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Introduction: Additive manufacturing (AM) is a revolutionary technology
transforming traditional production processes by providing exceptional
mechanical characteristics.

Methods: The present study aims explicitly to predict the hardness of
Polycarbonate (PC) parts produced using AM. The objectives of this study are:
(1) To investigate the process parameters that impact the ability to estimate
the hardness of PC materials accurately, and (2) To develop a best-performing
ML model from a range of models that can reliably predict the hardness
of additively manufactured PC parts. Initially, fused filament fabrication (FFF),
the most affordable AM technique, was used for the manufacturing of parts.
Four process parameters, infill density, print direction, raster angle, and layer
thickness, are selected for investigation. A heatmap is generated to obtain the
influence of process parameters on hardness. Then, machine learning (ML)
techniques create a range of predictive models that can predict hardness value
considering the level of process parameters.

Results: The developed ML models include Linear Regression, Decision Tree,
Random Forest, K-nearest neighbor, Support Vector Regression, AdaBoost, and
Artificial Neural Network. Further, an investigation has been done that includes
choosing and improving ML algorithms and assessing the models’ performance.

Discussion: Prediction plots, residual plots, and evaluation metrics plots are
prepared to gauge the performance of the developedmodels. Thus, the research
enhances AMcapabilities by applying predictivemodeling to process parameters
and improving the quality and reliability of fabricated components.
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additive manufacturing, hardness, polycarbonate, fused filament fabrication, machine
learning
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1 Introduction

1.1 Additive manufacturing

Additive Manufacturing (AM) technologies, commonly called
3D printing, have significantly influenced the current manufacturing
activities. These technologies provide unmatched flexibility in
multiple sectors, such as aerospace and healthcare, by stacking
materials according to digital designs (Yu et al., 2024), (Devi et al.,
2023), (Goyal et al., 2024). Also, these techniques are used in
prototyping and the fabrication of functional components that
can replace parts manufactured by conventional manufacturing
techniques (Korkmaz et al., 2022), (Thomas et al., 2018). Fused
filament fabrication (FFF) is themost affordableAMtechnique,which
allows for the creation of intricate shapes with unparalleled design
flexibility and productivity (Luo et al., 2024), (de Camargo et al.,
2024). FFF fabricated parts have applications as approved material
for aeronautics, models for dimensional and functional validation
of products, low volume manufacturing, and fabrication of lower
cost parts. With the increasing demand for personalized and
immediate production, it is crucial to comprehend and enhance
AM processes, such as predicting material characteristics, to advance
manufacturing capabilities.

1.2 Predicting hardness in AM materials

Hardness is a crucial mechanical characteristic that significantly
influences a material’s resistance to external forces, wear, and
deformation, playing a vital role in designing and engineering
components for challenging applications (Fereidooni and Ghasemi,
2023), (Devi et al., 2023), (Kumar et al., 2024). Precisely predicting the
hardness of Polycarbonate (PC) materials in AM is crucial for a wide
range of industries and applications. This material has advantageous
mechanical characteristics, such as high strength, hardness, and
heat resistance (Liu et al., 2023), (Wang et al., 2024), (Srivastava et al.,
2023).PredictinghardnessinadditivelymanufacturedPCcomponents
isessential forensuringproductperformance, longevity, andreliability.
Manufacturers can enhance product quality and performance by
precisely forecasting hardness in PC materials, allowing them to
optimize manufacturing processes, material compositions, and post-
processing techniques to obtain the required mechanical attributes.
Thus, predictive modeling of hardness in additively manufactured
PC parts allows for informed decision-making, cost-effectivematerial
selection, and process optimization, resulting in enhanced efficiency
and competitiveness in the AM sector.

1.3 PC and its mechanical characteristics

PC is typically synthesized through the reaction between two
components, as tabulated in Table 1, in the presence of a catalyst.
This reaction results in the formation of a linear PC polymer
chain. PC is a thermoplastic polymer known for its outstanding
impact resistance, transparency, and ability to withstand high
temperatures. Due to its exceptional characteristics, it is highly
favored for various uses, like automotive parts, electrical enclosures,
optical lenses, and medical equipment (Xiao et al., 2024). Also,

TABLE 1 Chemical formulation of PC.

