hidden and is used only after the selection of the
best model for final evaluation. This strategy is the same as used in
one of the earlier works (Bhattoo et al., 2023).

2.2 Machine learning, hyperparameter
optimization, and explainability

Extreme gradient boosting (XGBoost) models have become
quite popular for accurately predicting the properties of glasses.

XGBoost is a gradient boosting tree-based model, i.e., the
model output is based on the values proposed by different
trees (Chen and Guestrin, 2016). We trained machine learning
models by using the XGBoost python package. The model
hyperparameters were optimized using the Optuna python
package (Akiba et al., 2019). The details of hyperparameter
optimization are provided in the previous work (Bhattoo et al.,
2023). The hyperparameters used and their ranges are provided
in Supplementary Tables S1–S3 of Supplementary Material file
of this work.

Glass researchers and manufacturers also seek to understand
how glass constituents influence individual properties.Themachine
learning models’ predictions were explained using SHAP analysis
(Lundberg and Lee, 2017), a game theoretic approach, that decides
the importance of each component with regard to the predicted
value. This is computationally prohibitive for multicomponent
glass systems and large datasets. Therefore, we use the built-in
functionality of TreeExplainer in the SHAP Python package, which
provides a faster implementation. In this work, we use SHAP
riverflow, scatter, and interaction plots to explain how different
chemicals like network formers, modifiers, intermediates, other
compounds, and testing conditions govern the properties of glasses.
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FIGURE 4
Visualizing data of loss tangent (A) Chemical components and their frequency, (B) Number of multicomponent glasses, and (C) Histogram of
property values.

Each line in the SHAP riverflow plot corresponds to a unique data
point, and the ordinates correspond to the effect of the respective
input feature toward model predictions. Therefore, SHAP riverflow
plots are used to provide detailed explanations for individual data
points. However, SHAP scatter and interaction plots are used
to show the global behaviour of the input features on the glass
properties of interest.The readers are requested to refer to the works
of (Cassar et al., 2021a; Zaki et al., 2022b; Bhattoo et al., 2023) to
learn more about the SHAP analysis in the context of glass science.

3 Results and discussion

3.1 Dataset visualization

3.1.1 Refractive index
Figure 1A shows chemical components and the number of

glasses in which they are present.There exist both oxide and fluoride
glasses for which refractive index is known at different wavelengths.
Some of the most frequently found network formers are SiO2 and
B2O3, network modifiers like BaO and Na2O, and intermediates like

Al2O3 and TiO2. Figure 1B shows the presence of multicomponent
glasses with the maximum number of ternary glasses followed by
binary glass systems. The refractive index values in the dataset lie
in the range of 1.4–2.5 (Figure 1C), with the maximum number of
glasses with refractive index close to 1.65. Note that the dataset of
the refractive index consists of glasses at the following wavelengths:
480 nm, 486.1 nm, 546.1 nm, 643.8 nm, and 656.3 nm.

3.1.2 Density
Figure 2 shows the dataset of the density of glasses in a

temperature range of 100 °C–1000 °C. In this dataset, only oxide
glasses are present, as seen in Figure 2A. Like the refractive index
dataset, this data also consists of SiO2 and B2O3 as the most
frequently found network formers, followed by network modifiers
like Na2O and CaO and intermediates like PbO and Al2O3. In
Figure 2B, it is observed that the majority of glasses are binary,
ternary, and quaternary. The density of studied glasses varies from
1.2 to 8.4 (Figure 2C). It is interesting to observe very high density
(>8) in the dataset, which corresponds to glasses having Bi2O3, a
rare Earthmetal oxide withwide applications inmedical devices and
radioactive coatings. The glasses having high density values in the
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FIGURE 5
Visualizing predictions of trained ML models for (A)refractive index, (B) density, (C) dielectric constant, and (D) loss tangent.

range of 6–8 g/cm3 contain both PbO and Bi2O3, which have very
high melting points.

3.1.3 Dielectric constant
Figure 3 shows the dataset used for training the model for

predicting the dielectric constant of glasses at frequencies in
the range of 0.06 Hz–100 GHz. Figure 3A shows the presence
of both oxide and halide glasses, dominated by the presence of
silicate and borate glasses. The common network formers are
SiO2 and B2O3, followed by network modifiers like CaO and
Na2O and intermediates like Al2O3 and TiO2. In Figure 3B, it
is observed that the majority of glasses are ternary, quaternary,
or contain six components. The range of the dielectric constant

varies from 1 to 50 (Figure 3C). The high property values, in this
case, occur at high frequencies. These glasses comprise silicates,
borates, and lead oxide glasses with the presence of rare Earth
oxides, which make them suitable for applications like capacitors.
The glasses with low dielectric constant found applications in
integrated circuits and communication devices.The dataset consists
of dielectric constant values with maximummeasurements taken at
1 GHz, 1 KHz, and 0.1 MHz.

