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Microemulsions (μEs) are particularly suitable systems for the efficient delivery
of anticancer drugs due to their thermodynamic stability, structural flexibility,
and patient-friendly chemotherapies. Moreover, μE formulations can efficiently
encapsulate the anticancer drugs and deliver them to the desired location.
Herein, three new Tween-60-based µE formulations were developed to
enhance the dissolution profile of anticancer methotrexate (MTX). For this,
μE formulations using an appropriate ratio of castor oil (∼9%), water (∼11%),
and Tween-60 (∼40%) were used, while ethanol, 2-propanol, and 1-butanol
were selected as co-surfactants for each formulation, respectively. Preliminarily,
the phase compatibility of the μE ingredients, the average μE region, and
the structural transformation in the microstructure of μE were delineated by
mapping the pseudoternary phase diagram, as well as electrical conductivity,
viscosity, and optical microscopic measurements. The size distribution profile of
the as-formulated μEs analyzed by dynamic light scattering (DLS) revealed the
fine monomodal assembly of MTX-μE nanodroplets (∼65 nm), which remained
stable over a half year of storage. FTIR analysis showed good compatibility
of MTX with μE ingredients with no apparent chemical interaction, while
fluorescence measurements endorsed the acquisition of MTX in nonpolar
microenvironments. Furthermore, an enhanced dissolution rate (>98% ± 1.5%,
p ≤ 0.001) and superior bioavailability of the lyophilized non-aggregated
methotrexate nanoparticles (MTX-NPs) were achieved, making them a suitable
formulation for oral administration.
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Introduction

Due to the uncontrolled growth and widespread distribution
of abnormal cells throughout the body, cancer remains a major
global public health challenge. These abnormal cells can proliferate
uncontrollably and form large abnormal cell clusters called tumors
that disrupt normal physiological functions (Hegde and Chen,
2020). In addition, malignant cells have the ability to invade
surrounding tissue and migrate to distant areas of the body
via the bloodstream or lymphatics, a process called metastasis
(Barrios, 2022). The most common types of cancer include
lung, prostate, colon, and breast cancer. According to recent
population health projections, the estimated global incidence of
cancer diagnoses is expected to continue to increase in the coming
decades, with new cases discovered reaching over 20 million
annually by 2025, increasing cancer incidence (Zugazagoitia et al.,
2016; Ginsburg et al., 2017).

Methotrexate (MTX) is one of the main drugs used for a
range of cancer treatments. It is commonly used to treat psoriasis.
As an early-stage chemotherapy agent, MTX is widely used
in the treatment of breast, lung, and head and neck cancers.
Interestingly, research also suggests that MTX may reduce the
risk of cardiovascular complications. The drug is similarly used
for rheumatoid arthritis, which is likely achieved by increasing
adenosine levels in the body. While stopping folate synthesis risks
exacerbating oxidative damage, MTX itself works to eliminate
harmful substances and reduce unwarranted inflammation (O Dell,
1997). The administration of high-dose MTX results in bone
marrow suppression by impeding the replication of healthy cells
and causing gastrointestinal inflammation. Therefore, to avoid or
mitigate these negative effects of MTX, it is essential to find
an ideal carrier or delivery approach that allows the targeted
delivery of optimal MTX quantities. One challenge is that MTX
has poor solubility in fat compositions, complicating delivery
efforts (Moshikur et al., 2021). The use of unique dispersions
has been shown to be beneficial in improving MTX absorption
by the body and reducing unwanted side effects (Rahdar et al.,
2020; Changez et al., 2024). Regarding formulation, scientists strive
to develop micro- and nanocarriers for various pharmaceutical
compounds, and microemulsions (µEs) are emerging as effective
drug carriers (Ray et al., 2015;Ullah et al., 2022).Thekey advantages
of µEs include their thermodynamic stability, low viscosity, and
ability to solubilize both hydrophilic and hydrophobic molecules.
Their application promises controlled release and delivery of
MTX for improved therapeutic outcomes (Mahdavinia et al., 2017;
Nazar et al., 2017; Ghazy and Hanafy, 2024).

