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Ferroelastic twin walls for
neuromorphic device
applications

Guangming Lu1* and Ekhard K. H. Salje2*
1School of Environmental and Materials Engineering, Yantai University, Yantai, China, 2Department of
Earth Sciences, University of Cambridge, Cambridge, United Kingdom

The possibility to use ferroelastic materials as components of neuromorphic
devices is discussed. They can be used as local memristors with the advantage
that ionic transport is constraint to twin boundarieswhere ionic diffusion ismuch
faster than in the bulk and does not leak into adjacent domains. It is shown
that nano-scale ferroelastic memristors can contain a multitude of domain
walls. These domain walls interact by strain fields where the interactions near
surfaces are fundamentally different from bulk materials. We show that surface
relaxations (∼image forces) are curtailed to short range dipolar interactions
which decay as 1/d2 where d is the distance between domain walls. In
bigger samples such interactions are long ranging with 1/d. The cross-over
regime is typically in the range of some 200–1500 nm using a simple spring
interaction model.
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Introduction

In contrast to ferroelectric domain walls, ferroelastic domain walls (mostly twin walls)
have the advantage that their ‘emerging properties’ are localized within domain walls while
the adjacent domains play no role. This remarkable property (Salje, 2010) stems from
the local symmetry breaking inside the domain wall but not in the domains. Typical
emerging properties are the development of polarity in non-polar materials (Van Aert et al.,
2012), high conductivity (Aird and Salje, 1998), photovoltaics (Bhatnagar et al., 2013)
and atomic-scale transistors (Chai et al., 2020). Several of these properties exist also in
ferroelectric domain walls, both show enhanced conductivity compared to that of the
domains (Seidel et al., 2009; Catalan et al., 2012;Meier and Selbach, 2022), and their density
and topological complexity can be modulated by the choice of the substrate and the system
dimensions (Venkatesan et al., 2007; Nesterov et al., 2013; Feigl et al., 2014), e.g., the film
thickness. The non-trivial electronic and transport properties have been demonstrated to
be suitable for new applications of domain wall nanoelectronics (Catalan et al., 2012; Meier
and Selbach, 2022). Both ferroelectric and ferroelastic domain walls have been proposed
as memristor materials (Maksymovych et al., 2011; Kim et al., 2012; Ma et al., 2020; Salje,
2021a; Liu et al., 2023), and as key elements of neuromorphic devices (Indiveri et al., 2013;
Christensen et al., 2022). The topology of these wall-related networks was described in
(Cipollini et al., 2024) for ferroelectric domain boundaries, although the ferroelasticity
of domain walls in materials like BiFeO3 (Kubel and Schmid, 1990; Balke et al., 2009)
was ignored in (Cipollini et al., 2024). It was speculated in (Bose et al., 2017) that wiring
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together memristor devices enables the realization of cross-
bar arrays for vector-matrix multiplications. Self-assembled
memristor networks of nano-objects, such as nanoparticle self-
assembled networks (Bose et al., 2017; Mambretti et al., 2022) or
nanowire networks (Cultrera et al., 2021; Hochstetter et al., 2021;
Milano et al., 2022), were identified as potential candidates for
neuromorphic devices (Lu and Salje, 2024). Ferroelastic twin walls
relate to the interface between two domains and not necessarily to
any an epitaxial strain imposed by the substrate. The movement of
ferroelastic twin walls can be extremely swift and can be initiated
by electric fields (Casals et al., 2019). The rearrangement of twin
walls often occurs during avalanche processes (Harrison and Salje,
2010). The typical time scale for avalanche movements is some
femtoseconds and even an extended kink inside a twin walls
can assume a speed faster than the highest speed of sound in
the material under consideration (Salje et al., 2017). This very
high speed of the wall movement is very difficult to measure
experimentally. Examples are avalanche process where events which
last below a microsecond are commonly observed (Ding et al.,
2012; Chen et al., 2022; Chen et al., 2023). The scale invariance
of the process implies that the true local process is orders of
magnitude faster but, alas, we are limited in their observation
by our limited electronic and piezo-electric detector capabilities.
Alternatively, local “swinging”’ of ferroelastic domain walls can be
observed in resonance ultrasonic spectroscopy (RUS) and Resonant
Piezoelectric Spectroscopy (RPS) (Carpenter, 2015) where the
upper frequency is again some 10 MHz. It appears that a big
technological advance would be needed to extend the frequency
range of avalanches detection and RUS to the GHz regime and
above. Such facilities would be most useful for the investigation
of the memory capacity and the memristor functionality is a wide
range of materials. The driving force for devices is often the external
strain exerted from the counter electrode in a memristor (Salje,
2012). Under appropriate boundary conditions, twin boundaries
form complex, self-assembled neuromorphic networks where the
coupling between twin walls is a key element in the neuromorphic
performance (Pastor-Satorras and Vespignani, 2001; Strogatz, 2001;
Moreno et al., 2004; Ghavasieh and De Domenico, 2023). In this
paper we describe how sample sizes, surfaces, and defects interplay
to determine how twin walls interact and how they form the
common ferroelastic tangles (Viehland and Salje, 2014; Salje et al.,
2016a). Typical ferroelastic materials whichmay be explored further
for neuromorphic computation include WO3 (Aird and Salje,
2000; Kim et al., 2010), CaTiO3 (Lee et al., 2006) and Pb3(PO4)2
(Salje et al., 1993; Wruck et al., 1994).