3.1.4 Loss tangent
Figure 4 shows the details of the components and the property

values used to train the machine learning model for predicting the
loss tangent of glasses. Figure 4A shows the maximum presence
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FIGURE 6
Visualizing SHAP river flow and scatter plots for refractive index.

of glasses with SiO2 and B2O3 as network formers and CaO and
Na2O as network modifiers. The dataset has maximum glasses
with Al2O3 and TiO2 as the intermediates. The dataset for loss
tangent has the maximum number of ternaries, quaternary, and
seven component glasses. The loss tangent of the glasses in the
dataset goes to 10 (Figure 4C). The glasses with loss tangent values
in the range of 2–10 are measured in the frequency range of 300 Hz
- 1 MHz. The glasses with low loss tangent are practically useful
for applications in semiconducting devices. Note that the dataset of
loss tangent consists of glasses at frequencies 0.5 Hz −100 GHz, with
most measurements at 1 MHz, 1 KHz, 0.1 MHz, and 1 GHz.

3.2 Machine learning models performance

Using the methodology described in earlier works and
considering the data as shown in the previous section, the machine
learning models are trained to predict four properties, i.e., (a)
refractive index as a function of composition and wavelength
(Figure 5A), (b) density as a function of composition and
temperature (Figure 5B), (c) dielectric constant as a function of
composition and frequency (Figure 5C), and (d) loss tangent as a
function of composition and frequency (Figure 5D). Figure 5 shows
the comparison of measured property values with the predicted
ones from the test set. It can be observed from the R2 scores in
Figure 5 that the performance of the model is quite good on all the
splits of the dataset for each property. Further, the histogram of
relative error shows that most data points in the test dataset have

near-zero error, and the error for most samples lies in the range of
two times the standard deviation, i.e., a 95% confidence interval.The
clustering of points close to the y = x line in all the figures implies
the predicted property values are close to the actual values. The
model makes prediction errors mostly in cases where the presence
of training data is quite less or the datapoints are out of distribution
of the training set (see Supplementary Figure S1) leading to poor
performance on unseen data. The hyperparameters of the trained
models are provided in Section 2 of the Supplementary Material file
associated with this work.

The lower performance of the model in the case of electrical
properties as compared to refractive index and density can be
explained by the difficulty experienced in their measurements.
Although accurate predictions can help glass researchers and
manufacturers to develop tailored glasses rationally by reducing the
number of experimental trials, it is also important to understand
the effect of composition and testing conditions on the properties
of developed glasses. To this end, we use SHAP plots to explain the
local and global behaviour of each input feature on the predicted
property values.

3.3 Composition–testing
parameters–property relationship

In this section, SHAP analysis is used to interpret the effect
of compositions and testing conditions on the respective property
values. For a given data point, i.e., composition and testing condition
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FIGURE 7
Visualizing SHAP river flow and scatter plots for density.

pair, the SHAP quantifies each input parameter’s contribution to the
final outputwith respect to themean value of the respective property.
For instance, the SHAP value (s) corresponding to an input feature,
f, with a value of x for a property, p, means that the presence of
x amount of f increases the model prediction by s from the mean
property value corresponding to all the input points in the training
set (Cassar et al., 2021a; Zaki et al., 2022b; Bhattoo et al., 2023). In
the following figures, we show SHAP river flow plots, which give
the effect of each input parameter on individual data points, and
SHAP scatter plots, which provide an explanation of the effect of
individual feature values on the model predictions of the property
values. In SHAP riverflow and scatter plots, the x-axis shows the
name of the top 20 input features in descending order of their
importance (right to the left), and the y-axis shows the effect of
individual input features for a given data point. The importance of
each feature refers to the mean absolute SHAP value obtained using
the trained ML model. The input feature with the highest mean
absolute SHAP value is considered as the most important feature.
The colour of the line in the SHAP riverflow plot varies from blue
to red, which corresponds to the minimum and maximum values
of respective properties. In SHAP scatter plots, the x-axis is the
same as used in the previous plot. However, the y-axis shows the
SHAP value corresponding to each feature value.The blue-coloured
shades of the point indicate low feature values, and the pink colour
shades correspond to high feature values. The SHAP interaction

plot is shown to reveal the joint effect of input features on the
model predictions.

