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This research aims to evaluate the compressive strength of FRP-confined
columns using machine learning models. By systematically organizing codes
and models proposed by various researchers, significant indicators influencing
compressive strength have been identified. A comprehensive database
comprising 366 samples, including both CFRP and GFRP, has been assembled.
Based on this database, a machine learning model was developed to accurately
predict compressive strength. A thorough evaluationwas conducted, comparing
models proposed by codes and researchers. Additionally, a detailed parameter
analysis was performed using the XGBoost model. The findings highlight
the importance of both code-based and researcher-proposed models in
enhancing our understanding of compressive strength. However, certain
models show tendencies towards conservative or overestimated predictions,
indicating the need for further accuracy enhancement. Among the models
considered, the XGBoost model demonstrated the highest goodness of fit
(0.97) and the lowest coefficient of variation (8%), making it a suitable
choice for investigating compressive strength. Notable parameters significantly
influencing compressive strength include FRP thickness, elastic modulus, and
concrete strength.

KEYWORDS
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1 Introduction

The lightweight, high-strength, and easily processable nature of Fibre Reinforced
Polymer (FRP) materials make them extensively utilized for reinforcing concrete
or reinforced concrete structures (Deifalla, 2022; Jedrzejko et al., 2023; Liao et al.,
2023; Nadir et al., 2023; Sayed et al., 2023). Traditionally, steel cages or steel
sleeves are externally applied to concrete columns to enhance ductility and load-
bearing capacity (Richart et al., 1929; Ruiz-Pinilla et al., 2021; Salah et al., 2022;
Truong et al., 2022). However, steel cages increase the self-weight and cross-
sectional area of the structure, whereas steel sleeves have a comparatively lesser
impact on self-weight and cross-sectional area. Additionally, steel structures are
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vulnerable to environmental factors and corrosion. Furthermore,
both methods are time-consuming, require significant labor
input, and are less economically viable (Saadatmanesh et al.,
1994; Elsanadedy et al., 2012). In contrast, FRP materials exhibit
outstanding corrosion resistance and weigh approximately 20%
of steel while possessing equivalent tensile strength. Moreover,
the thermal expansion coefficient of FRP closely matches that of
concrete, allowing them to function harmoniously without inducing
significant temperature-induced stresses amid environmental
fluctuations. Consequently, incorporating FRP materials for
structural reinforcement has the potential to substantially reduce
maintenance expenditures and prolong the lifespan of the structure
(Tafsirojjaman et al., 2022; Chole et al., 2023; Hu et al., 2023;
Rafieizonooz et al., 2023).

Since the 1990s, researchers and committees dedicated to
code development have undertaken substantial endeavours to
devise calculation models for the ultimate limit state analysis
of FRP-confined columns. These models have predominantly
focused on two fundamental aspects: compressive strength and
ultimate axial strain. The current ACI440 guidelines endorse
the model introduced by Lam and Teng in 2003, alongside the
model presented by ISIS (ACI 440, 2008; Lam and Teng, 2003;
Canada, 2001). These models are grounded on the concept of a
linear correlation between the ratio of compressive strength to
unconfined concrete strength and the ratio of ultimate axial strain.
Conversely, alternative methodologies, including those proposed
by fib, CSA S-806, TR55, CNR-DT, Newman, Mander, Karbhari,
Toutanji, Sadeghian, and Fam, advocate for a power function
relationship between the aforementioned ratios (fib bulletin 14,
2001; CSA S-806, 2012; TR55, 2004; CNR-DT, 2004; Newman
and Newman, 1971; Mander et al., 1988; Karbhari and Gao, 1997;
Toutanji, 1999; Sadeghian and Fam, 2015). Meanwhile, Samaan’s
model proposes a linear correlation between the compressive
strength of FRP-confined concrete columns and the concrete
strength, while recognising a non-linear association with ultimate
axial strain (Samaan et al., 1998). Research findings indicate
that progress in comprehending the compressive strength of
FRP-confined columns has been facilitated by models proposed
by codes and researchers. Nevertheless, it is imperative to
acknowledge that the compressive strength is influenced by a

myriad of parameters, and the intricate interplay among these
parameters presents significant challenges. The reliability and
precision of existing models are not always assured. Consequently,
this research paper presents a sophisticated machine learning
model capable of addressing the complexities inherent in multi-
parameter modelling to accurately predict compressive strength in
FRP-restrained columns.