µEs are stable dispersions of water, oil, and surfactants
that maintain clarity and optical uniformity. Surfactants and
co-surfactants provide these systems with increased surface
activity, reduced surface tension, and favorable viscosity properties
(Siddique et al., 2021a; Saleem et al., 2023). There are three main
types: oil-in-water (O/W) μEs, with oil droplets dispersed in a
continuous aqueous phase, used for applications requiring smaller
amounts of oil; water-in-oil (w/o) µEs, consisting of water droplets
dispersed in a continuous oil phase and widely used for high-oil
concentration requirements; and bicontinuous µEs, where both
the oil and water phases exhibit continuity and interconnectivity
(Nazar et al., 2011a; Azfaralariff et al., 2020). Due to their ability

to effectively solubilize hydrophobic compounds such as MTX,
µEs improve bioavailability (KIZIBASH et al., 2011). Furthermore,
the tiny droplet size within µEs enhances drug permeation
and limits loss through first-pass metabolism, presenting great
potential for targeted drug delivery (Amarji et al., 2016; Essa et al.,
2020; Sultan Rana et al., 2023).

In the current study, three new µE systems were developed,
consisting of castor oil as an oil phase, Tween-60 as a surfactant,
and water as an aqueous phase. Ethanol, 2-propanol, and 1-butanol
aided as co-surfactants in µE-A, µE-B, and µE-C, respectively, to
improve the dissolution profile of anticancer MTX. The optimal µE
systems contain 3.5 wt% methotrexate at pH 6.5, 4.8 wt% at pH
6.9, and 4.2 wt% at pH 6.3 for µE-A, µE-B, and µE-C, respectively.
These loaded µEs were found to be more effective than other
designs, highlighting their utility for the improved delivery of
MTX. Moreover, an enhanced dissolution rate (>98%) and superior
bioavailability of the lyophilized non-aggregated methotrexate
nanoparticles (MTX-NPs) were achieved, making them a suitable
formulation for oral administration (Nazar et al., 2021).

Materials and methods

Materials and chemicals

Absolute ethanol (≥99.8%), 2-propanol (99.99%), 1-butanol
(99.99%), castor oil, and Tween-60® (99.99%) were purchased from
Sigma-Aldrich. Methotrexate (working standards) was provided
by Lahore Chemical & Pharmaceutical Works (Private) Limited,
Pakistan (the molecular structures of MTX and Tween 60 are
shown in Supplementary Figures S1, S2 in Supplementary Material,
respectively). Deionized and double-distilled water (conductivity
≤1 μs/cm and viscosity 0.01 poise) was used for dilution and other
experimental purposes.

Preparation of the o/w μE

Three newμE formulationswere prepared usingTween-60 (HLB
= 14.9), ethanol, 2-propanol, and 1-butanol at a constant ratio (1:1).
To obtain a translucent μE, a surfactant mixture (Smix) was placed
in an ultrasonicator, followed by the addition of an appropriate
amount of castor oil and further dilution with water using the
titration method. The pseudoternary phase diagram was mapped
using Tween-60 as the surfactant, castor oil as oil, and water as the
aqueous phase (Figure 1). Ethanol, 2-propanol, and 1-butanol were
used as co-surfactants in the preparation of μE-A, μE-B, and μE-
C, respectively. The final composition of the optimal μE-A consists
of Tween-60 (40%), ethanol (40%), castor oil (9%), and water
(11%); the optimal μE-B composition consists of Tween-60 (38%),
2-propanol (38%), castor oil (9%), and water (15%); and the optimal
μE-C composition consists of Tween-60 (41%), 1-butanol (41%),
castor oil (8%), and water (10%).Themorphological transformation
of all systems from an oil-rich (w/o) system to a water-rich (o/w)
system was accessed at a constant oil-to-surfactant ratio by selecting
a water dilution line AB highlighted in the pseudoternary phase
diagram.
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FIGURE 1
Pseudoternary phase diagram showing the one-phase region µE (purple-shaded) of ethanol/Tween-60/castor oil/water as μE-A,
2-propanol/Tween-60/castor oil/water (olive-shaded) as μE-B, and 1-butanol/Tween-60/castor oil/water (blue-shaded) as μE-C. The red line
represents the dilution line selected for further investigations. The highlighted green mark on the dilution line represents the optimal µE composition.

