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The workingmechanism of an acoustic metamaterial (AM) for broadband elastic
vibration suppression with non-independent local resonators is presented in this
paper along with the general formulas for the effective mass (EM), dispersion
relation, and transmission spectrum (TR) of this metamaterial unit. A kind
of flexible metamaterial sticker that is lightweight and skillfully uses flexible
materials is proposed based on a theoretical approach. The flexiblemetamaterial
sticker has a surface density of only 2.22 kg/m2 and an overall thickness of only
3 mm. It is made by depositing the flexible cylindrical supports in a square lattice
pattern on the surface of the flexible plate. The finite element method (FEM)
was used to systematically investigate the band structures, frequency response
function (FRF), dynamic effective mass density (EMD), as well as the formation
mechanisms of the flexural vibration bandgaps (FVBGs) of the metamaterial
plates (composite structure after applying themetamaterial sticker). Additionally,
a thorough analysis was conducted on the impacts of geometrical parameters
(the rubber cylinder thickness, the flexible material plate thickness, the lattice
constant, and the rubber cylinder radius) on the FVBGs. Finally, an overall
vibration attenuation for the proposed metamaterials was estimated by using
the spatial quadratic velocity and experiment. The findings confirmed that
the AM caused multi-frequency negative EM, while the overall bandgap width
was substantially wider than that of conventional metamaterials. Due to
the numerous vibration modes of the flexible metamaterial, the suggested
flexible lightweight metamaterial sticker can generate several observable local
resonance FVBGs in the low-frequency range. Significantly broadening the
bandwidth of FVBGs can be achieved by varying the rubber cylinder radius and
thickness, as well as by adjusting the lattice constant and flexible material plate
thickness. Within the FVBGs, the proposed lightweight flexible metamaterial
sticker shows a good vibration-suppression performance, when compared with
the traditional damping structure or metamaterials.
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1 Introduction

The thin plate is widely used in as a common structure in
engineering applications aerospace, automotive industry, and other
fields (Mao and Pietrzko, 2013). However, the suppression of
vibration and its radiated noise (especially low-frequency noise) for
the thin plate indicates one of the key issues in the past decades.The
traditional vibration reduction methods for plate structure mainly
include: using damping materials, dynamic vibration absorbers or
improving the equivalent stiffness of plate structure. However, the
above-mentioned damping methods have some problems, such as
narrow vibration-suppression band, poor low-frequency vibration
reduction performance and excessive overall additional weight.
Therefore, how to achieve broadband low-frequency vibration
isolation using the lightweight materials for thin plate is a key
problem in the current research (Benaroya et al., 2017).

As acoustic/elastic metamaterials have advanced, new concepts
and techniques for addressing low-frequency vibration in thin plate
structures have surfaced (Sigalas and Economou, 1992; Martínez-
Sala et al., 1995; Sánchez-Pérez et al., 1998; Liu et al., 2000; Liu et al.,
2002; Wang et al., 2004; Benchabane et al., 2006; Khelif et al., 2006;
Hsu and Wu, 2007; Mohammadi et al., 2008; Pennec et al., 2008;
Xiao et al., 2008; Oudich et al., 2010; Zhu et al., 2010; Croënne et al.,
2011; Hsu, 2011; Wu et al., 2011; Hsu, 2012; Xiao et al., 2012;
Zhang et al., 2012;Wang et al., 2013; Peng and Pai, 2015; Zhao et al.,
2015; Zhao et al., 2016; Beli et al., 2018; Tian et al., 2019; Zhou et al.,
2019; Lu et al., 2020; Oyelade and Oladimeji, 2021; Deng et al.,
2023a). The initial research mainly focused on the research of Bragg
scattering metamaterials, but these kinds of structures generally
form a high bandgap and are greatly affected by the periodicity of
the structure (Gao et al., 2021), which cannot be applied in practical
vibration suppression (Sigalas and Economou, 1992; Martínez-
Sala et al., 1995; Sánchez-Pérez et al., 1998). However, in 2000, with
the development of local resonance AM, it became possible for
metamaterials to be utilized for low-frequency vibration damping
and noise isolation. A series of 2D locally resonant AM plates with
low-frequency bandgaps were reported (Sánchez-Pérez et al., 1998;
Liu et al., 2000; Liu et al., 2002; Wang et al., 2004; Benchabane et al.,
2006; Khelif et al., 2006; Hsu and Wu, 2007; Mohammadi et al.,
2008; Pennec et al., 2008; Xiao et al., 2008; Oudich et al., 2010;
Zhu et al., 2010; Croënne et al., 2011; Hsu, 2011; Wu et al., 2011;
Hsu, 2012; Xiao et al., 2012; Zhang et al., 2012), achieved either by
creating perforations in the plate or by intermittently placing the
pillar-like structures onto the plate’s surface. Furthermore, multi-
degree-of-freedom local resonators were incorporated into the
design of metamaterials to widen the low-frequency bandgaps,
while the formation and related mechanisms of the bandgaps were
thoroughly investigated (Wang et al., 2013; Peng and Pai, 2015;
Zhao et al., 2015; Zhao et al., 2016; Beli et al., 2018; Tian et al.,
2019; Lu et al., 2020; Oyelade and Oladimeji, 2021; Deng et al.,
2023b). The above-mentioned metamaterials constructed based
on hard materials (especially the matrix materials), which have
certain limitations in practical use (cannot be made into any
shape and cannot be completely pasted on the target structural
plate). Therefore, pure flexible materials have been introduced
into the design of metamaterials, and fruitful results have been
achieved (Wang et al., 2019; Zhou et al., 2020; Ma et al., 2021).
Zhou et al. (2019) and Zhou et al. (2020) systematically studied

the design method and sound insulation mechanism of large-
size flexible acoustic package, and perfectly verified the sound
insulation performance through experiments. Because of the
abundant vibration modes of the flexible materials, the sound
insulation frequency band can be further broaden via the reasonable
structural design.