Component Chemical formula

Bisphenol-A (BPA) C15H16O2

Phosgene (COCl2) COCl2

it demonstrates exceptional mechanical strength and toughness,
rendering it impervious to impact and fracture. Furthermore, it
exhibits outstanding optical clarity and can efficiently transmit light,
making it well-suited for applications requiring transparency and
visibility (Wu et al., 2024). In addition, PC exhibits exceptional heat
resistance, maintaining its mechanical characteristics throughout
a broad spectrum of temperatures. Its innate fire resistance and
capacity to be readily shaped into intricate forms further enhance
its versatility and usefulness across several sectors.

1.4 Machine learning in predicting material
characteristics

Machine learning (ML) has become a potent instrument for
analyzing intricate data sets, detecting patterns, and making highly
accurate predictions. Within the field of AM, where the fine-tuning
of process parameters and material characteristics is of utmost
importance,MLpresentsapromisingmethodforaccuratelypredicting
material characteristics, suchashardness. SuchMLmodels allowfirms
to enhance production processes, minimize material wastage, and
enhance the quality and performance of components manufactured
using AM. Furthermore, ML methods enable the identification
of intricate connections between process parameters and material
characteristics, resulting in valuable insights that can guide the
improvement of AM processes to be more efficient and dependable.

1.5 Research objective and scope

The first objective of the present study is to investigate the
process parameters that impact the ability to estimate the hardness
of PC materials accurately. These process parameters encompass the
parameters used during manufacturing.Then, the second objective is
to develop a best-performingMLmodel from the range ofmodels that
can reliably predict the hardness of additivelymanufactured PC parts.
Thepresent research focusesongatheringandanalyzingpertinentdata
sets, utilizing ML algorithms for predictive modeling, and verifying
the accuracy of themodels through practical testing.Thus, the present
research intends to improve AM technology and create more efficient
and reliable production processes by fulfilling these objectives.

2 Literature review

2.1 Prediction of mechanical
characteristics in AM materials

In this comprehensive review, the objective was to construct a
solid knowledge base and gain valuable insights that will guide the

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2024.1410277
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


A. Mahmoud et al. 10.3389/fmats.2024.1410277

creation of a predictive modeling method for hardness prediction
in additively manufactured PC parts (Batista et al., 2024). Various
researchers have investigated the use of ML techniques in the
prediction of mechanical characteristics of AM parts. The tensile
strength and hardness of liquid resin are mathematically modeled
based on the degree of cure by Yang et al. (2019). The developed
mechanical characteristics models had 98% and 95% hardness
prediction accuracy in the case of green parts and post-cured
parts, respectively. Ajay Kumar et al. (2020) used the Taguchi L9
experimental approach to optimize AM process parameters for
tensile, flexural, and hardness tests. The optimum hardness value
obtained in their experiment was 67.0011 BHN. Researchers also
used an experimental design technique, Box Behnken Design
(BBD), to study the effect of AM process parameters on the
micro-hardness of additively manufactured parts (Raj et al., 2021).
They found that individual and interaction effects of process
parameters significantly influence response. Kustas et al. (2022)
developed a multi-principal element alloy with high hardness and
specific strength, which is better than other alloys. In the case
of wire arc AM, Ling et al. (2023) performed tests using a neural
network algorithm, keeping current, voltage, torch moving speeds,
and interval layer cooling coefficients as input parameters and
hardness and ultimate tensile strength as output parameters. They
observed the good prediction capability of the developed model. In
another research on the machinability of parts fabricated by fused
depositionmodeling and sintering (FDMS), researchers investigated
their machining performance (He et al., 2023). They found that
FDMS promoted industrialization by improving the machining
performance of the diamond blades. Phutela et al. (2023) studied
the relationship between characteristics of powder and Laser beam
powder bed fusion (PBF-LB) parts of AlSi10 Mg. They observed a
high correlation between nano- and micro-hardness of powder and
fabricated parts.