Theoretical model

Ferroelastic domains, domain walls and the topological atomic
kinks inside the walls are described by a Landau-type double-well
potential on the interatomic interactions, as schematically shown
in Figure 1. Our simulations are based on a two-dimensional toy
model with two base atoms carrying negative charges (red atoms)
and positive charges (yellow atoms). The total interactions can be
divided into two main parts, i. e., short range pairwise interactions
and long range Columbic interactions. The potential forms for the
short range interactions are summarized in Table 1.

Where r is the distance between atoms. The first- and third-
nearest interactions are related to the elastic interactions and
constitute the elastic background in ferroelastic materials. The
second-nearest interaction has two minima which are symmetric
with respect to √2 of the ‘cubic’ lattice parameter and hence
pushes or pulls the atoms into the diagonal direction of the
unit cell. This leads to a shear of the equilibrium structure. We
choose the model parameter such that the shear angle is 2°. The
additional fourth-nearest Landau-type interactions help to obtain a
reasonable domain wall thickness and stability (Chrosch and Salje,
1999; Catalan et al., 2012). The model parameters were inspired
by the well-known second-order phase transition of SrTiO3 with
a typical ferroelastic shear angle of 2° (Hayward and Salje, 1999).
The simulated microstructures are fairly robust with respect to the
parameters in Table 1. The ratios of the prefectors of the various
potential were optimized to reproduce aweakly first-order transition
where the temperature evolution of the order parameter is smooth in
the ferroelastic phase and shows a step at the transition temperature.
The atomic interactions between cations, and cations and anions
are purely harmonic to exclude any additional polar instability
in the bulk. The polarity condenses only inside the twin walls
where the inversion symmetry is broken by the change of the
shear angle across the walls and the flexoelectric relaxation. Similar
potential forms have been developed to successfully investigate
internal frictions accompanying the dynamicmotions of ferroelastic
domains (Zhao et al., 2013; He et al., 2022), the interactions of
fine microstructures inside the domain walls (Lu et al., 2022;
Lu et al., 2023), piezoelectricity (Lu et al., 2019a; Lu et al., 2020a),
ferroelectricity (Lu et al., 2019b), and magnetism (Lu et al., 2020b)
emerging from the static and dynamic polar ferroelastic domain
walls (often simple twin walls) (Salje et al., 2016b; Lu et al., 2019c).
All simulations are performed using the LAMMPS code (Plimpton,
1995). Visualizations are performed using the OVITO software
(Stukowski, 2010). A symmetry analysis of the model was published
by Lu et al. (2024). The model is based on a “cubic” to “tetragonal”
transition (in two dimensions). Extensions to other systems like
“cubic” to “rhombohedral” have been envisaged but only very
few papers have been published on this scenario (Yang et al.).
Nevertheless, the phenomena which are described in this paper
are indeed expected in rhombohedral systems like Pb3(PO4)2
(Bismayer and Salje, 1981; Salje and Wruck, 1983; Salje et al.,
1993) and in LaAlO3. In LaAlO3 kinks and wall-wall interactions
are predominant and even the extreme tweed configuration was
experimentally observed (Salje et al., 2016a). No model simulations
were performed so far in these systems, although no significant
changes are needed for, e.g., LaAlO3, to describe the same effects as
in this paper. The effect of magnetic boundaries is different because
the typical wall thicknesses are much bigger and local links do not
play any role.