This paper presents the impact of mutual coupling between
the non-independent local resonators of AM on the dynamic EM
and bandgaps. According to theoretical assessment, and inspired by
the design idea of flexible acoustic packaging used in automobiles
and the bandgap opening mechanism of local resonance, a
lightweight flexible metamaterial sticker with low-frequency and
broadband vibration suppression is proposed. The metamaterial
sticker has the characteristics of simple structure, lightweight
and easy processing. Furthermore, the vibration-suppression
performance and formation mechanism of the bandgaps of the
metamaterial sticker were systematically investigated via FEM and
experiment.

2 Theoretical model analysis

As illustrated in Figure 1, consider an infinitely long one-
dimensional lattice system composed of non-independent
resonators. This model is comparable to the classic single-degree-
of-freedom metamaterial mechanics model in that k2 connects
the resonance mass m2 and outer matrix mass m1, while spring k1
connects the units.The biggest difference is that each local resonance
mass is connected to each other by the spring K. The lattice constant
is L. For ease of explanation, the EM of the non-independent AM
is investigated using the unit cell of the lattice model with two
resonators (Figure 1B).The outermassm1 as well as its displacement
u1, the inner mass m2 as its displacement u2 have been relabeled as
m3, u3,m4, and u4, respectively.

The unit cell motion equation with two resonators is expressed
as:

[[[[[

[

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

]]]]]

]

[[[[[

[

̈u1
̈u2
̈u3
̈u4

]]]]]

]

+
[[[[[

[

k1 + k2 −k2 −k1 0
−k2 K+ k2 0 −K
−k1 0 k1 + k2 −k2
0 −K −k2 K+ k2

]]]]]

]

[[[[[

[

u1
u2
u3
u4

]]]]]

]

=
[[[[[

[

F
0
0
0

]]]]]

]
(1)

wherein ui =U iexp(jωt) is the ith lump mass displacement, and F =
F0exp(jωt) is the external force on the unit cell.

Equation 1 can be further expressed as:

[[[

[

k1 + k2 −m1ω
2 −k2 −k1 0

−k2 K+ k2 −m2ω
2 0 −K

−k1 0 k1 + k2 −m3ω
2 −k2

0 −K −k2 K+ k2 −m4ω
2

]]]

]

[[[

[

U1
U2
U3
U4

]]]

]

=
[[[

[

Fn
0
0
0

]]]

]
(2)

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2024.1407850
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Zhou et al. 10.3389/fmats.2024.1407850

FIGURE 1
(A) The one-dimensional lattice system comprising non-independent resonators. (B) The unit cell with two linked lattice system resonators and its EM.
(C) The n-period one-dimensional lattice meta-composite system with EM.

From Eq. 2, the expression ofU1 can be calculated, and then the
EM of the unit cell was acquired as:

me f f = −
Fn

ω2U1
(3)

Furthermore, from Eq. 3, the dispersion relationship is
expressed as Eq. 4

2k(1− cos qL) =me f fω
2 (4)

Using the structure in Figure 1C, the motion equation of the
simplified n-period system was expressed as:

(2k−me f fω
2)Uj − k(Uj−1 +Uj+1) = 0,  j = 1,2,⋯,n− 1 (5)

(k−me f fω
2)Un − kUn−1 = 0 (6)

wherein U j denotes the displacement amplitude of the jth
equivalent unit cell.

The Eqs 7, 8 are obtained by combining Eqs 5, 6

Tj =
k

k(2−Tj+1) −me f fω
2
,  j = 1,2,⋯,n− 1 (7)

Tn =
k

k−me f fω
2 (8)

wherein Tn =U j/U j-1.Therefore, the one-dimensional lattice system
TR was acquired as Eq. 9:

TR = 20 lg(|Un/U0|) = 20 lg(|
n

∏
j=1

Tj|) (9)

The EM, dispersion relation, and transmission spectrum of the
lattice model are illustrated in Figure 2. In the calculation, the
specific parameter settings includedm1 =m3 = 1 kg,m2 =m4 = 2 kg,
K = 1.5 N/m, k = k1 = 2 N/m, k2 = 1 N/m.

As shown in Figure 2A, the metamaterial model exhibited
three negative EM regions for the metamaterial model: 0.631
∼ 1.224 rad/s, 1.349 ∼ 1.357 rad/s and 1.813 ∼ 2.271 rad/s,
respectively, and shows better low-frequency broadband
characteristics. Figures 2B, C shows the mechanical model
dispersion curve and transmission spectra, respectively. Compared
with the traditional metamaterials, the mechanical model has
obvious advantages in the number and width of bandgaps
(only one negative EM region for the traditional model:
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FIGURE 2
The calculated (A) EM, (B) dispersion relation, and (C) TR of the metamaterial model.

√k2/m2 ∼√k2/m1 + k2/m2), whichmeans that through a reasonable
AM structure can achieve good vibration damping performance.
Next, the flexible metamaterial sticker with a low-frequency
broadband was designed for vibration suppression of thin plate
materials, and the bandgap formation mechanism and vibration
damping performance were further discussed in detail.