Incorporation of MTX in the μE and
preparation of MTX nanoparticles

Under continuous stirring, the maximum amount of MTX was
loaded into the optimal systems as follows: 3.5 wt.% at pH 6.5,
4.8 wt.% at pH 6.9, and 4.2 wt.% at pH 6.3 for μE-A, μE-B, and
μE-C, respectively. To maintain the temperature at 25°C ± 0.5°C, a
Lauda M20 thermostatic water bath was used. All three μE systems
(MTX-free and MTX-loaded) were stable and remained clear for
6°months. A rotary evaporator was used to obtain theMTXNPs. All
μE formulations were freeze-dried, placing the colloidal solution in a
freeze dryer (model: Alpha 1-2 LD Plus; Christ) to remove all water
and organic substances and obtain fine and driedMTXnanopowder.
The loading efficiency percentage (LE%) and entrapment
efficiency percentage (EE%) of MTX were computed using the
following formula:

LE(%) =
Initialweighto fMTX−weighto fMTXinsupernatant

weighto f formulation
× 100, (1)

EE(%) =
Initialweighto fMTX−weighto fMTX inresidual liquids

Initialweighto fMXD
× 100.

(2)

Characterization of the
microemulsion

Physiochemical properties, stability, and
optical microscopy study

The stability and homogeneity of allMTX-free andMTX-loaded
μE formulations were checked by centrifugation of the samples for

15 min at 3,000 rpm using aHermle Z-200ACentrifuge (Germany).
The biological microscope (LABOMED FLR Lx 400, Jenoptik,
Germany) had amagnification of 4×/10×/40×/100× and was used to
manifest any type of structural transition occurring in the structure
of MTX-free μE systems.

Electrical conductivity and viscosity
measurements

The phase changes from w/o to o/w via a bicontinuous phase
within the MTX-free μE were assessed using electrical conductivity
measurements. A conductometer (ADWA AD3000, Hungary) was
used to measure the electric conductivity (σ), whereas viscosity (ƞ)
was measured using a calibrated Brookfield viscometer (LVDV-2T,
United States) at 25ºC ± 1°C with 150 rpm by flushing and washing
the viscosity at each measurement.

Size distribution and morphological
analysis

The average droplet size and zeta potential of MTX-
free and MTX-loaded μE systems were determined at room
temperature using a Zetasizer (Malvern, Nano ZSP, United
Kingdom). Morphological analyses were conducted to explore the
internal structure of both MTX-free and MTX-loaded μEs. These
investigations were performed using a JEOL 2100 high-resolution
transmission electron microscope (HRTEM, Japan), equipped with
a LaB6 electron gun operating at 200 KV. Samples of the MTX-free
and MTX-loaded μE were carefully positioned onto copper grids
and subsequently air-dried to prepare them for observation under
the microscope.
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Spectroscopic measurements

FTIR spectra were recorded of pure MTX, MTX-free, and
MTX-loaded μE systems at a resolution of 2 cm-1 within the
range of 500–4,000 cm-1 using a Bruker FTIR (Alpha Series,
Germany). Meanwhile, a spectrofluorophotometer (Shimadzu RF-
6000, Japan) was used to measure steady-state fluorescence. A range
of 300–600 nm was used to record the fluorescence spectra of MTX.
These spectra were recorded in the aqueous phase, oil phase, and all
Smix (1:1) and optimal μE systems.

Dissolution release study

The dissolution rate of MTX-NPs was examined using USP
apparatus I (Basket) at 50 rpm for 30 min in 900 mL of the
dissolution medium. The temperature was maintained at 37°C ±
0.5°C. For the dissolution test, the PT-DT70 instrument was used,
and the absorbance at 306 ± 2 nm was measured using a UV–visible
spectrophotometer (Shimadzu UV-1800, Japan). After a set period
of 45 min, the samples were removed, and the extracted liquid was
replaced with the dissolutionmedium.The sample was filtered using
a 0.45-µm filter paper. Each test was performed in triplicate.

A comparative dissolution profile of MTX-NPs and
methotrexate–commercial formulation (MTX-CF) was also studied
at buffer pH 1.2, buffer pH 4.5, and buffer pH 6.8. Twelve units
(equivalent to the same active substance weight) of both types of
products were taken. The dissolution time was 60 min, and the
same conditions were applied as mentioned above for the study.
The sample was drawn at 5, 10, 15, 20, 30, 45, and 60 min. The
sample was drawn and filtered using a 0.45-µm filter paper. The
same volume was added to the dissolution as drawn.TheUV–visible
spectrophotometer (Shimadzu UV-1800) was used to measure the
sample and standard solution at 306 ± 2 nm.