Results

Wall-wall interactions

In most high-density domain patterns, the interaction between
domain boundaries stems from junctions between intersecting
boundaries (Salje and Ishibashi, 1996; Salje, 2012; Lu et al., 2019a).
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FIGURE 1
Interatomic potential for a generic ferroelastic model. The model consists of one anion and one cation, carrying elementary charge of 1.602 × 10−19C.
Short-range inter-atomic interactions and long-range Coulombic interactions are considered in this ionic spring model.

TABLE 1 List of interaction potentials for the simulation of ferroelectric twin structures.

Uanion-anion First NN (black springs, spring1) 20(r− 1)2

Second NN (black stick, spring2) −10(r−√2)2 + 2000(r−√2)4

Third NN (spring 3) 8(r− 3)4

Fourth NN (spring 4) −10(r−√5)2 + 5100(r−√5)4

Ucation-cation

First NN (green springs, spring 5) 20(r− 1)2

Second NN (spring 6) 1.5(r−√2)2

Uanion-cation First NN (red springs, spring 7) 0.5(r−√2/2)2

The resultant domain patterns are highly complex with the
intersection of horizontal and vertical domain walls. Many studies
focus on the question how this structural complexity influences
the switching process (Casals et al., 2021). Here we discuss the
case of much milder interactions when such junctions are absent.
The relevant inter-wall interaction is first described in a defect
free system when the total energy depends on the system size
because the main interaction mechanism is the volume strain
and not the local shear strain (Lu et al., 2019c). In the case of
noninteracting walls the energy is a simple superposition of the
wall and the bulk energy. Interactions can still exist in case of
electronic interactions. However, such interactions are restricted
to lengths scales of the wall thickness and are not relevant in
this context (Lajzerowicz and Levanyuk, 1994; Nataf et al., 2020).
In simulations using our potentials, the averaged bulk potential
energy is −27.41 meV per atom. The averaged excess energy of two

polar walls with respect to the bulk is 1.86 meV per atom, which
corresponds to a wall energy of 1.19 × 10−9 mJ/m in our two-
dimensional structure. Expanding into three dimensions, this value
is close to wall energies estimated in three-dimensional structures,
which is approximately 20 mJ/m2 (Salje et al., 2005; Barone et al.,
2014; Viehland and Salje, 2014). The equivalent potential energy for
the bulk and nonpolar walls (when the charges in thenmodel are set
to zero) is 10.95 meV and the excess energy of two nonpolar walls is
1.87 meV per atom. The effect of the two walls in this rather dense
wall configuration is hence some 10%–20% of the total energy and
is large enough to trigger pattern formation of the domain walls.
In the nonpolar case, the resulting potential energy is independent
of the interwall distance beside for very small distances when the
local strain fields overlap (Figure 2A).This is different from the polar
system where we find an energy minimum near 25 lattice units
which corresponds to approximately 125 nm in a typical perovskite
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FIGURE 2
Potential energy of a system with two non-polar domain walls (A) and polar domain walls (B). While the non-polar domain walls repel each other at
very short distances, there is no stable wall-wall distance. In the case of polar domain walls this stability point is some 25 lattice units and the stability
energy is some 10−10 eV/atom. The increase at small distances is due to the overlap of the strain fields near the walls.