2 Research significance

Compared to existing published literature, this paper
establishes a model for assessing the compressive strength of
FRP-confined concrete structures based on ensemble learning
method (XGBoost). It comprehensively considers the influence of
material strength grades, structural dimensions, FRP thickness,
and fracture strain on its compressive strength. The accuracy
of the model is validated by comparing the predictive results
of the ensemble learning model with models proposed by
relevant codes and researchers. The aim of this study is to
provide engineers and researchers with a novel method and
perspective to better understand the evolution of mechanical
properties of FRP-reinforced concrete structures. Additionally,
a corresponding graphical interface will be developed in the
later stages to offer reliable support for engineering design and
maintenance work.

3 Methodology

This section outlines the methodology employed in this
study. Firstly, data on the compressive strength of FRP-confined
concrete columns under different conditions are collected from
relevant literature and experiments, and divided into training
and testing sets. Based on the training set data, an ensemble
learning model (XGBoost) is utilized to predict the compressive
strength of FRP-confined concrete columns. The proposed model
incorporates input variables such as material dimensions, material
strength, FRP thickness, and elasticity modulus, with the output
parameter being the compressive strength of the concrete after FRP

TABLE 1 Models proposed by codes and researchers.

Source Expression Source Expression

ACI 440 (2008) f′cc = f
′
co(1+ 3.3

f l
f′co
) Newman and Newman (1971) f′cc

f′co
= 1+ 3.7( f l

f′co
)
0.86

fib bulletin 14 (2001) f′cc = f
′
co(0.2+ 3.0√

f l
f′co
) Mander et al. (1988) f′cc

f′co
= 2.254√1+ 7.94 f l

f′co
− 2 f l

f′co
− 1.254

CSA S-806 (2012) f′cc = f
′
co(0.85+ 6.7

( f l)
−0.17

f′co
) Karbhari and Gao (1997) f′cc

f′co
= 1+ 2.1( f l

f′co
)
0.87

Canada (2001) f′cc = f
′
co(1+ 2.0

f l
f′co
) Samaan et al. (1998) f′cc = f

′
co + 6.0 f

0.7
l

TR55 (2004) f′cc = f
′
co(

1
0.8
+ 0.05(

2tEf
df′co
)) Toutanji (1999) f′cc

f′co
= 1+ 3.5( f l

f′co
)
0.85

CNR-DT (2004) f′cc = f
′
co(2.6+(

f l
f′co
)

2
3 ) Lam and Teng (2003) f′cc

f′co
= 1+ 3.3 f l

f′co

Richart et al. (1929) f′cc
f′co
= 1+ 4.1 f l

f′co
Sadeghian and Fam (2015) f′cc

f′co
= 1+ 3.18( f l

f′co
)
0.94
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TABLE 2 Experimental database.

Source Number Type Source Number Type

Watanabe et al. (1997) 6 C Micelli et al. (2001) 1 G

Matthys et al. (1999) 4 C Pessiki et al. (2001) 2 G

Ozbakkaloglu (2013) 7 C Toutanji (1999) 1 G

Rochette and Labossiere (2000) 3 C Lam and Teng (2004) 4 G

Xiao and Wu (2000) 25 C Silva and Rodrigues (2006) 2 G

De Lorenzis et al. (2002) 4 C Berthet et al. (2005) 15 G

Wang and Wu (2008) 3 C Youssef (2003) 7 G

Toutanji (1999) 2 C Carey (2002) 2 G

Lam and Teng (2004) 12 C Kharel (2001) 9 G

Jiang and Teng (2007) 15 C Bullo (2003) 6 G

Lam et al. (2006) 12 C Cui and Sheikh (2010) 21 G

Cui and Sheikh (2010) 66 C Demers and Neale (1994) 2 G

Smith et al. (2010) 5 C Jiang and Teng (2007) 8 G

Benzaid et al. (2010) 18 C Mastrapa (1997) 5 G

Wang et al. (2012) 26 C Teng et al. (2007) 6 G

Marques and Chastre (2012) 3 C Almusallam (2007) 12 G

Micelli and Modarelli (2013) 7 C Micelli and Modarelli (2013) 1 G

Wu and Jiang (2013) 34 C Zohrevand and Mirmiran (2011) 4 G

Kshirsagar et al. (2000) 3 G
Total (C + G) 366

Aire et al. (2001) 3 G

reinforcement. Additionally, the predictive results of the XGBoost
ensemble learningmodel are compared with those of corresponding
normative models and models proposed in the literature to further
demonstrate the superiority of this model. Finally, the influence of
each input variable on the compressive strength of FRP-confined
concrete columns is analyzed.