MTX-NP-μE-A, MTX-NP-μE-B, and MTX-NP-μE-C were
stored at 15°C and elevated temperatures (40°C) for more than
6 months. No change in physical form was observed for all three
formulations. The stability data show that all three formulations are
stable and can be used commercially.

Results and discussions

Phase studies and physiochemical behavior

A ternary phase diagram is used to help study the phase behavior
and determine the ideal circumstances for the generation of μEs
by checking the compatibility of oil, water, and the surfactant
(Rahman et al., 2017). It also helps determine the correlation
between the phase behavior of the excipients of μEs and drug
molecules (Mitchell and Ninham, 1981).The water dilution method
was used to investigate the behavior of each phase; it is a quick,
precise, and economical procedure (Pal et al., 2017). Optimal μE-
A comprises Tween-60 (40%), ethanol (40%), castor oil (9%),
and water (11%); optimal μE-B comprises Tween-60 (38%), 2-
propanol (38%), castor oil (9%), and water (15%); and optimal μE-C
comprises Tween-60 (41%), 1-butanol (41%), castor oil (8%), and
water (10%), respectively. The shaded area in Figure 1 shows the

μE region, and the dilution line is indicated by red lines in that
μE region. The highlighted mark on the dilution line signifies the
optimal μE that is used for further investigation and characterization
(Saleem et al., 2018). Water-rich quantity shows that the optimal μE
is w/o μE. Figure 1 shows the differences in the μE region, which are
attributed to the varying co-surfactants used in the three systems
(Siddique et al., 2021a).

The compatibility of oil with the co-surfactant and surfactant
chain length plays a crucial role in determining the formation of µE
structures (Lawrence and Rees, 2012). The different physiochemical
properties of the μE systems are presented in Table 1. However,
the microstructural transitions in the structure of the μE system
cannot be evaluated using the ternary phase diagram.Therefore, the
transitions in the one-phase region of the µE system are explored by
conductivity (σ), viscosity (η), and optical microscopic analysis as a
weight fraction of the aqueous component (Φw).

Electrical conductivity measurements

Electrical conductivity is a useful technique for evaluating the
structural transition and forecasting a conductive network channel
(bicontinuous μE) in µEs. The conductance is measured along the
dilution line AB by constantly adding water to the oil, surfactant,
and co-surfactant mixture (Acosta et al., 1996; Yadav et al., 2018).
As the water was added, a change in the electrical conductance
of the mixture occurred, as shown in Figure 2, which displays
the plot of σ and its first derivative (dσ/dΦ) versus Φw for each
µE system. An abrupt change occurred when the phase transition
occurred. The phase transition from a w/o to o/w µE occurred,
although the bicontinuous phase is determined by the conductivity
(σ) of the water component (weight fraction) Φw (Kahlweit et al.,
1993; Olivieri et al., 2003).

For µE-A, Figure 2 shows that the Φw value is below ∼8%, and
the bicontinuous region of µE-A begins at ∼ 9% Φw, called the
percolation threshold (Φp), below the slight increase observed in the
Φw value (w/o µE). At a value of 16% Φw, sudden changes occurred,
which indicated that σ decreased due to the increase in water
content. The increase in water content leads to the development of
o/w, which leads to the phase transition of Φb. With the increase
in the value of Φw, the change in the first derivative (dσ/dφ) also
further helps determine the phase transition in the µE domain
(Formariz et al., 2008; Pal et al., 2017).

For µE-B,Φw slightly increases until the criticalΦw value is 4.5%.
The bicontinuous region starts at 5% of the percolation threshold
(Φp). At this value, Φp w/o µE exists and is higher than the Φp value
(Φw > 4.4%). σ increases until Φb (Φw ∼8.6%) is formed. After Φb,
the sudden decrease in the σ value corresponds to an increase in the
water ratio, thereby forming the o/w µE (Gaudana et al., 2010). For
µE-C, the Φp value starts at 6.0% Φw, which is slightly higher than
the Φw value (w/o µE). The changes occur at the 14.5% Φw value,
which indicates that σ decreases as the water content increases. The
increase in water content causes the development of the o/w µE,
which leads to the phase transition of φb

Viscosity measurements
Viscositymeasurement is a commonly used approach to observe

the occurrence of phase transitions in µEs since it depends on the
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TABLE 1 Physical parameters of optimal μEs.