3 Overview of the continuum model

3.1 Model

Figure 3A illustrates the flexible metamaterial sticker structure.
Construction involved depositing the flexible cylindrical supports
(yellow part) in a square lattice arrangement on the flexible plate
(gray part) surface. The flexible plate is made from ethylene-vinyl
acetate (EVA) copolymer with a ρe = 2,050 kg/m3 static density, a
Young’s modulus of Ee = 1.7 × 108 Pa, and Poisson’s ratio of νe =
0.45.The flexible cylindrical support, as the roles stiffness, is a silicon
rubber with mass density ρr = 1,300 kg/m3, the Young’s modulus is
Er = 6 × 105 Pa and Poisson’s ratio is νr = 0.48, respectively. The

dimensions of each metamaterial section included a = 30 mm, te
= 1 mm, d = 10 mm, and tr = 2 mm. The metamaterial composite
surface density was 2.22 kg/m2 with a 3 mm overall thickness. In
practical engineering application, the side of the metamaterial with
flexible support needs to be pasted on the surface of the thin plate
that needs vibration reduction. Figure 3B shows an application status
of the flexible metamaterial sticker pasted on the surface of the
aluminum backplane. The density (ρa) of the aluminum backplane
material is 2,730 kg/m3, with a Young’smodulus ofEa = 7.8 × 1010 Pa
and a Poisson’s ratio of νa = 0.35.

Compared with the traditional metamaterial (single-degree-of-
freedom), the AM composed of metamaterial sticker and aluminum
plate also still some differences: there is no obvious matrix and local
resonators. However, combined with common sense and practical
engineering experience, we can know that the flexible material and
its flexible cylindrical support constitute the local resonance system,
while the relatively hard aluminum plate is the matrix, which will be
proved by later calculations. In fact, metamaterials designed based
on a one-dimensional “spring-mass” mechanical model are a two-
dimensional structure, and there are certain differences between
the mechanical model and the metamaterial structure. The original
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FIGURE 3
Schematics of (A) the flexible metamaterial sticker: overall structure (left) and unit cell (right), and (B) application status of the flexible metamaterial
sticker for thin plate vibration suppression.

intention of this paper is to use a one-dimensionalmechanicalmodel
to verify that the interaction between non independent resonators
can open multiple bandgaps, and based on this idea, design
a metamaterial structure with simple structure and broadband
characteristics.

3.2 Method

Due to the easier interaction of flexure waves (zero-order
antisymmetric Lamb mode) with air media, the out-of-plane
vibration has received much attention. FEM, an effective method
in previous works (Mohammadi et al., 2008; Pennec et al., 2008;
Zhu et al., 2010; Croënne et al., 2011; Hsu, 2011; Hsu, 2012;
Xiao et al., 2012; Zhang et al., 2012; Wang et al., 2013; Peng and Pai,
2015; Zhao et al., 2015; Zhao et al., 2016; Beli et al., 2018; Tian et al.,
2019;Wang et al., 2019; Zhou et al., 2019; Aladwani andNouh, 2020;
Lu et al., 2020; Zhou et al., 2020; Gao et al., 2021; Ma et al., 2021;
Oyelade andOladimeji, 2021;Deng et al., 2023a;Deng et al., 2023b),
is used to calculate the composite structure dispersion relations
depicted in Figure 3B to explore the vibration suppression features
of the proposed flexible metamaterial. The governing equations of
elastic wave propagation was characterized as Eq. 10 to compute the
band structures:

3

∑
j

∂
∂xj
(

3

∑
l=1

3

∑
k=1

cijkl
∂uk
∂xl
) = ρ
∂2ui
∂t2
(i = 1,2,3) (10)

wherein ui, uk, and ul represent the displacements, cijkl refers
to the elastic modulus tensor components, ρ signifies the mass
density, t refers to time, and xj denotes the x, y, and z coordinate
variables, respectively. A periodic infinite system is evident in the
x- and y-direction simultaneously. Therefore, only one unit cell was

considered in the calculations. As shown in Figure 4A, the interfaces
between the closest unit cells were determined using the stress-
free boundary conditions based on the Bloch-Floquet theorem.The
elastic displacement was denoted as Eq. 11:

u(r) = ei(k⋅r)uk(r) (11)

wherein k = (kx, ky) represents the wave vector. Employing the Bloch
computation involves varying the k value within the first irreducible
Brillouin zone (Figure 4B), which in turn yields the eigenfrequencies
and their corresponding eigenvectors.This procedure also elucidates
the dispersion relations and eigenmodes.

The analysis involved computing the transmission spectrum
across a confined arrangement made up of ten units along either
the x- or y-axis, while in the orthogonal direction, Bloch periodic
conditions are enforced at the boundaries. FEM was employed
to verify the presence of FVBGs within the studied structure.
Additionally, the examination revealed an average displacement
response on the right side, indicating the application of harmonic
displacement excitation on the plate surface located at the left side
(Figure 4C). The TR is expressed as Eq. 12:

TR = 20 log
|dout|
|din|

(12)

wherein |din| and |dout| represent the average input and output
displacements of the plate, respectively. Perfectly matched layers
were applied at the domain boundaries to stop reflections because
the system domain had to be finite for FEM utilization (Zhu et al.,
2010; Hsu, 2011; Hsu, 2012). COMSOL Multiphysics 5.4, a
commercial program recognized for its efficacy in analyzing
dispersion relations and transmission spectra of metamaterials
across various studies and research (Zhu et al., 2010; Croënne et al.,
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FIGURE 4
A schematic diagram of (A) the boundary conditions used in the calculations, (B) the first irreducible rectangular Brillouin zone, and (C) a calculation
scheme for the TR.

2011; Hsu, 2011; Hsu, 2012; Xiao et al., 2012; Zhang et al., 2012;
Wang et al., 2013; Peng and Pai, 2015; Zhao et al., 2015; Oyelade and
Oladimeji, 2021), was employed for all numerical computations in
this investigation. The solid grid cell dimensions must be less than
one-sixth of the mesh partition material flexural wavelength.