4 Building an indicator system for
prediction

4.1 Review of the existing models

Table 1 presents an overview of the models proposed by
both codes concerning the compressive strength of FRP-confined
concrete columns (Notes: The models listed in Table 1 mainly
originate from relevant standards of different countries and
have been widely accepted by the industry. Currently, these
calculation models have not been updated. The prediction accuracy

of newly developed theoretical models and machine learning
models for this year has been demonstrated in Figure 5 of
this paper).

The mathematical expression for the maximum confinement
stress, fl, is shown in Eq. 1.

fl =
ρ frp f frp

2
=
2tE frpε frp

d
(1)

Where, t denotes the thickness of FRP, Efrp denotes the elasticity
modulus of FRP, ɛfrp denotes the FRP rupture strain, and d denotes
the diameter of the column. Therefore, taking into consideration
the models proposed by codes and researchers, as well as the
collectability of the data, the initial parameters for this study are
determined as follows: column diameter (D), FRP thickness (t),
concrete strength ( f ’co), elasticitymodulus of FRP (Ef ), FRP fracture
strain (ɛh,rup), and compressive strength of the confined column
( f ’cc). Among these parameters, f ’cc is the dependent variable, i.e.,
the output feature, while the others are independent variables, i.e.,
the input features.
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FIGURE 1
Distribution of parameters.

FIGURE 2
Correlation among indicators.
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TABLE 3 Performance of the models.

Model
Training set Testing set

MSE R2 MSE R2

LR 421.84 0.68 532.55 0.63

RR 421.84 0.68 532.55 0.63

DT 301.51 0.77 547.04 0.62

ANN 92.84 0.93 128.28 0.91

RF 285.24 0.81 459.08 0.76

XGBoost 39.46 0.96 25.53 0.98

4.2 Establishment of database and
indicator system

4.2.1 Established the database
In this study, a comprehensive dataset comprising 366 entries

was compiled, sourced from experiments conducted by 41
researchers. The origins of these data are delineated in Table 2, with
the distribution of parameters illustrated in Figure 1.The criteria for
selecting experimental data are as follows:

(1) This study exclusively focuses on investigating FRP-
strengthened circular concrete columns, and the database
has not yet been designed for related research on concrete
beams.

(2) The selected concrete columns were not reinforced with steel
bars; thus, only the influence of FRP on the load-bearing
capacity of plain concrete was considered.

(3) The chosen samples consist of concrete columns entirely
wrapped with FRP.

In addition, this study primarily investigated the variation in
load-bearing capacity of ordinary concrete columns reinforced
with CFRP and GFRP. Due to limitations in experimental data
availability, the data for BFRP (Basalt Fiber-Reinforced Polymer)
reinforcement was relatively limited or insufficient, hence the
assessment of load-bearing capacity of concrete columns reinforced
with BFRP was not conducted at this time. Future research
will be needed to conduct corresponding experiments to explore
the variation in load-bearing capacity of concrete structures
reinforced with BFRP.

Upon analysis of Table 2, it is apparent that the dataset
comprises a significant total of 366 samples, sourced from a diverse
array of origins. This comprehensive selection aids in mitigating
the inherent variability encountered during subsequent model
establishment endeavours. Through examination of Figure 1, it
is evident that parameter D exhibits a predominant distribution
within the range of 150–160 mm, while parameter t predominantly
falls within the range of 0–2 mm. Additionally, f ’co demonstrates
a distribution pattern encompassing the interval of 25–60 MPa.
Notably, ɛ reveals a higher occurrence of distribution within
the intervals of 0–1 and 1–2.5. Similarly, Ef exhibits a higher

frequency of distribution within the range of 0–300 GPa. It is
worth noting that occurrences in other intervals are comparatively
less frequent.