2.2 ML techniques applied to material
characteristics prediction

This section comprehensively examines the number of ML
algorithms utilized in prior research to forecast the hardness and
other mechanical characteristics of components manufactured by
AM. The merits and drawbacks of several ML techniques, such as
supervised, unsupervised, and semi-supervised learning methods,
have been analyzed in the context of material characteristics
prediction. Yao et al. (2017) constructed an ML algorithm to
recommend design characteristics specifically tailored for novice
users. The support vector machine (SVM) algorithm utilized pre-
existing examples of industrial applications to train the model.
Zhang et al. (2018) assessed the data on plume, splatter, and melt
pool in AM technology. Quality was documented during the
fabrication process using a high-speed camera. Then, the input
data was utilized for the development of ML models, including
SVM and convolutional neural networks. The accuracy of the
SVM model was observed to be 90.1%, while the CNN model
achieved an accuracy of 92.7% (Zhang et al., 2018). Agarwal et al.
(2022) used AM to create orthopedic bone screws and predicted
their compressive behavior. They varied parameters within a
specific range to observe their impact on responses. The 4 ML

models utilized for predicting compressive strength are k-nearest
neighbors (KNN), support vector regression (SVR), decision trees
(DT), and random forest (RF). An investigation was conducted
utilizing the DT ML algorithm to analyze the influence of essential
parameters on dimensional accuracy for different geometries, such
as cylindrical shafts, holes, and rectangular slots (Sharma et al.,
2022). Veeman et al. used a number of ML algorithms to optimize
the AM process parameters in the case of ABS material. The
specimen size used was 15 mm × 10 mm × 2 mm in their
experiment, which is challenging to accommodate the size of the
indenter (2.5 mm). Therefore, the present study has used cube-
shaped specimens (size 30 mm). They also predicted hardness
value for a combination of process parameters using these ML
techniques and found that the RF model outperformed others.
However, the researchers did not apply deep learning models
to their dataset for prediction purposes (de Camargo et al.,
2024). In a recent study, Wang et al. investigated the use of ML
algorithms in the prediction of the hardness of polymer blends of
multiple materials during AM. They performed hyperparameter
tuning using genetic algorithm and particle swarm optimization
and found that the design of multi-material co-blinding print
products can be quickly performed using ML techniques
(Fereidooni and Ghasemi, 2023).

From the literature review, it is observed that supervised
machine learning methods like linear regression (LR), DT, random
forests (RF), KNN regressor, support vector regressor (SVR),
and adaboost (AB) use labeled training data to predict material
qualities accurately based on input features. Though supervised
deep learning techniques like artificial neural networks (ANN) can
model responses more accurately, they pose inherent limitations
such as data intensiveness, complexity in interpretability, overfitting,
and requirement of high computational resources. In the present
study, analysis is performed on the strengths and limits of several
ML algorithms to determine the appropriate method for predicting
material characteristics in AM.This will help in creating precise and
dependable ML prediction models.

2.3 Challenges and limitations in predicting
hardness in PC

Although PC material is widely used and has desired
characteristics, precisely anticipating their hardness poses various
challenges. A vital obstacle lies in the inherent intricacy of
a material’s behavior when subjected to different processing
conditions, such as temperature gradients, cooling rates, and layer
adhesion difficulties commonly encountered in AM (Islam et al.,
2024). Insufficient or noisy data and the challenge of capturing
complex interactions between processing parameters and material
qualities can impede the predictive accuracy of ML models.
Furthermore, the absence of standardized testing procedures and
material characterization techniques specifically designed for PC
in AM adds to the complexity of predicting hardness. To tackle
these issues, a comprehensive strategy that includes enhancing
data collecting, utilizing advanced modeling approaches, and
gaining a more profound comprehension of PC behavior in AM
settings is needed. The goal of recognizing and investigating
these difficulties is to establish a foundation for developing more
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FIGURE 1
Delta wasp 2040 3D printer.

precise and dependable predictive models for hardness in PC-based
AMmethods.