FIGURE 3
The dipole configurations of wall under fields in the (Nesterov et al.,
2013) and [01] directions. The unit length is defined as the repetition
length in the bulk with no twin boundaries. The field-free state shows
a slightly reduced lattice unit because of the wall-wall interaction.
Fields also led to electro-strictive expansion (Ex) and contraction (Ey).

structure. For larger distanceswefind aweak attractive dipole-dipole
interaction (Figure 2B).

Thefield dependence of the pair interaction is shown in Figure 3.
These results show that purely elastic interactions lead to repulsion

over very small distances while the additional dipole moments in
domain walls lead to much longer-range interactions and a shallow
energy minimum which is the origin of an “intrinsically” stable
interwall distance. The dipoles can be swayed by electric fields
perpendicular to the walls so that the wall-wall interaction can be
modified by electric fields.

The wall-wall interactions are best seen in the strain fields of
needle domains where the thickness of the needle is small.The strain
fields are very complex near the needle tips, each bulging of the
strain field in Figure 4 is generated by the kink in the needle domain.
These additional strain fields give us the inspiration for an even
stronger wall-wall interaction, namely, that generated by kinks in
domain walls.

The combinations of elastic and columbic forces of polar
domainwallswere theoretically impact the formations of ferroelastic
topological patterns, such as needle domains and comb domain
structures when the interwall distances are sufficiently small. We
now explore the origin of the equidistant configuration by keeping
two outer domain walls at a constant distance while a third inner
domain wall is allowed to move sideways. We choose d = 30
lattice units (Figure 5) for the two outer walls. We find an energy
minimum for the third wall exactly in the middle. The energy
difference between the middle position and the slightly shifted
position (position 2 and 3) is very small. We find energy shifts in the
order of magnitude of 0.001 meV/atom. This small energy explains
why sideways movements are hard to observe experimentally when
the walls are widely spaced: The energy gain is very small compared
with common pinning energies of domain walls.

The role of topological kinks inside twin
walls

It was first proposed in 2017 that wall bending may induce
kinks in domain walls (Salje et al., 2017). These kinks residing
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FIGURE 4
The variation of potential energy as the function of the position of inner domain wall, while the positions of two outer domain walls are kept the same.
(A) Double needle with two tips in a system under periodic boundary conditions. (B,C) Atomic images with dipole vectors for site 1 and 2, respectively.
The colors are coded by the atomic-level shear strain εxy. The red and blue regions represent two domains, and the green layer represents the
domain wall.

FIGURE 5
The variation of potential energy as the function of the position of
inner domain wall, while the positions of two outer domain walls are
kept the same. The distance between two outer walls are 30 lattice
units. The system has the lowest energy when the inner domain wall is
right in the middle. The colours of atomic images are coded according
to the atomic-level shear strain εxy. The red and blue regions represent
two domains, and the green layer represents the domain wall.