4.2.2 Establishment of indicator system
Initially, relying on the parameters delineated in Section 4.2.1:

D, t, f ’co, Ef , ɛh,rup, and the f ’cc, an initial indicator system is devised.
The correlation analysis of each indicator is shown in Figure 2.
It is evident that, with the exception of a weak correlation
between Ef and t, there exists no correlation among the other
indicators.

5 Compression strength model based
on machine learning

5.1 Selection of the optimal machine
learning model

This section primarily investigates the suitability of both
individual and ensemble machine learning models within this
research context. The single machine learning models employed
encompass linear regression (LR), ridge regression (RR), decision
tree (DT), and artificial neural network (ANN). Additionally,
ensemble machine learning models, including random forest (RF)
and XGBoost, are utilised. The linear regression (LR) model is
suitable for exploring linear relationships between dependent
and one or more independent variables. It is simple, intuitive,
and computationally efficient; however, its performance may
degrade when data exhibits non-linear relationships. The ridge
regression (RR) model is an improvement over linear regression,
designed to handle multicollinearity (high correlation between
independent variables). It still struggles with non-linear problems.
The decision tree (DT) model is effective for handling non-
linear datasets and can address classification and regression
tasks, but it is prone to overfitting. Random forest (RF) consists
of multiple decision tree models and is suitable for processing
high-dimensional and large-scale datasets, effectively reducing
overfitting risk. However, it is sensitive to data quality and
feature selection. The artificial neural network (ANN) model
can learn and capture complex patterns in data but is sensitive
to hyperparameters, requires complex tuning, and its results
are challenging to interpret. In contrast, the XGBoost model
(ExtremeGradient Boosting) offers superior predictive performance
compared to traditional linear regression, ridge regression, decision
trees, and random forests. It achieves ensemble learning through
gradient boosting, progressively enhancing the performance
of multiple weak learners during training to achieve higher
predictive accuracy. Additionally, XGBoost can effectively handle
non-linear relationships and high-dimensional data, exhibiting
strong fitting capabilities to capture complex patterns in the
data. Moreover, XGBoost employs regularization and pruning
strategies to control model complexity and mitigate overfitting
risks (Vapnik, 1995; Breiman, 2001; Friedman et al., 2001;
Chen and Guestrin, 2016).

The data used to construct these models are sourced
from the database established in Section 2.2.1. Among
these samples, 70% are allocated for the training set,
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FIGURE 3
Performance of the models after adding the labels.

10% for the validation set, and 20% for the testing set.
The models’ performance is evaluated based on the mean
squared error (MSE) and coefficient of determination (R2).
The MSE assesses the model’s accuracy by quantifying the
disparity between predicted and experimental values, with
a smaller value indicating reduced error. Meanwhile, R2

gauges the degree of correspondence between predicted and
experimental values, with a value closer to 1 signifying a
stronger alignment. The performance of each machine learning
model on both the training and testing sets is detailed
in Table 3.

Based on Table 3; Figure 3, it is apparent that linear
regression and ridge regression manifest comparable performance
across both the training and testing datasets. Random
forest, overall, surpasses decision trees in performance.
Particularly noteworthy is the markedly superior performance
of neural networks and XGBoost in comparison to other
models. Furthermore, both these model categories display
comparable MSE and R2 values across both the training and
testing datasets.

5.2 Evaluation of models proposed by
codes and researchers

This section assesses the performance of the models outlined
in Section 4.2.1, utilising the database established in Section 2.2.1.

The evaluation is conducted using measures of goodness of fit
(R2), mean value (υ), and coefficient of variation (Cov). The υ
is employed to ascertain whether the models’ predictions tend
towards conservatism or overestimation. Meanwhile, the Cov serves
to gauge the precision or accuracy of a model. A smaller Cov
indicates greater precision, suggesting that the model’s predictions
closely align with actual or experimental values. Comparisons
between the calculated values and experimental values for the
model recommended by codes and researchers are illustrated
in Figures 4, 5, respectively. Furthermore, Figure 6 presents a
comparison between the predicted values and experimental values
of the XGBoost model developed in Section 5.1.