3.3.1 Individual feature effect on property values
3.3.1.1 Refractive index

The SHAP riverflow and scatter plot obtained using the trained
machine learning model to predict refractive index as a function of
composition and wavelength are shown in Figure 6. Like previous
works, the network formers and intermediates govern the refractive
index. Network modifiers have a smaller effect on refractive
index predictions, in comparison to other chemical components.
Network modifiers like Na2O and La2O have contrasting effects
on the model predictions of refractive index. For example, with
the increase in the molar concentration of Na2O, the refractive
index predictions decrease. However, this is opposite in the case
of La2O3. This interesting observation is the effect of wavelength,
which is both positive and negative.With the increase inwavelength,
the model predictions of refractive index decrease, and vice versa.
This is because, when light is present, an electromagnetic wave
interacts with the electronic structure of the chemical components
of the materials, which then governs their refractive index. Hence,
it interacts with network formers, modifiers, and intermediates
to govern the refractive index predictions. This phenomenon is
explained in Section 3.3.2.
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FIGURE 8
SHAP riverflow and scatter plots for dielectric constant.

3.3.1.2 Density
In this section, we show the effect of chemical compositions

and temperature on the model predictions of density (Figure 7).
It can be observed that the model predictions of density decrease
with an increase in the concentration of network formers (SiO2 and
B2O3) and modifiers (Na2O and K2O), and vice versa in case of
intermediates (e.g., PbO and Bi2O3). In the case of temperature,
it was observed that an increase in temperature decreases the
model prediction of density and vice versa. For most materials,
density decreases with increasing temperature. The interactions of
temperature with other features are shown in the next section.

3.3.1.3 Dielectric constant
The effect of various input features governing the predictions

of dielectric constant is shown in Figure 8. The network formers
(SiO2, B2O3, and P2O5) decrease the model predictions of dielectric
constant with an increase in their molar concentrations. However,
network modifiers like Na2O, MgO, and K2O show mixed effects
on model predictions. Further, the testing parameter (frequency) is
the fourth most important parameter, preceded by network formers
(SiO2 and B2O3) and intermediate (Al2O3). Higher frequencies
cause a decrease in the predictions of dielectric constant due to faster
changes in the polarized covalent bonds in glasses, and vice versa.

3.3.1.4 Loss tangent
In the case of loss tangent, unlike other properties where

network formers and intermediates dominated the model

predictions, network modifier Na2O is among the top-most loss
tangent of loss tangent and increases the model predictions with
an increase in its concentration (Figure 9). Network formers like
B2O3 and SiO2 increase the model predictions of loss tangent
with an increase in their respective molar concentrations. The
intermediates like Al2O3 show mixed behavior where the SHAP
value both increases and decreases with an increase in its molar
concentrations. The frequency is the second most important loss
tangent governing feature. Like the dielectric constant, the higher
frequencies cause a decrease in the predictions of loss tangent and
vice versa. In the next section, we will delineate the joint effect of
input features on the property values using SHAP interaction plots.

3.3.2 SHAP interaction plots
In this section, we will discuss the SHAP interaction plots

showing the joint effect of top-20 input features on the properties
of glasses. The diagonal of the SHAP interaction plot represents the
effect of individual features, which has already been discussed in
the previous section. Therefore, we have not shown those values
in Figures 10–13 and choose to normalize the interaction values
according to the maximum interaction among the features for
respective properties. Hence, the group of features havingmaximum
interactions is shown by dark green colour corresponding to
normalized interaction of 1, the medium interaction is shown by
the reddish colours, and low interaction is shown by pinkish colour,
followed by negligible interaction reflected through white colour.
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FIGURE 9
SHAP riverflow and scatter plots for loss tangent.

3.3.2.1 Refractive index
Figure 10 shows the SHAP interaction plots for the refractive

index where the maximum interaction is between two network
formers, i.e., SiO2 and B2O3. The other interesting interactions
are between Na2O and B2O3 and interactions of Nb2O5 with
TeO2, B2O3, Na2O, and BaO. In Figure 10, all the components
have some interactions with the wavelength, irrespective of
whether they are network formers, modifiers, intermediates,
or others. Overall, network formers have higher interactions
with the wavelength, followed by intermediates, others, and
network modifiers.