4 Results and discussion

4.1 Band structures of the elastic
metamaterial plates

When the frequency is between 0 Hz and 2000 Hz, there are
fifteen bands in the band structure (Figure 5A), where three FVBGs
(one complete bandgap, green regions; two directional bandgaps,
cyan regions) are involved. Between the first and fifth flexural wave
bands, or 610.1 Hz–794.07 Hz, is the lowest frequency range of the
bandwidth. The second directional FVBG lies between the fifth
and ninth bands, spanning from 1,290.8 Hz with a 205.9 Hz width.
The third directional FVBG spans 93.6 Hz in width and is located
between the 11th and 15th bands, measuring between 1857.8 Hz
and 1951.4 Hz. The total width of the bandgaps is 483.47 Hz. In
order to conveniently and intuitively display the structure and
position of the flexural wave bandgaps, the energy bands in the
full-wave band are simplified and only the flexural wave energy
bands are retained, as shown in Figure 5B. The TR depicting
the flexural wave propagation in x- or y-direction are shown in
Figure 5C. It is evident in the TR that three frequency ranges
exhibiting significant obvious attenuation (highlighted in green and
cyan) in flexural wave propagation in the respective directions
are observed. Remarkably, these regions align closely with the
bandgaps in Figure 5A. Nonetheless, prior research has discovered
that periodic metamaterials can support both Bragg scattering and
local resonances (Xiao et al., 2008; Oudich et al., 2010).The reduced
frequency fa/ct is shown in Figure 5B (right), where ct represents
the transverse velocity in the metamaterial and a is the lattice
constant. This serves to validate the formation mechanism of the
bandgaps. The transverse velocity in the metamaterial is expressed
as ct = √G/ρ. The effective shear modulus (G) and effective density
(ρ) of the base plate correspond to the transverse velocity in the

metamaterial, respectively. In the frequency regions, the bandgaps
are situated roughly two to three orders below the Bragg scattering
mechanism. This indicates that the local resonance mechanism is
where the FVBGs originate.

4.2 Formation mechanisms of the three
FVBGs

It has been established that the formation mechanism of
FVBGs is attributed to local resonance. Local resonance occurs
when the frequency of the incident elastic wave aligns with the
natural frequency of the internal spring-mass system. However,
the flexible metamaterial sticker introduced in this research does
not exhibit a distinct local resonance resonator form. Despite
this, three noticeable local resonance FVBGs were observed in
the low-frequency spectrum. This observation was elucidated by
presenting the eigenmode shapes and displacement vector fields
of the labeled modes in Figure 5A within Figure 6. The colored
map shows the displacement vector field magnitude, calculated via
√(u2x + u2y + u2z).

For modes A, C, and E, representing the lower boundaries
of the bandgaps, the flexible plate (EVA plate) exhibits vibration
displacement primarily in the z-direction, while the base plate
remains fixed. Owning to the abundant vibration modes of the
flexible material, a local resonance system with multi-degree-of-
freedom is formed between the flexible plate and rubber cylinder.
The propagation of flexural waves is hindered because the reaction
force generated from the local resonance system suppresses the
vibration of the base plate, creating bandgaps at these frequencies.
However, in modes B, D, and F, there is a dynamic balance between
the base plate and the local resonance system, allowing elastic waves
to propagate freely and closing the bandgaps.

Through the above analysis, it can be seen that the metamaterial
sticker exhibits obvious local resonance characteristics: the flexible
material EVA shows the functions of the local resonance mass
and partial spring, the aluminum plate and flexible supports
represent the matrix and spring, respectively. The maximum
displacement occurs between the flexible cylindrical supports, that
is, there is obvious mutual coupling between the resonators. And
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FIGURE 5
The computing results for the (A) band structures of full-wave, (B) band structures of flexural wave, and (C) TR of the flexural composite structure
vibration.

because the flexible material has abundant vibration modes at low-
frequencies, multi bandgaps can be opened. Moreover, the position
of the bandgaps (Figure 5C) demonstrates the effectiveness of the
local resonance formation mechanism.

This section uses a numerical method to compute the composite
structure dynamic EMD. The reaction forces at the four lateral
boundaries were determined by surface integration following
the application of a specific harmonic displacement A along
the z-direction. The dynamic EMD was calculated using Eq. 13
(Lu et al., 2020),

ρe f f = −
1
V

∮
S
F(r)z dS

Aω2 (13)

wherein F(r)z is the reaction force z-component at the four
boundaries, ω denotes the angular frequency, V signifies the unit
cell volume, and S refers to the total region of the four vertical
boundaries. Figure 7 shows the calculation results.

Figure 7 shows the three negative EMD regions when the
frequency is lower than 2,000 Hz. As shown in Figure 5A, the
negative EMD regions locates inside the FVBGs. Here, the internal
local resonance mass vibration opposes the base vibration direction
because of the negative EM, which lowers the matrix vibration.
Therefore, the above research further shows that the designed
metamaterial sticker opens the bandgaps and suppresses the
vibration with the aid of local resonance mechanism.

4.3 The impact of the geometrical criteria
on the FVBGs

The starting fs and the cutoff frequency fc are calculated
using FEM to show the impact of the geometrical criteria on the
complete or directional FVBGs. Figures 8A–D show the impact of
the geometrical criteria of the rubber cylinder tr thickness, the
flexible material plate (EVA plate) te thickness, the lattice constant
a, and the rubber cylinder radius d/2 on the FVBGs, respectively.

As shown in Figure 8A, the fs and fc of the three FVBGs declined
as the rubber cylinder tr thickness increased. Among them, the
bandwidth of the first complete FVBG is almost invariable. While
for the second directional FVBG, the decline rate of fc exceeds
that of fs, narrowing the bandgap. For the third directional FVBG,
the boundaries’ variations are the same as those of the second
bandgap. Moreover, when tr is equal to 3 mm, the third directional
FVBG disappears.The equivalent rubber stiffness decreases with the
increasing of the thickness of the rubber cylinder tr , which greatly
weakens the interactions between the traveling wave modes and
local resonance. Thus, the total bandwidth of the FVBGs gradually
become narrow.