Based on Figure 4, it is evident that among all the codes,
ACI demonstrates the highest R2 value (0.90). Both ACI and
ISIS exhibit the lowest Cov (15%), indicating high accuracy. On
the contrary, the models recommended by CSA, TR55, and CNR
have R2 values below 0.5 and Cov values above 30%, indicating
lower accuracy. Furthermore, the models recommended by fib,
CSA, and TR55 demonstrate a conservative tendency with R2

values below 0.90, while the CNR model (υ = 1.57) poses a risk
of overestimating the f ’cc value. Referring to Figure 5, it can be
concluded that the models suggested by researchers exhibit high
R2 values (above 0.8) and low Cov values (below 20%). Newman
and Lam & Teng’s models have the highest R2 values (0.90),
while Sadeghian and Fam’s model exhibits the lowest Cov (14%).
Additionally, the models of Richart et al., Newman, Mander, and
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FIGURE 4
Evaluation of the codes’ models. (A) [ACI 440 (2008)], (B) [fib bulletin 14 (2001)], (C) [CSA S-806 (2012)], (D) ISIS Canada, ISIS (2001), (E) [TR55 (2004)],
(F) [CNR-DT (2004)].

Toutanji show a risk of overestimating the f ’cc value with υ above
1.1, whereas Karbhari’s model appears to be more conservative
with a low υ (0.92).

Figure 6 illustrates that the XGBoost model attains a
commendable R2 of 0.97 and a Cov of 8%. These findings highlight
the superior accuracy of the XGBoost model in forecasting
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FIGURE 5
Evaluation of the researchers’ models. (A) (Richart et al., 1929), (B) Newman and Newman, 1971 (C) Mander et al., 1988, (D) Karbhari et al., 1997, (E)
Samaan et al., 1998, (F) Toutanji et al., 1999, (G) Lam and Teng et al., 2003, (H) Sadeghian and Fam et al., 2015.

f ’cc values compared to models advocated by both codes and
researchers. The XGBoost model excels in precisely predicting f ’cc
values based on the dataset established in this study.

Based on the above analysis, it is evident that certain early
models (such as CSA, TR55, CNR, etc.) face significant challenges
in terms of predictive accuracy, with lower R2 values and higher

Frontiers in Materials 08 frontiersin.org

https://doi.org/10.3389/fmats.2024.1408670
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Cui et al. 10.3389/fmats.2024.1408670

FIGURE 6
Performance of the XGboost model.

FIGURE 7
Feature importance based on XGBoost.

Cov values indicating considerable prediction bias and an inability
to accurately predict the compressive strength of concrete columns.
Specifically, certain models (such as the CNR model) exhibit a
conservative tendency, tending to underestimate the compressive
strength of concrete, which may lead to excessively conservative
estimates of structural performance. These challenges likely stem

from early models failing to account for key factors such as specific
properties of concrete, geometric dimensions of Fibre Reinforced
Polymer (FRP), and the interface characteristics between FRP
and concrete. These factors significantly influence the mechanical
properties of concrete columns but may have been overlooked or
inadequately considered in early models.
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FIGURE 8
Feature sensitivity analysis based on XGBoost. (A) fcc affected by D, (B) fcc affected by t, (C) fcc affected by fco, (D) fcc affected by εfrp, (E) fcc affected
by Ef.

In contrast, this study employs the XGBoost ensemble
learning method, which excels in handling complex feature and
data relationships, enabling a more comprehensive analysis and
prediction of the mechanical properties of FRP-confined concrete

columns. The XGBoost model leverages gradient boosting to
progressively enhance the performance of multiple weak learners,
thereby improving predictive accuracy and reliability. Furthermore,
XGBoost is effective in handling nonlinear relationships and
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high-dimensional data, demonstrating strong fitting capabilities
and the ability to capture complex patterns within the data, thereby
providing more accurate and reliable predictive capabilities for
concrete structural engineering.