3 Materials and methods

3.1 Filament and AM machine details

The present study utilized PC filament purchased from a
manufacturer specializing in 3D printing filaments.The PC filament
wasmelted and placed, and the samples were created using the Delta
Wasp 3Dprinter (Figure 1).TheDeltaWasp printer is equippedwith
a pre-heated Silicon build plate, which minimizes the warping of
the models during fabrication. The machine can produce intricate
shapes at a faster rate. Additionally, it canmanufacture a component
with dimensions of ∅200 mm × 400 mm.

3.2 Development of CAD model and
preparation of G-code

Typically, the part size should be large enough to comfortably
accommodate the indenter of the Shore D hardness tester while
providing a sufficient area for testing. With a side length of 30 mm,
the cube provides a suitable surface area for conducting the hardness
test on the top surface while ensuring that the indenter can make
contact without any obstructions. This size allows for accurate

and consistent testing results. The specimens were created and
stored in stereolithography (.STL) format using Autodesk Inventor
2020. Subsequently, the STL file must be imported into a slicing
software, where the CAD model is transformed into several layers.
The process parameters were outlined during the slicing process to
change the CAD file into Geometric code (G-code). The G-codes
are then exported and transferred to the 3D printers using a Secure
Digital (SD) card. Subsequently, the machine assimilates the data
from the G-code and proceeds to manufacture the component. The
filament was introduced into the nozzle using support rollers by
the desired flow rate. Subsequently, the filaments were subjected
to heating from heaters positioned above the nozzle, causing them
to melt. The resulting molten filament was then placed onto
the print bed.

3.3 Process parameters selection

The hardness of the material will be significantly affected by the
process parameters used in the slicing section. The present study
selected infill density, layer thickness, and printing orientation
as process parameters. “infill density” refers to the proportion
of a specific material inside a component. The part’s orientation
concerning horizontal direction is called “print direction.”
“Raster angle” is the deposition angle of material concerning
horizontal. It is also a significant parameter in achieving favorable
mechanical characteristics. The inclusion of the raster angle of
the component allows for the evaluation of its impact on the
hardness characteristics of the specimens produced at various levels.
The vertical dimension of each subsequent layer applied on top
of the previous layers during the material deposition process is
called “layer thickness.” The anisotropy of a component plays a
crucial role in its mechanical evaluation. The process parameters
and their respective ranges are displayed in Table 2. Figure 2
visually illustrates the variations in all process parameters across
different ranges. A sample of the fabricated PC part is shown
in Figure 3.

3.4 Hardness test

Hardness is an intrinsic characteristic of a substance that plays
a crucial role in assessing its ability to withstand wear caused
by friction or erosion from substances such as oil, water, and
steam. This is a non-destructive test performed on specimens to
assess the material’s ability to withstand persistent deformation
(Sorger et al., 2019). An indenter with precise dimensions is used
to penetrate the surface of the specimen. This indenter causes
a lasting distortion in the sample known as “indentation.” The
hardness value was ascertained by quantifying the depth and
extent of the indentation. The primary objective of conducting a
hardness test is to assess thematerial’s appropriateness for particular
applications (Kogo et al., 2022).The hardness value in polymers was
determined bymeasuring the load applied to the indenter. Typically,
the hardness of polymers and rubbers is assessed using a shore
D hardness tester. The hardness testing instrument utilized in this
investigation is a shore D durometer manufactured by YUZUKI.
The hardness value was determined by calculating the average of five
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TABLE 2 Range of process parameters.

Process parameters Infill density (%) Print direction (0) Raster angle (0) Layer thickness (mm)

Range 40–100 0–90 0–90 0.2–0.3

FIGURE 2
Visual illustration of the variations in process parameters across different ranges.

observations, each taken at separate locations with a 3 mm interval.
Annexure one lists the dataset obtained from the hardness test.