Figure 8B shows that the fc of the first complete FVBG stabilizes
after an initial rapid ascent, while fs shows the converse behavior.The
width of the first complete FVBG initially increases, then decreases.
fs and fc of the second and third directional FVBG all increase, while
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FIGURE 6
Eigenmode shapes and displacement vector field of the modes labeled in Figure 5.

the increasing rate of the fc of the two FVBGs both are greater
than that of fs, which narrows the two FVBGs. When te equals
1.6 mm and 2.1 mm, respectively, the third and second directional
FVBGs disappear successively. From the above analysis, it can be
found that the flexible plate cannot be thickened infinitely. Because
when the flexible plate is infinitely thickened, the overall stiffness
of the flexible plate increases, it cannot produce abundant vibration
modes at low-frequency, and the vibration of the plate also shows the
overall vibration (only one bandgap opens at a low-frequency when
te ≥ 2.5 mm).

Figure 8C shows the impact of the lattice constant a on the
FVBGs. Here, fs, fc, and the bandwidth (except for bandwidth
of the third directional FVBG) of three FVBGs all decrease
with the increase of the lattice constant a. The bandwidth
of the third directional FVBG initially increases, followed
by a decline. When the lattice constant a increases, the EM
provided by the flexible plate increase responsively, resulting in
low-frequency bandgaps. The coupling between the traveling

wave modes and the local resonance corresponded, opening
narrower bandgaps.

Figure 8D displays the impact of the rubber cylinder radius
d/2 on the FVBGs. fs and fc of the first complete FVBG were
higher as the rubber cylinder radius increases, showing an almost
invariable bandwidth. The fs and fc of the second directional
FVBG move to a higher frequency when d/2 increases. However,
the increasing rate of fs exceeds that of fc, broadening the
bandgap, while and the bandwidth remains almost unchanged.
However, when d/2 ≤ 3 mm, the third directional FVBG disappears.
Increasing the rubber cylinder radius actually increases the
equivalent rubber stiffness, and the change trend of bandgap
is just opposite to that of increasing the thickness of the
rubber cylinder.

In practical applications, one can select the ideal structure
parameters to achieve the desired bandgap frequency
ranges by analyzing the geometrical criteria associated
with FVBGs.
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FIGURE 7
Dynamic EMD for the composite structure.

4.4 Evaluation of overall vibration
attenuation of the proposed metamaterials

4.4.1 Prediction of spatial quadratic velocity level
In engineering applications, for structures containing a

large number of plate and shell elements (such as surface
ships and underwater vehicles, etc.), the magnitude of
normal vibration is of main concern. Therefore, the spatial
quadratic velocity is usually used as an evaluation index
for vibration magnitude, to reflect the overall vibration of
the structure. Herein, the spatial quadratic velocity can be
defined as Eq. 14

⟨v2⟩ = 1
S
∬
S

|V|2ds (14)

wherein S represents the area of vibrating surface, and
V is the normal velocity distribution function of the
vibrating surface.

Furthermore, the spatial quadratic velocity level can be
defined as Eq. 15

Lv = 10 log(⟨v2⟩/v20) (15)

wherein v0 = 1 × 10−5 m/s is the reference speed.
To demonstrate the effective low-frequency vibration-

suppression capabilities of the suggested metamaterials, this study
only used point force to predict spatial quadratic velocity. Besides,
the position of the point force is highlighted in Figure 9, and the

applied harmonic force magnitude is 1 N. The calculated results are
presented in Figure 10. Additionally, to validate a good damping
performance of metamaterials, the vibration of pure plate and
plate coated with damping materials (the thickness of the damping
material is 2 mm, and the loss factor is 0.2, the total mass of the
additional damping material is heavier than that of metamaterials
sticker) are also shown.

As can be found from the calculated results, for the studied
frequency range, the vibration-suppression ability of metamaterials
is the best, especially in the bandgap ranges (green area). Likewise,
the vibration-suppression effect of damping materials on matrix
plates is second to that of metamaterials, while the vibration of pure
plates is most intense among all. It is worth noting that since the
second and third bandgaps are directional bandgaps, this can only
suppress the propagation of flexural waves in one direction (ΓX).
The mean square velocity level is calculated using a single point
excitation, which produces waves that travel in three directions.
When themetamaterial structure is laid on the surface of thematrix,
the flexural wave propagating along the diagonal of the matrix
can not be effectively suppressed, so the vibration suppression of
the second and third bandgaps will be slightly worse. In addition,
relevant studies have also shown that the directional bandgaps
will weaken the attenuation ability of vibration, but they are
equally important for vibration and noise reduction (Zhang, 2016).
Therefore, it can be concluded that the proposed metamaterial
sticker can well realize the broadband vibration reduction of thin
plate structure.
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FIGURE 8
Effects of (A) the rubber cylinder tr thickness, (B) the flexible material plate (EVA plate) te thickness, (C) the lattice constant a, and (D) the rubber cylinder
radius d/2 on the FVBGs.

FIGURE 9
The position of the point force applied on metamaterial.
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FIGURE 10
The prediction of spatial quadratic velocity level for the metamaterial (black curve), plate coated with damping materials (red curve), and pure plate
(blue curve), respectively.

4.4.2 Experiment
As illustrated in Figure 11A, transmission-measuring

experiments of a flexible metamaterial sticker with ten periodic
units are performed to further confirm the good vibration
suppression performance of the proposed structure. The flexible
metamaterial sticker is pasted on the aluminum plate with
a size of 300 mm × 300 mm × 1 mm by using rubber glue.
Furthermore, in the experimental test, to realize the free
flexural vibration, a soft rubber band is used to hang and
install the test specimen (Figure 11B). In the experiment,
the transmission characteristics of the sample are tested
by hammering method, which is considered to be a very
effective means (Figure 11C).