Physical
property

µE-A: castor oil,
water, Tween-60, and

ethanol

µE-B: castor oil,
water, Tween-60, and

2-propanol

µE-C: castor oil,
water, Tween-60, and

1-butanol

MTX-free μE MTX-loaded
μE

MTX-free μE MTX-loaded
μE

MTX-free μE MTX-loaded
μE

Physical form Pale-yellow clear liquid

pH 6.3 ± 0.3 6.5 ± 0.1 6.4 ± 0.4 6.9 ± 0.2 6.1 ± 0.3 6.3 ± 0.2

Viscosity (cP) 24.5 ± 2.5 27.3 ± 3.0 26.5 ± 1.5 29.3 ± 2.5 31.5 ± 3.0 33.3 ± 4.0

Particle size DLS
(d.nm)

41.5 ± 1.5 62.5 ± 2.0 55.0 ± 2.5 70.5 ± 3.5 57.5 ± 1.5 72.0 ± 3.0

Diffusion constant
(cm2/s)

1.41 × 10−9 8.41 × 10−10 9.8 × 10−10 6.95 × 10−10 7.93 × 10−10 6.0 × 10−10

ζ-potential (mV) −30.5 ± 0.5 −36.9 ± 1.1 −26.5 ± 1.5 −28.6 ± 2.0 −32.4 ± 0.3 −36.8 ± 0.5

Stability 6 months of storage

FTIR MTX has good compatibility with µE excipients

Fluorescence MTX encapsulated in the hydrophobic microenvironment

FIGURE 2
Discrepancy in the electrical conductivity (σ) and the first derivative of the electric conductivity (dσ/dΦ) with Φw (wt%) of µE-A, µE-B, and µE-C.

droplet size (Üstündağ-Okur et al., 2014). Along the dilution line
AB, for all three µE systems, viscosity (η) and its first derivative
(dη/dΦ) were mapped as a function of Φw, as shown in Figure 3.
The change in the viscosity trend followed the same pattern as
the conductivity. The change in water content along the dilution
line resulted in a viscosity change. It was observed that a steady
increase in viscosity with increasing weight fraction (Φw) of the
aqueous component for every formulation occurred, which could be
beneficial for controlling the slow diffusion ofMTX at high dilutions
(Acosta et al., 1996; Baptista and Tran, 1997).

By increasing the plots between (dη/dΦ) and Φw, Φp and phase
transition of µEs can be determined, as shown in Figure 2. The
results of µE-A, µE-B, and µE-C of the Φp computed (dη/dΦ) and
Φw assumed showed that there is a w/o µE up to 10%, from 10% to

20% the o/w phase of the transition, and after 20%, there is an o/w
µE (Malik et al., 2006).

Microscopic studies

The biological microscope was used to examine the
microstructural transitions in µE systems via the bicontinuous phase,
which determines the process of microstructure modification of
µE (Nazar et al., 2020). Figures 4A–C show three anticipated phase
transitions of µE-A; w/o µE, bicontinuous networks, o/w µE, and
the proposed microstructure changes are shown in Figure 4, which
shows the microstructure transformation of µEs with increasing
concentration of the aqueous phase (Paria and Khilar, 2004).
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FIGURE 3
Variation in viscosity (η) and its first derivative (dη/dΦ) with water content as a function of Φw (wt%) of optimal µE-A, µE-B, and µE-C.

FIGURE 4
Microscopic images of µE-A; (A) w/o µE, (B) bicontinous µE, (C) o/w µE; along with the proposed microstructure variations in the µE.