3.3.2.2 Density
In Figure 11, the maximum interaction is again between two

network formers, SiO2 and B2O3. An interesting phenomenon
is that although a feature can be the most important for
predicting the given property, it does not need to have maximum
interaction with other input features. This is also observed
by Bhattoo et al., 2023. for different properties of glasses. The
testing parameter, i.e., the temperature in this case, has the
highest interaction with PbO, which behaves as an intermediate
in glasses, followed by interaction with network formers, SiO2
and B2O3. From Figure 11, it is also observed that the top 17
features, including temperature, have the highest interactions with
each other.

3.3.2.3 Dielectric constant
In the case of the dielectric constant, chemical components

like SiO2, B2O3, and Al2O3 interact with the maximum number
of input features while predicting the dielectric constant. The
dependent parameter, frequency, also has significant interactions
with network former, modifiers, and intermediates. It has maximum
interaction with Na2O, which is a network modifier, followed
by SiO2, B2O3, and P2O5, which are network formers, and
Al2O3 and TiO2, which are intermediates. Further, in the case
of dielectric constant, stronger interactions are observed between
network formers and modifiers, which also existed in the case of
refractive index. However, stronger interactions between network
modifiers and intermediates are observed for dielectric constant
prediction, which was quite small in the case of previously studied
properties.

3.3.2.4 Loss tangent
Figure 13 shows the SHAP interaction plot to explain the

model prediction of loss tangent. Here, the maximum interaction is
between the top governing features, which include network former,
Na2O and frequency. Na2O also has significant interactions with
network formers like B2O3, SiO2, and intermediates like Al2O3,
and hence, it governs the predictions of loss tangent. Out of all the
properties, the testing condition has maximum interaction with all
kinds of input features in case of loss tangent. For example, the
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FIGURE 10
SHAP interaction plot for refractive index.

FIGURE 11
SHAP interaction plot for density.
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FIGURE 12
SHAP interaction plot for dielectric constant.

FIGURE 13
SHAP interaction plot for loss tangent prediction.
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testing frequency has very high interactions with B2O3, BaO, SiO2,
Li2O, Nb2O5, PbO, Al2O3, and MnO, to name a few.

4 Summary and conclusion

In this work, we use machine learning to predict the properties
of glasses as a function of composition and testing variables.
Specifically, the refractive index, dielectric constant, and loss tangent
have wavelength/frequency as the dependent variable in addition to
composition, and density is predicted as a function of composition
and temperature. SHAP analysis is used to elucidate the local, global,
and combined effect of input features on model predictions through
riverflow, scatter, and interaction plots, respectively. The findings of
this work can be summarised as:

1. Machine learning models can reasonably predict the glass
properties while including the effects of composition and
testing conditions.

2. The measurement of density for glass melts at high
temperatures is a hazardous task.The highly accurate machine
learning models can act as a safe tool for experimentalists
to obtain the density of glasses and their melts at high
temperatures.

3. In the case of refractive index, the importance of testing
parameter is lowest as compared to density, dielectric constant,
and loss tangent. Further, the electrical properties have the
highest dependence on the testing variable (frequency).

4. While explaining model predictions for density, it was
observed that with the increase in temperature, the density
prediction decreases from the mean predicted value. Also, the
interaction between testing temperature and network formers
is more as compared to other components while predicting
the density.

5. For both the electrical properties investigated in this work, i.e.,
dielectric constant and loss tangent, frequency can significantly
influence the model’s output. Unlike refractive index and
density, the testing variable interacts highly with all the input
chemical components while predicting dielectric constant and
loss tangent.

6. In the case of electrical properties, Na2O, a network modifier,
has the highest interaction with the testing frequency while
using a machine learning model for predictions.

Overall, machine learning models for property prediction,
and SHAP analysis together provide valuable information to
experimentalists and researchers to judiciously choose chemical
components while developing glasses for targeted applications. The
models developed in this work can only be used to predict properties
of glasses for a fixed set of input chemical compositions and testing
conditions shown to themodel during the training. If the predictions
are required for glasses with any new input chemical component
subjected to additional processing and testing conditions, the model
cannot do so. Another limitation of ML models is poor predictions
on out-of-domain data. The properties of glasses also depend
upon the processing conditions and jointly depend on temperature
and wavelength. Therefore, further research is required to develop
models independent of the input chemical components, including

wide range of dependent variable and include features based on
fundamental physics and chemistry-based descriptors.
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