The transmission spectrum was obtained and shown as the
black solid curve in Figure 12. The experimental results show
the obvious vibration attenuation in a range of 390 ∼ 2,000 Hz
(the studied range), especially in the region corresponding to
the bandgap, the transmission dips can be observed. From
the comparison between the FEM and the experimental
results, the metamaterial can achieve good vibration damping
performance in a broadband frequency range, which verifies
the good vibration-suppression performance of the flexible
AM sticker.

In addition, despite the fact that the results are generally
consistent, some discrepancies remain. Moreover, the bandwidth
of the attenuation region obtained from the experimental results is
significantly larger than those of the FEM. There are two primary
causes for the discrepancy between the calculated and experimental

results: the dimensions of the rubber and EVA that were designed,
those that were actually manufactured, and the simplification of
the loss factor. An intrinsic material property called damping,
which is primarily connected to soft polymeric materials like
rubber and EVA in this study, is important for the structure’s
response. Previous studies have proved that the existence of damping
in polymer materials can broaden or even connect the multiple
bandgaps (Aladwani and Nouh, 2020). The processing technology
and equipment play a major role in the discrepancy between the
manufactured dimensions and the designed dimensions, although
these factors generally have minimal influence. In order to
demonstrate the above issues more intuitively, the damping of
rubber material is set to 0.1 (using homogeneous loss factors to
characterize the material’s damping), and the damping of EVA is set
to 0.3. At the same time, considering the influence of size errors,
the transmission rates of the two composite metamaterials, “5–5”
and “4-3-3,” were repeatedly calculated and compared, respectively.
In Figure 12, “5–5” represents a diameter of 5 mm for the first 5
rubber cylinders and 6 mm for the last 5 (this model is referred
to as the “5–5” configuration); “4-3-3” indicates that the diameter
of the first four rubber cylinders is 4 mm, the middle three are
5 mm, and the last three are 6 mm (this model is called the
“4-3-3” configuration). As can be seen from Figure 12, the gaps
between the calculated transmission rate and its experimental
value are gradually narrowed, which also confirms the previous
conjecture. However, it is undeniable that there are still some gaps
between the two, which is caused by the test environment and
conditions.
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FIGURE 11
The test sample and the experimental measurement setup. Schematic illustration of (A) test sample, (B) sample installation, and (C) experimental setup.

FIGURE 12
Comparisons of transmission rate data for composite models with the different parameters (black dotted lines represent experimental results, red
dotted lines and blue dotted lines represent calculated results of the “4-3-3” and “5-5” configurations considering damping, respectively, and green
dotted lines represent calculated results of the original model).

5 Conclusion

A working mechanism for AM with non-independent local
resonators is presented in this study. Based on the theoretical analysis
of the EM, dispersion relation, and transmission characteristics, the
lightweight flexible metamaterial sticker is proposed skillfully via
using the flexible materials, which is used to realize the broadband
vibration-suppression and low-frequency performance of thin the
plate structure. The band structures, TR, dynamic EMD and the

formation mechanisms of the FVBGs of the metamaterial plates were
systematically investigated via FEM. Moreover, the impact of the
geometrical criteria on the FVBGs were examined in detail. Lastly,
an overall vibration attenuation for the proposed metamaterials was
estimatedbyusing the spatialquadraticvelocity.Basedon this analysis,
the following conclusions can be drawn.

(1) The AM causes multi-frequency negative EM (multiple
bandgaps) with significant wider total width of bandgaps than
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traditional metamaterials due to the mutual coupling between
the local resonators.

(2) The metamaterial sticker surface density is 2.22 kg/m2 while
the thickness is 3 mm, which is beneficial to realize the
lightweight of equipment design and engineering application
potential. Moreover, the proposed flexible lightweight
metamaterial sticker can produce multiple obvious local
resonance FVBGs in a low-frequency range owning to the
abundant vibration modes of the flexible material.

(3) By enhancing the coupling between flexible thin plate
and matrix plate (increasing the rubber cylinder radius or
decreasing the rubber cylinder thickness, the flexible material
plate thickness, and the lattice constant), the bandwidth of
FVBGs can be broadened significantly.

(4) The proposed lightweight flexible metamaterial sticker shows
a good vibration-suppression performance for the thin plate,
when compared with the traditional damping structure.
Moreover, in practical use, due to the existence of damping of
the material itself, the region of vibration attenuation can be
further broadened.

The lightweightmetamaterial sticker put forth in this work offers
a fresh approach to the difficult issue of thin plate radiated noise and
low-frequency vibration.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

GZ: Conceptualization, Funding acquisition, Investigation,
Writing–original draft. KL: Data curation, Formal Analysis,

Software, Writing–review and editing. ML: Funding acquisition,
Project administration, Writing–review and editing. YL:
Funding acquisition, Project administration, Writing–review
and editing.

Funding

The authors declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was supported by the National Key R&D Plan Project
under Grant No. 2021YFB3801804, the Key Project of Shanghai
Zhangjiang National Independent Innovation Demonstration
Zone under Grant No. ZJ2021-ZD-006, and the Fundamental
Research Program of Shanxi Province under Grant No.
20210302124010.

Conflict of interest

Authors GZ and YL were employed by Shanghai Research
Institute of Materials Co., Ltd.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Aladwani, A., and Nouh, M. (2020). Mechanics of metadamping in flexural
dissipative metamaterials: analysis and design in frequency and time domains. Int. J.
Mech. Sci. 173, 105459. doi:10.1016/j.ijmecsci.2020.105459

Beli, D., Arruda, J. R. F., and Ruzzene, M. (2018). Wave propagation in elastic
metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 139,
105–120. doi:10.1016/j.ijsolstr.2018.01.027

Benaroya, H., Nagurka, M., and Han, S. (2017) Mechanical vibration: analysis,
uncertainties, and control[M]. Boca Raton, London, New York: CRC Press.