3.5 Preprocessing steps on the dataset

The dataset is saved as a separate value (.csv) file. It is
then imported into the Python environment. The environment is

initialized with numpy, pandas, matplotlib, sklearn, and seaborn
libraries. Then, process parameters are assigned as X values, and
hardness is set as Y values during XY split. Feature scaling is done
using a standard scaler, as the scale of all process parameters is
different. Further, the dataset is split into training and testing sets
in the proportion of 80:20 to feed them into ML models. The
study utilized the Scikit-learn toolkit (Version 1.0.2) in Python to
construct instances of ML models.
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FIGURE 3
Sample of fabricated PC part.

3.6 ML algorithms

According to the reviewed literature, ML techniques are used
for two primary purposes: optimizing process parameters and
detecting anomalies (Agarwal et al., 2022). The proposed study
utilizes the empirical data presented in Annexure one to train ML
models and obtain meaningful insights into the conducted process.
Several models were trained and assessed using different assessment
metrics. The supervised ML algorithms employed are LR, DT, RF,
KNN, SVR, AB, and ANN. These particular models were selected
to analyze and contrast the effectiveness of different ML algorithms
using identical experimental data.

3.7 Model training and validation

LR is an ML model that uses a straight line to establish
a connection between dependent and independent variables. Its
purpose is to predict continuous outcomes based on the given
data. A DT is another ML model that partitions the dataset into
subsets using the characteristics. Its objective is to construct a
hierarchical structure like a tree, which enables predictions to be
made by traversing the paths from the root to the leaves. Figure 4
shows Decision Tree plot.The RF algorithm is an ensemble learning
technique that creates several DTs during training. It then combines
the predictions of these trees to determine the most common class
(for classification tasks) or the average prediction (for regression
tasks). This approach enhances the accuracy and reliability of the
model. The KNN regressor is an ML model that predicts the value
of a target variable by calculating the average of the values of its k-
nearest neighbors in the feature space. The SVR is an ML model
that seeks to identify the hyperplane that provides the greatest
fit for the data points to minimize the error. Its purpose is to
predict continuous outcomes by determining the optimal separation
between data points in a high-dimensional space. AdaBoost is a

technique in ensemble learning that successively combines several
weak learners. It assigns higher weights to instances mistakenly
predicted in each iteration to focus on the more challenging
examples to classify. This process finally results in a strong learner
with enhanced accuracy. Further, ANN is a deep learning algorithm
that draws inspiration from the structure and function of biological
neural networks in the human brain. ANNs are interconnected
nodes called neurons arranged in layers that include an input
layer, one or more hidden layers, and an output layer. ANNs learn
to anticipate outputs from input data by modifying weights and
biases in connections between neurons during a process known
as training. This enables them to model intricate relationships and
make predictions in different fields. In the present study, number of
epochs employed were 1,000. Figure 5 shows a plot of Loss Function
vs Number of Epochs and Figure 6 shows a plot of Training and
testing accuracy varying with number of epochs. The present study
optimized each algorithm to generate accurate forecasts by utilizing
“GridSearchCV” hyperparameter tuning.

3.8 Hyperparameter tuning

In the present study, “GridSearchCV” technique was used for
hyperparameter tuning. The hyperparameters and their ranges for
each ML model are as follows:

• Linear regression: This is a standard ML model. Therefore,
hyperparameters were not employed.

• Decision Tree: Max Depth (None, 10, 20, 30, 40, 50),
Min Samples Split (2, 5, 10), Min Samples Leaf (1, 2, 4),
Criterion (‘mse’, ‘friedman_mse’, ‘mae')

• Random Forest: Number of Estimators (10, 50, 100, 200, 500),
Max Depth (None, 10, 20, 30, 40, 50), Min Samples Split (2, 5,
10), Min Samples Leaf (1, 2, 4), Bootstrap (True, False).

• K-nearest neighbor: Number of Neighbors (3, 5, 7, 9, 11),
Weights (‘uniform’, ‘distance’), Algorithm (‘auto’, ‘ball_tree’, ‘kd_
tree’, ‘brute').

• Support Vector Regression (SVR): C (0.1, 1, 10, 100, 1,000),
Gamma (‘scale’, ‘auto’), Kernel (‘linear’, ‘poly’, ‘rbf ’, ‘sigmoid').