Figure 4A shows a w/o µE with dispersed water droplets in the
oil phase, while the o/w µE revealed that the oil droplets were present
in the continuous aqueous phase (Figure 4C), and the bicontinuous
µE showed a network of spherical droplets creating bicontinuous
channels (Figure 4B). These results were also consistent with earlier
studies (Nazar et al., 2018). The hydrophilic–lipophilic balance
(HLB) between the surfactant and co-surfactant had an impact
on the microstructures of the µE systems. o/w systems were

produced by a lipophilic-leaning HLB, whereas w/o systems
were produced by a hydrophilic-leaning HLB. When neither oil
nor water droplets predominated, a bicontinuous µE appeared,
suggesting percolation behavior (Khan et al., 2016; Rahman et al.,
2016). The microstructure transformation of µE-B and µE-C
with increasing concentrations of the aqueous phase obtained
from an optical microscope is shown in Supplementary Material
(Supplementary Figure S3).
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The enhanced solubility of MTX in each optimized μE
formulation is achieved, i.e., 3.5 wt% at pH 6.5, 4.8 wt% at pH
6.9, and 4.2 wt% at pH 6.3 in μE-A, μE-B, and μE-C, respectively.
Furthermore, high EE% and excessive LE% are obtained for each
formulation. The quantitative EE% and LE% are 94.22% ± 0.48%
and 22.50% ± 0.48 for μE-A, 86.78% ± 0.92% and 17.75% ±
0.48 for μE-B, and 82.45% ± 1.15% and 15.95% ± 0.48 for μE-C,
respectively.

Size distribution and zeta potential
measurements

The evaluation of physical stability is a key factor in the
preparation of µE systems. Particles having a smaller size
exhibit a higher surface area and can easily permeate with
fast release (Siddique et al., 2024). The particle size distribution
of MTX-free µE-A and MTX-loaded µE-A was computed,
as shown in Figure 5A. The average size of MTX-free µE-
A was ∼42 nm, with a polydispersity index (PDI) of 0.112.
Likewise, the average size of MTX-loaded µE-A was ∼62.5 nm,
and the PDI was 0.194. The DLS results showed an increase
in size upon the loading of MTX in the optimal µE, which
confirmed the encapsulation of MTX (Zafar et al., 2024).
MTX-loaded µE-A exhibited an increase in size due to the
loading of MTX (Rahman et al., 2017; Siddique et al., 2021a).
The small size of droplets provides higher mobility, enhanced
surface area for encapsulation, and enhanced dissolution and
maximum release of the drug. Moreover, the larger size of the
µE systems provides less mobility, which leads to slow drug
release (Nazar et al., 2018; Siddique et al., 2021b). The particle
size distribution of MTX-free µE-B (∼55 nm), MTX-loaded µE-B
(∼70.5 nm), MTX-free µE-C (∼57.5 nm), and MTX-loaded µE-
C (∼72 nm) is given in Supplementary Material (Supplementary
 Figure S4A, B).

Zeta (ζ) potential is the most significant parameter to
evaluate the stability of colloidal systems. A higher value of
ζ-potential indicates higher stability without any aggregation
of droplets, while a low zeta potential shows less stability,
leading to aggregation or coagulation. A highly stable colloidal
system shows a ζ-potential value of >30 mV or < -30 mV
due to the steric and electrostatic repulsion between particles
(Nazar et al., 2009; Nazar et al., 2018).These ζ-potential calculations
show the stability of MTX-loaded µE-A (−36.95 mV), MTX-
loaded µE-B (−28.6 mV), and MTX-loaded µE-C (−36.8 mV)
in Supplementary Material (Supplementary Figure S5). The
substantial negative ζ-potential values of nanodroplets in µE
systems are very suitable for the development of a stable drug
delivery system. Additionally, the higher negative ζ-potential
value demonstrated the improved stability and longer shelf life
of the µE system (Bhagyaraj and Krupa, 2020; Saleem et al.,
2020; Freidus et al., 2021).

FTIR analysis

FTIR is a powerful analytical technique that provides
information about the molecular structure and functional groups

present in a sample. FTIR analysis was used to investigate possible
interactions between MTX and the different components of the
µE system (Baptista and Tran, 1997; Dinache et al., 2020). The
investigation concentrated on finding characteristic infrared peaks
and patterns, which can show any alterations or shifts indicating
chemical interactions in any µE system before and after loading
MTX. In order to guarantee the durability and efficacy of the µE
system as a drug delivery mechanism, this procedure is essential
(Nazar et al., 2009).