Benchabane, S., Khelif, A., Rauch, J. Y., Robert, L., and Laude, V. (2006). Evidence for
complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73 (6),
065601. doi:10.1103/physreve.73.065601

Croënne, C., Lee, E. J. S., Hu, H., and Page, J. H. (2011). Band gaps in phononic
crystals: generation mechanisms and interaction effects. AIP Adv. 1 (4), 041401.
doi:10.1063/1.3675797

Deng, J., Gao, N., and Chen, X. (2023b). Ultrawide attenuation bands in
gradient metabeams with acoustic black hole pillars. Thin-Walled Struct. 184, 110459.
doi:10.1016/j.tws.2022.110459

Deng, J., Gao, N., Chen, X., Pu, H., and Guo, J. (2023a). Underwater sound
radiation from a Mindlin plate with an acoustic black hole. Ocean. Eng. 278, 114376.
doi:10.1016/j.oceaneng.2023.114376

Gao, N., Wang, B., Lu, K., and Hou, H. (2021). Complex band structure and
evanescent Bloch wave propagation of periodic nested acoustic black hole phononic
structure. Appl. Acoust. 177 (3), 107906. doi:10.1016/j.apacoust.2020.107906

Hsu, J. C. (2011). Local resonances-induced low-frequency band gaps in two-
dimensional phononic crystal slabs with periodic stepped resonators. J. Phys. D Appl.
Phys. 44 (5), 055401. doi:10.1088/0022-3727/44/5/055401

Hsu, J. C. (2012). Effects of elastic anisotropy in phononic band-gap plates with
two-dimensional lattices. J. Phys. D Appl. Phys. 46 (1), 015301. doi:10.1088/0022-
3727/46/1/015301

Hsu, J. C., and Wu, T. T. (2007). Lamb waves in binary locally resonant
phononic plates with two-dimensional lattices. Appl. Phys. Lett. 90 (20), 201904.
doi:10.1063/1.2739369

Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., and Laude, V. (2006). Complete
band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74 (4), 046610.
doi:10.1103/physreve.74.046610

Liu, Z., Chan, C. T., and Sheng, P. (2002). Three-component elastic wave band-gap
material. Phys. Rev. B 65 (16), 165116. doi:10.1103/physrevb.65.165116

Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., et al.
(2000). Locally resonant sonic materials. science 289 (5485), 1734–1736.
doi:10.1126/science.289.5485.1734

Frontiers in Materials 13 frontiersin.org

https://doi.org/10.3389/fmats.2024.1407850
https://doi.org/10.1016/j.ijmecsci.2020.105459
https://doi.org/10.1016/j.ijsolstr.2018.01.027
https://doi.org/10.1103/physreve.73.065601
https://doi.org/10.1063/1.3675797
https://doi.org/10.1016/j.tws.2022.110459
https://doi.org/10.1016/j.oceaneng.2023.114376
https://doi.org/10.1016/j.apacoust.2020.107906
https://doi.org/10.1088/0022-3727/44/5/055401
https://doi.org/10.1088/0022-3727/46/1/015301
https://doi.org/10.1088/0022-3727/46/1/015301
https://doi.org/10.1063/1.2739369
https://doi.org/10.1103/physreve.74.046610
https://doi.org/10.1103/physrevb.65.165116
https://doi.org/10.1126/science.289.5485.1734
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Zhou et al. 10.3389/fmats.2024.1407850

Lu, K., Zhou, G., Gao, N., Li, L., Lei, H., and Yu, M. (2020). Flexural vibration
bandgaps of the multiple local resonance elastic metamaterial plates with irregular
resonators. Appl. Acoust. 159, 107115. doi:10.1016/j.apacoust.2019.107115

Ma, F., Wang, C., Liu, C., and Wu, J. H. (2021). Structural designs, principles, and
applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J.
Appl. Phys. 129 (23), 231103. doi:10.1063/5.0042132

Mao, Q., and Pietrzko, S. (2013) Control of noise and structural vibration[M]. New
York, NY: Springer.

Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., and Meseguer,
F. (1995). Sound attenuation by sculpture. nature 378 (6554), 241. doi:10.1038/
378241a0

Mohammadi, S., Eftekhar, A. A., Khelif, A., Hunt, W. D., and Adibi, A. (2008).
Evidence of large high frequency complete phononic band gaps in silicon phononic
crystal plates. Appl. Phys. Lett. 92 (22), 221905. doi:10.1063/1.2939097

Oudich, M., Li, Y., Assouar, B. M., and Hou, Z. (2010). A sonic band gap based
on the locally resonant phononic plates with stubs. New J. Phys. 12 (8), 083049.
doi:10.1088/1367-2630/12/8/083049

Oyelade, A. O., and Oladimeji, O. J. (2021). Coupled multiresonators acoustic
metamaterial for vibration suppression in civil engineering structures. Forces Mech. 5,
100052. doi:10.1016/j.finmec.2021.100052

Peng, H., and Pai, P. F. (2015). Design of multi-stopband metamaterial plates
for absorption of broadband elastic waves and vibration[C]//Health Monitoring
of Structural and Biological Systems 2015. Int. Soc. Opt. Photonics 9438,
94380X. doi:10.1117/12.2084197

Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J. O., and Hladky-Hennion,
A. C. (2008). Low-frequency gaps in a phononic crystal constituted of cylindrical
dots deposited on a thin homogeneous plate. Phys. Rev. B 78 (10), 104105.
doi:10.1103/physrevb.78.104105

Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa,
J., Meseguer, F., et al. (1998). Sound attenuation by a two-dimensional array
of rigid cylinders. Phys. Rev. Lett. 80 (24), 5325–5328. doi:10.1103/physrevlett.
80.5325