• AdaBoost: Number of Estimators (50, 100, 200, 500), Learning
Rate (0.01, 0.1, 1, 10), Algorithm (‘SAMME’, ‘SAMME.R′).

• Artificial Neural Network (ANN): Number of Hidden Layers
(1, 2, 3), Number of Neurons per Layer (10, 50, 100), Activation
Function (‘relu’, ‘tanh’, ‘sigmoid’), Solver (‘adam’, ‘sgd’), Learning
Rate (0.001, 0.01, 0.1), Batch Size (32, 64, 128), Number of
Epochs (50, 100, 200).

3.9 Evaluation metrics

An evaluation metric or error measure is a metric that assesses
the performance of a model and enables the forecaster to make
quantitative comparisons between different models. These metrics
allow the evaluation of the model’s performance more impartially.
In the present investigation, four evaluation metrics, namely, mean
squared error (MSE), root mean squared error (RMSE), R-squared
(R2), and adjustedR-squared (Adj. R2), are used.MSE is a commonly
used statistical and machine learning measure that quantifies the
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FIGURE 4
Decision Tree plot.

FIGURE 5
Loss function vs. number of Epochs.

average of the squared discrepancies between anticipated and actual
values. A predictive model’s performance is evaluated by measuring
the degree of concordance between the model’s predictions and the
real data, providing a quantitative assessment of the model’s overall
quality. MSE is often observed in regression assignments since it
serves as a valuable metric for assessing the effectiveness of a model.
Themathematical expression for theMSE is given in the Equation 1.

MSE = 1
n
×∑
(Actual− Predicted)2

1
(1)

FIGURE 6
Training and testing accuracy varying with number of epochs.

Where: n represents the total number of data points inside
the dataset.

The symbol Σ denotes the summation of all data points.
The expression (actual - predicted)2 is used to compute the

square difference between the observed (true) value and the
expected value for each data point.

RMSE value is the square root of MSE. The R2, often called
the coefficient of determination, is a statistical metric used to
assess a regression model’s fit appropriateness. This analysis offers
valuable information into the extent to which the independent
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variable(s) included in the model account for the variability seen
in the dependent variable. The R2 statistic is a valuable tool for
evaluating the extent to which a model’s independent variable(s)
account for the variance seen in the dependent variable. The
Adjusted R2 is a revised rendition of the R2 statistic, also known
as the coefficient of determination, often used in statistical analysis
and regression modeling. The R2 metric is used to evaluate the
degree of fit of a regression model. In contrast, the adjusted R-
squared metric incorporates the number of independent variables
in the model, offering a more equitable assessment of the model’s
fit. Regularization techniques aid in mitigating the problem of
overfitting and enhance the precision of evaluating a model’s
capacity to explain the observed data.

3.10 Limitation of ML approaches

This section discusses some of the limitations ofML approaches:

• Overfitting: Overfitting is a significant concern, especially
for complex models like ANN. Although ANNs can model
responses accurately, they are prone to overfitting due to their
complexity and data intensity.

• Assumptions Made by Algorithms: Different algorithms come
with inherent assumptions. For example, linear regression
assumes a linear relationship between the independent and
dependent variables. Decision trees assume that the data can be
split into subsets that can be used to make accurate predictions.

• Sensitivity to Outliers or Noise: Some models, such as LR and
KNN, are highly sensitive to outliers, which can significantly
affect their performance.Thus, there is an importance of feature
scaling to handle different scales of process parameters, which
can help mitigate the effect of outliers.

• Data Quality and Availability: The intricate nature of AM
processes poses challenges in capturing all relevant parameters
that affect hardness prediction. This can lead to incomplete or
noisy data, affecting model performance.

• Generalizability: The generalizability of the models to different
datasets or real-world scenarios is another concern. Therefore,
it is suggested that future research should include a broader
range of process parameters, material compositions, and
environmental conditions to improve model robustness and
generalizability.