The chemical stability of MTX in µE systems and the
interactions between MTX and the other components of µEs were
evaluated. As shown in Figure 5B, the FTIR of MTX showed
the following characteristic peaks: a major peak at 3,361 cm−1

was observed due to the carboxylic group [O-H stretching],
whereas the peak at 2,949 cm−1 is assigned to the CH3 group
[C-H stretching]. The peaks at 1,639 cm−1 were due to the
stretching of the carbonyl group [C=O stretching] and aromatic
rings [C=C stretching]. These spectroscopic studies of µE-A, µE-
B, and µE-C, together with MTX-free and MTX-loaded µEs,
are shown in Figure 5C and Supplementary Figure S4C, D in
Supplementary Material, respectively. The MTX-loaded µE-A, µE-
B, and µE-C showed that MTX was completely dissolved in
optimal µE systems without any aggregation and absence of any
additional peak. Hence, there were no observable interactions
present between MTX and µE components, which confirms the
chemical stability of MTX in the microstructure of the µE systems
(Rajinikanth et al., 2007).

Morphological analysis

The TEM micrographs shown in Figure 6 offer a detailed
view of the high-resolution morphology of both the MTX-free
μE and MTX-loaded μE. These images confirm a monomodal
size distribution consistent with the estimations from DLS studies.
Importantly, they reveal a notable increase in the size of the MTX-
loaded μE compared to the MTX-free μE, indicating successful
MTX loading. The micrographs of the MTX-free μE depict
spherical surfaces with fine distribution, suggesting minimal
alteration in morphology across all nano-colloidal dispersions.
However, the increase in size observed implies the effective
encapsulation of MTX, facilitating enhanced bioavailability and
solubility. Specifically, μEs are utilized to encapsulate drugs with
poor solubility and limited absorption capacity. The formation of
these aggregates relies on self-assembly structures or patterns that
navigate various obstacles to reach specific destinations, enabling
controlled drug release at targeted sites (Alswieleh et al., 2020;
Hanafy et al., 2023).

Fluorescence spectral studies
One commonly used probing method to evaluate drug

partitioning in the microdomains of µEs is steady-state
spectrofluorophotometry because the absorption properties
of the drug are highly influenced by the polarity of the
surrounding medium (Lissi et al., 2000; Bermejo et al., 2003;
Pal et al., 2011). Figure 7 shows the maximum emissions (λem)
of MTX at 365 nm (a characteristic of MTX) in the aqueous
phase and appears at 435 nm in the oil phase. However, λem
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FIGURE 5
(A) Size distribution of MTX-free µE-A and MTX-loaded µE-A. (B) FTIR spectrum of pure MTX. (C) FTIR spectra of the MTX-free µE and MTX-loaded µE.

FIGURE 6
TEM micrographs of the (A) MTX-free µE and (B) MTX-loaded µE.

of MTX in Smix-A and µE-A was located at 440 nm and
445 nm, respectively. In addition, the λem values of MTX in
Smix-B, µE-B, Smix-C, and µE-C were observed at 405 nm,
415 nm, 438 nm, and 442 nm, respectively. λem of Smix and
µE systems showed a red shift in the wavelength with respect
to the λem value of the aqueous phase. The λem values of
the µE systems are consistent with the λem values of the
oil phase. The results suggested that the MTX molecules
firmly partitioned themselves in the hydrophobic part of the
µEs, which indicates that a higher concentration of MTX is
present in the non-polar microenvironment of the µE systems
and shielded by the aqueous domain (Ibrahim et al., 2010;
Pal et al., 2011).

Dissolution release profile studies
Acomparative enhanced dissolution release profile ofMTX-NPs

obtained from all three μE systems was evaluated in different vessels.
The results indicate that the drug release profile showed variations
compared to conventional formulations at different sampling points
in all three μE systems. Figure 8 shows that the average result found
was 98.5% ± 1% (p < 0.004) for MTX-NP-μE-A, 84.9% ± 3% (p <
0.001) for MTX-NP-μE-B, and 80.3% ± 2.2% (p < 0.005) for MTX-
NP-μE-C.