Sigalas,M.M., andEconomou, E.N. (1992). Elastic and acousticwave band structure.
J. sound Vib. 158 (2), 377–382. doi:10.1016/0022-460x(92)90059-7

Tian, Y., Wu, J. H., Li, H., Gu, C., Yang, Z., Zhao, Z., et al. (2019). Elastic wave
propagation in the elastic metamaterials containing parallel multi-resonators. J. Phys.
D Appl. Phys. 52 (39), 395301. doi:10.1088/1361-6463/ab2dba

Wang, G., Wen, X., Wen, J., Shao, L., and Liu, Y. (2004). Two-dimensional locally
resonant phononic crystals with binary structures. Phys. Rev. Lett. 93 (15), 154302.
doi:10.1103/physrevlett.93.154302

Wang, P., Chen, T. N., Yu, K. P., and Wang, X. P. (2013). Lamb wave band gaps in a
double-sided phononic plate. J. Appl. Phys. 113 (5), 053509. doi:10.1063/1.4790301

Wang, X., Chen, Y., Zhou, G., Chen, T., and Ma, F. (2019). Synergetic coupling large-
scale plate-type acoustic metamaterial panel for broadband sound insulation. J. Sound
Vib. 459, 114867. doi:10.1016/j.jsv.2019.114867

Wu, T. T., Hsu, J. C., and Sun, J. H. (2011). Phononic plate waves. IEEE Trans.
ultrasonics, Ferroelectr. Freq. control 58 (10), 2146–2161. doi:10.1109/tuffc.2011.2064

Xiao, W., Zeng, G. W., and Cheng, Y. S. (2008). Flexural vibration band gaps in a
thin plate containing a periodic array of hemmed discs. Appl. Acoust. 69 (3), 255–261.
doi:10.1016/j.apacoust.2006.09.003

Xiao, Y., Wen, J., and Wen, X. (2012). Flexural wave band gaps in locally resonant
thin plates with periodically attached spring-mass resonators. J. Phys. D Appl. Phys. 45
(19), 195401. doi:10.1088/0022-3727/45/19/195401

Zhang, H. (2016) Study on the tunability of the band gaps and their vibration reduction
performance of phononic crystal plates[D]. Hunan University.

Zhang, H., Chen, J., andHan, X. (2012). Lambwave band gaps in a homogenous plate
with periodic tapered surface. J. Appl. Phys. 112 (5), 054503. doi:10.1063/1.4749400

Zhao, H. J., Guo, H.W., Gao,M. X., Liu, R. Q., andDeng, Z. Q. (2016). Vibration band
gaps in double-vibrator pillared phononic crystal plate. J. Appl. Phys. 119 (1), 014903.
doi:10.1063/1.4939484

Zhao, H. J., Guo, H.W., Li, B. Y., Deng, Z. Q., and Liu, R. Q. (2015). Flexural vibration
band gaps in a double-side phononic crystal plate. J. Appl. Phys. 118 (4), 044906.
doi:10.1063/1.4927627

Zhou, G., Wu, J. H., Lu, K., Tian, X., Huang, W., and Zhu, K. (2020). Broadband low-
frequency membrane-type acoustic metamaterials with multi-state anti-resonances.
Appl. Acoust. 159, 107078. doi:10.1016/j.apacoust.2019.107078

Zhou, G., Wu, J. H., Lu, K., Tian, X., Liang, X., Huang, W., et al. (2019). An approach
to broaden the low-frequency bandwidth of sound insulation by regulating dynamic
effective parameters of acoustic metamaterials. J. Phys. D Appl. Phys. 52 (21), 215102.
doi:10.1088/1361-6463/ab07f9

Zhu, X., Zou, X., Liang, B., and Cheng, J. (2010). One-way mode transmission
in one-dimensional phononic crystal plates. J. Appl. Phys. 108 (12), 124909.
doi:10.1063/1.3520491

Frontiers in Materials 14 frontiersin.org

https://doi.org/10.3389/fmats.2024.1407850
https://doi.org/10.1016/j.apacoust.2019.107115
https://doi.org/10.1063/5.0042132
https://doi.org/10.1038/378241a0
https://doi.org/10.1038/378241a0
https://doi.org/10.1063/1.2939097
https://doi.org/10.1088/1367-2630/12/8/083049
https://doi.org/10.1016/j.finmec.2021.100052
https://doi.org/10.1117/12.2084197
https://doi.org/10.1103/physrevb.78.104105
https://doi.org/10.1103/physrevlett.80.5325
https://doi.org/10.1103/physrevlett.80.5325
https://doi.org/10.1016/0022-460x(92)90059-7
https://doi.org/10.1088/1361-6463/ab2dba
https://doi.org/10.1103/physrevlett.93.154302
https://doi.org/10.1063/1.4790301
https://doi.org/10.1016/j.jsv.2019.114867
https://doi.org/10.1109/tuffc.2011.2064
https://doi.org/10.1016/j.apacoust.2006.09.003
https://doi.org/10.1088/0022-3727/45/19/195401
https://doi.org/10.1063/1.4749400
https://doi.org/10.1063/1.4939484
https://doi.org/10.1063/1.4927627
https://doi.org/10.1016/j.apacoust.2019.107078
https://doi.org/10.1088/1361-6463/ab07f9
https://doi.org/10.1063/1.3520491
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles

	1 Introduction
	2 Theoretical model analysis
	3 Overview of the continuum model
	3.1 Model
	3.2 Method

	4 Results and discussion
	4.1 Band structures of the elastic metamaterial plates
	4.2 Formation mechanisms of the three FVBGs
	4.3 The impact of the geometrical criteria on the FVBGs
	4.4 Evaluation of overall vibration attenuation of the proposed metamaterials
	4.4.1 Prediction of spatial quadratic velocity level
	4.4.2 Experiment


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