4 Results and discussion

4.1 Heatmap

Figure 7 shows a heatmap generated using the Python
command, which shows the relationship between process
parameters and hardness. It is observed that infill density
significantly influences the hardness of the specimen, as the heatmap
value is 0.84.This is evident from the quantity ofmaterial available to
resist the indentation, which is directly proportional to the hardness
value. The second influential process parameter is layer thickness,
which shows a 0.44 heatmap value. Raster angle and print direction
have heatmap values of 0.19 and 0.11, respectively, which shows

that the influence of these process parameters is less significant
for hardness.

Infill density directly influences the internal structure of the
fabricated part. A higher infill density signifiesmorematerial is used
to fill the interior of the part, leading to increased structural integrity
and higher hardness. Conversely, a lower infill density results in
a hollow structure, reducing the overall strength and hardness of
the part. Also, higher infill density ensures better load distribution
within the part, enhancing its ability to withstand external forces
and thus improving hardness. Layer thickness affects the bonding
between successive layers during the printing process. Thinner
layers result in better interlayer adhesion, as each layer has more
opportunities to fuse with the previous one, leading to a denser
and harder final part. Thicker layers may lead to weaker interlayer
bonding, reducing hardness. Also, thinner layers contribute to a
smoother surface finish, reducing stress concentrators and potential
weak points that could compromise the part’s hardness. A smoother
surface also improves the overall mechanical properties of the
printed part.

4.2 Prediction analysis

The prediction plots shown in Figure 8 were utilized to display
the predicted and actual values for each model visually. The error
value is minimal when data points are as close to the diagonal line.
These figures suggest that the fundamental and predicted values
overlap or exhibit little discrepancies, demonstrating the precision of
eachmodel in forecasting the hardness. It is observed that the actual
value and predicted values of all tree-basedmodels (DT, RF, andAB)
have the highest degree of overlap across the majority of data points.
In the case of the LR model, there is often a significant deviation
between the actual and predicted values. Out of the three tree-based
models, the RF model is the most accurate in forecasting the output
values due to its minimal variation. DT and RF exhibit more reliable
prediction performance compared to LR. Therefore, the RF model
surpasses all other models in accurately forecasting the hardness
value. In the KNN and SVR models, a noticeable discrepancy is
observed between actual and predicted hardness values. Also, the
natural and predicted values of the ANN model vary significantly.
This highlights the limitation of using deep learning techniques
in predicting hardness for small datasets. Thus, the RF algorithm
exhibits the highest level of precision and can generate output with
a smaller margin of error.

4.3 Residual plots

To obtain a more detailed assessment of the accuracy, ML
models must be evaluated based on their performance changes in
the training and test data rather than relying solely on prediction
plots. To achieve this objective, the study utilized residual plots.
Figure 9 displays the residual plots of the training and testing data
for all models. The plot was generated by plotting the residuals
on the y-axis against the experimental hardness values on the x-
axis. The residual value is the discrepancy between the actual and
estimated value of hardness. Figure 9 demonstrates that the RF
model exhibits uniformly distributed residuals for training and
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FIGURE 7
Heatmap showing the relationship between process parameter and hardness.

testing data. While the LR, DT, and AB models show low residuals
for the training data, the residuals for the test data are significantly
high and cannot be disregarded. Consequently, the accuracy of these
models’ performance is compromised. In the case of the RF model,
the residuals tend to cluster within the range of 1.5 to −1.0 for both
the training and testing data.Thus, the RFmodel accurately predicts
the training and testing datawithin a specific range. Upon evaluating
the performance ofmodels utilizing bagging approaches such as DT,
RF, and AB, it is evident that they yield superior outcomes compared
to basic baseline models like LR and ANN models. The conducted
prediction study substantiates this fact.

4.4 Evaluation metrics

Figure 10 depicts the error metrics of the ML models about
the training and testing data. When assessing models using error
metrics, the most accurate model should have MSE and RMSE
values that are closer to 0 and an R2 and adjusted R2 value that
are close to 1. The optimal model is determined by evaluating its
performance on the training and testing data. This ensures that the
model can effectively handle both datasets, avoiding overfitting or
underfitting.