MTX showed the maximum release in MTX-NP-μE-A
compared to other formulations, which confirmed improved drug
solubility and maximum bioavailability at the site of action (a
complete datasheet of the comparative dissolution release profile
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FIGURE 7
Fluorescence emission spectra of MTX in water, castor oil, Smix-A,
Smix-B, Smix-C, and the optimal µE-A, µE-B, and µE-C.

FIGURE 8
Comparative release profile of MTX-NPs obtained from µE-A, µE-B,
and µE-C.

is shown in Supplementary Material Supplementary Tables S1–S3).
The decreasing particle size at interfacial surfaces to the nanometer
extent highly influenced the solubility, providing a high surface
area for the encapsulation and dissolution rate of drugs with poor
wettability (Saleem et al., 2019; Saleem et al., 2020). The release
profile ofMTX-NPswas comparedwith that ofMTX-CF in different
pHmedia at various intervals of time. MTX-NPs showedmaximum
release in all mediums with different pH values compared to MTX-
CFs. However, the maximum release of MTX-NPs was ∼80.4 ± 1.1%
in the interlude of the first 5 min at pH 6.8, while it was ∼75.3 ± 1.2%
and ∼65.4 ± 1.1% at a higher pH. Conclusively, MTX-NPs release

MTX more readily at lower acidic pH and less so at higher pH,
which indicated that the MTX-NPs were pH-sensitive, possibly due
to their increased solubility under acidic conditions. This behavior
suggests that the MTX might be more effective or stable under
acidic conditions and can influence its formulation and therapeutic
application. For instance, if intended for release in specific parts of
the body like the stomach or intestines, the formulation might need
adjustment to optimize release and efficacy. Understanding this pH-
dependent release can also guide regulatory and clinical strategies,
ensuring the MTX performs effectively under physiological
conditions. The release profiles of both MTX-NPs and MTX-
CFs at different pH values are given in Supplementary Material
Supplementary Figures S6–S9.The nanometrically dispersed MTX-
NPs obtained from this study, with improved bioavailability,
showed many remarkable advantages and features over other
conventional formulations (Narayani and Rao, 1994; Nazar et al.,
2011b; Church et al., 2018). Moreover, the MTX-NPs prepared
from optimal μE systems can be used as a promising and efficient
platform for improving the oral absorption and bioavailability of
hydrophobic drugs.

Conclusion

The results of the present study indicate the formation of MTX-
NPs from three new μE formulations comprising Tween-60, castor
oil, and water, while ethanol, 2-propanol, and 1-butanol are added
as co-surfactants in each formulation. Electrical conductivity and
viscosity data revealed the microstructural transition of the o/w μE
to w/o μE via a bicontinuous region. Optical micrographs are also
consistent with electrical conductance and viscosity data and verify
the transition of phases in the μE system. The enhanced solubility
of MTX in each optimized μE formulation is achieved, i.e., 3.5 wt%
at pH 6.5, 4.8 wt% at pH 6.9, and 4.2 wt% at pH 6.3 in μE-A,
μE-B, and μE-C, respectively. Furthermore, a high percentage of
EE% and an excessive LE% were obtained for each formulation.
The quantitative EE% and LE% are 94.22% ± 0.48% and 22.50%
± 0.48 for μE-A, 86.78% ± 0.92% and 17.75% ± 0.48 for μE-B,
and 82.45% ± 1.15% and 15.95% ± 0.48 for μE-C, respectively.
The DLS results show the monomodal size distribution (40–72 nm)
of droplets in μE systems without any aggregation or coalescence
upon loading of anticancer MTX. FTIR spectroscopy revealed the
good compatibility of anticancer MTX with μE excipients, and no
observablemolecular interactionwas present between the excipients
and μE.The probing dynamics results illustrate that more MTX was
present in the hydrophobic region of the μE interface. Distinctly,
the MTX-NPs obtained from the μE-A system offer superior oral
bioavailability and maximum dissolution release (98.5 %± 1%)
values compared to the MTX-NPs from the μE-B (84.9% ± 3%) and
μE-C (80.3% ± 2.2%) systems. It also confirms that better efficacy
of the dosed drug will be achieved due to the higher bioavailability
of the drug at the site of action. Moreover, the MTX-NPs prepared
from optimal μE systems can be used as a promising and efficient
platform for improving the oral absorption of hydrophobic drugs
by investigating and determining the other possible intrinsic
mechanisms.
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