6 Parameter study

6.1 Parameter importance analysis

In accordance with Section 3.1, the XGBoost model in machine
learning demonstrates superior performance in predicting the
compressive strength of FRP-confined columns. Consequently, this
section employs XGBoost for conducting model importance and
sensitivity analysis. In XGBoost, feature importance is evaluated
by computing the average gain for each feature across all decision
tree nodes. Specifically, this process entails traversing through every
decision tree node and computing the gain value associated with
the respective feature at each node. The significance of each feature
is then determined by averaging the gains across all nodes. These
calculated feature importance values serve as valuable indicators of
each feature’s impact on the overall model performance, facilitating
a comprehensive assessment of their significance within the analysis
framework. The outcomes of the parameter importance analysis are
presented in Figure 7.

Figure 7 reveals the hierarchy of parameter influence on the
compressive strength of FRP-confined columns as follows: concrete
strength, FRP thickness, FRP elastic modulus, column diameter,
FRP type, and FRP failure strain. Notably, concrete strength exerts a
significantly greater influence on compressive strength compared to
the other parameters.

6.2 Parameter sensitivity analysis

Furthermore, this study conducted parameter sensitivity
analysis using XGBoost. To investigate the relationship between
a specific feature and the compressive strength ( f ’ cc), the analysis
was performed considering four levels of the feature “t”: 0.5 mm,
1.5 mm, 2.5 mm, and 3.5 mm. Additionally, for the parameter “D”,
four distinct levels were examined: 100 mm, 150 mm, 200 mm, and
250 mm. It is noteworthy that the average values from a dataset
comprising 366 data points (as outlined in Table 2) were utilised
for the remaining features. Specifically, values for “D” were fixed
at 160 mm, “ f ’ co” (average compressive strength of concrete) at
46.5 MPa, “εfrp” (FRP strain) at 1.21%, and “Ef ” (elastic modulus of
FRP) at 165.6 GPa.

In Figure 8A, it is evident that f ’ cc and the diameter of the
column are inversely proportional, although the diminishing trend
of f ’ cc becomes less pronounced with increasing D. Figure 8B
illustrates that f ’ cc is directly proportional to the thickness of the
FRP. For t values below 1mm, there is a higher sensitivity between
f ’ cc and t, whereas for t values above 1mm, the sensitivity is lower.
Figure 8C reveals a positive correlation between f ’ cc and the concrete
strength, although this correlation becomes less pronounced when
f ’ co exceeds 100 MPa. From Figure 8D, it can be observed that
f ’ cc and the fracture strain of FRP are directly proportional, albeit
with a relatively modest increase in magnitude. Lastly, Figure 8E

demonstrates that f ’ cc is directly proportional to the elastic
modulus of FRP.

7 Conclusion

This study utilized a comprehensive database along with
machine learning models to predict the compressive strength of
FRP-confined columns. It evaluated models recommended by both
codes and researchers, conducting parameter analysis, leading to the
following conclusion:

(1) Among the machine learning models, XGBoost demonstrated
exceptional performance on both the training and testing
datasets, showing the lowest MSE values of 39.46 and 25.53,
respectively, along with the highest R2 scores of 0.96 and 0.98,
respectively.

(2) The XGBoost model used in this study exhibits commendable
accuracy and robustness. Among the models based on codes,
ACI and ISIS performed well, while other models showed
lower precision, insufficient robustness, and potential issues
of conservatism or overestimation of compressive strength.
Regarding models proposed by researchers, their percentage
errors ranged from 0% to 20%. Notably, models by Lam
and Teng, as well as Samaan, demonstrated higher precision,
while there was a risk of overestimating compressive strength
in models by Richart, Newman, Mander, Toutanji, and
Sadeghian.

(3) The primary factor influencing the compressive strength of
FRP-confined columns is concrete strength, with the impact of
FRP rupture strain being relatively minimal. In the XGBoost
model, compressive strength showed an inverse relationship
with column diameter and a direct relationship with other
parameters.

(4) This study focused on selecting data related to FRP-reinforced
concrete cylinders to delve deeper into the impact of FRP
reinforcement on circular concrete columns. In contrast,
square columns exhibit unique geometric shapes and load-
bearing characteristics, and currently, there is insufficient
experimental data available for FRP-reinforced square
columns. Therefore, this research opted to study circular
columns, which have a richer and more reliable dataset.
Future studies will endeavor to conduct experiments on FRP-
reinforced concrete square columns and beams to address this
research gap.
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