Themetrics indicate thatmostmodels have exhibited substantial
performance in predicting the training data points except the
ANN model. The RF and AB models demonstrate exceptional

performance. Their R2 value exceeds 0.95. As mentioned, bagging
models exhibit lower error rates than the LR model. This finding
reinforces that models employing bagging techniques yield superior
outcomes to simplistic models. A thorough comparison of all
assessment criteria was conducted to select the optimal model
between RF and AB. Based on the data shown, it can be deduced
that the RF model has MAE and RMSE values that are close to
0 among all ML models. This phenomenon is also evident in the
R2 values. The RF model exhibits the highest R2 value for the
training and testing data. In case of RF model, error metrics like
MSE and RMSE are lowest for training and testing sets, also, R2

and Adj R2 values are highest in comparison with other models.
Therefore, after assessing the inaccuracy of each model based
on the training and testing data, it was determined that the RF
model yielded the most precise prediction of the hardness value for
PC material.

4.5 Implications of the findings

The present study provides substantial advantages to AM
practitioners and stakeholders by creating an ML model that can
precisely predict the hardness of PCmaterials.The predictive model
allows producers to enhance product quality and performance
by optimizing process parameters and material formulations.
Manufacturers can improve their production processes to fulfill
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FIGURE 8
Actual and predicted hardness values of (A) LR, (B) DT, (C) RF, (D) KNN, (E) SVR, (F) AB, and (G) ANN models.

performance criteria and regulatory standards by understanding the
elements affecting hardness prediction accuracy. Furthermore, the
present study enhances the progress of predictive modeling abilities
in AM, hence facilitating the creation of comparable models for
forecasting additional material characteristics.

4.6 Limitations of the study and
suggestions for future research

A constraint of the present research resides in the accessibility
and caliber of the data utilized formodel training and validation.The
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FIGURE 9
Actual and predicted Hardness values of (A) LR, (B) DT, (C) RF, (D) KNN, (E) SVR, (F) AB, and (G) ANN models.

intricate nature of AM procedures and substances poses difficulties
in effectively capturing all pertinent parameters that affect hardness
prediction. Future research efforts should broaden the scope of
data collecting by including a more comprehensive array of process

parameters, material compositions, and environmental conditions.
In addition, integrating sophisticated modeling techniques, such as
multi-scale modeling or hybrid ML approaches, can improve the
accuracy and reliability of predictions. Furthermore, investigating
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FIGURE 10
Evaluation metrics plot (A) Training data (B) Testing data.

the influence of post-processing treatments and material aging on
hardness prediction could yield significant knowledge regarding the
durability of additively built components over time. Also, future
studies can enhance the comprehension of hardness prediction in
AM and contribute to the ongoing enhancement of manufacturing
processes and product quality by addressing these limitations and
pursuing new research pathways.

5 Conclusion

The present study demonstrates the application of ML
techniques, such as LR, DT, RF, KNN, SVR, AB, and ANN, for
predicting the hardness of additively manufactured PC material.
The findings of these models have demonstrated that bagging-
based models exhibit superior predictive capabilities. The slicing
software provided descriptions of the process parameters, including

infill density, print direction, raster angle, and layer thickness,
at three different levels. The hardness values were obtained by
averaging measurements using a shore D durometer. The following
are essential findings of the study-

• The heatmap shows that infill density and layer thickness
are the most significant process parameters affecting
hardness.

• The results indicate that the RF model provided the most
precise predictions of hardness value in PC material, with
an MAE of 0.0661, RMSE of 0.2572, R2 of 0.9840, and
Adjusted R2 of 0.9097 for the training set. The RF algorithm is
highly accurate when used to train and test data, resulting in
low errors.

• In the case of the RF model, the residuals tend to cluster within
the range of 1.5 to −1.0 for both the training and testing data.
Thus, the RF model accurately predicts the training and testing
data within a specific range.

Thus, the RF model provides the most accurate predict the
hardness of AM PC parts. Therefore, ML can be an excellent tool
for predicting the mechanical characteristics of AM parts.
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