inside domain walls and are not necessarily static but accelerate
beyond the speed of sound under even modest external shear
stress. The same kinks were subsequently found to be at the core
of domain switching in metals (Yang et al., 2020; Yang et al., 2021)
and during interactions with wall junctions which determine much
of the mechanical properties of ferroelastic materials (He et al.,
2019). Very high kink concentrations exist also in domain walls
in uniaxial ferroelectrics like LiNbO3 (Gonnissen et al., 2016).
The twin wall has often mirror symmetry (the so-called w
walls, (Salje, 2012)). The mirror symmetry is broken by kinks
and local stress fields and leads to significant strains emanating
from the kinks. It is the purpose of this paper to characterize
the strain fields and to show that strain-mediated interactions
between kinks is a likely source for the interaction between parallel
domain walls (Everhardt et al., 2019; Selke, 1988; Roitburd, 1976;
Luk’yanchuk et al., 2009). A step forwards was achieved in 2000
when Pertsev et al. (Pertsev et al., 2000) calculated equilibrium
shapes of curved ferroelastic domain walls in crystals. Smooth
kinks in walls were investigated using their dislocation-disclination
model on the basis that the domain walls are infinitely narrow.
They found that elastic monopoles (the interaction energy decay as
1/d, where d is the kink-kink distance) exist in the bend regions
in large samples.

Figure 6 shows the typical atomic kink structures residing inside
the horizontal ferroelastic domain walls.
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FIGURE 6
Atomic image of a static kink residing inside a horizontal ferroelastic domain wall. The colours are coded by the atomic shear strain (exy). Green atoms
in the inset (indicated by dashed lines) represent the domain walls with a kink.

The kinks have two effects on the crystal structure. The first
is that they generate large strain fields near the kink position. The
second is that they curve the sample if this bending is not impeded by
external forces, like a substrate underneath the sample. Both features
give rise to interactions when two kinks are in either the same twin
wall or in two parallel twin walls (Figure 7).

In our thin, freestanding sample (Figure 8) the interaction
energy follows a typical dipole-dipole interaction for distances
smaller than the equilibrium distance (Figure 9). The scaling
exponent is −2 for this interaction energy E ∼ d-2. The size effect
(surface strains) is very large in small systems, and strongly affects
the kink-kink interaction energy while it is irrelevant for large
system sizes. This scenario applies to small memristive elements
where the fast diffusion is constrained to the twin walls. The
crossover is at sizes equivalent to around 200 nm which shows that
nanoparticles are prone to size effects while large single crystals are
not. Similar interactions occur in parallel walls containing kink-
antikink pairs.

All simulations were performed under open boundary
conditions where the sample could change its shape. This approach
makes the simulations much more realistic for most ferroelastic
materials (Salje, 2012) and particularly for the large group of
disorderedmaterials (Salje andDahmen, 2014) where porosity often
plays a major role in the assessment of their elastic deformation
(Casals and Salje, 2021). Most ferroelastic minerals, for example,
display porosities between 10% and 60% (Salje, 2021b; Salje,
2022) which allows mineral grains to relax their shape when their
microstructure changes as a function of temperature or pressure.
The simulations highlight that shapes changes occur for small
enough samples when kinks are generated in a twin wall. Depending
on the kink or antikink configuration, the sample bends in one
direction or the opposite. The bents are restricted to a small area
near the (anti-)kink position while the rest of the sample simply
tilts in two opposite directions. The bent region is ∼10 lattice units
wide; the sample tilts continue to the sample surface. In typical
crystal structures like perovskites with lattice units of ∼0.4 nm or
feldspars with 1.3 nm in the monoclinic b direction these bent
regions are some 4–13 nm wide and are hence observable under the

transmission electron microscope. The tilt angles are in the order of
1.2° for single kinks and are hence observable.

In contrast to small, freestanding samples, thick samples were
shown to have much stronger wall-wall interactions (Pertsev
and Salje, 2000). These interactions are long ranging with decay
scaling 1/d where d is that distance between kinks. They are very
similar to dislocations so that many of the dislocation patterns are
transferable to kinked ferroelastic twin walls–notwithstanding that
the walls are essentially flat while the dislocations can loop. The
size dependence of the wall-wall interaction was investigated by
Lu et al. (2023).These authors showed that the fundamental features
of the interaction is the same (namely, the lattice bending and
the local distortion) but that the weak dipolar interaction in this
samples continuously emerges into the much stronger mono-polar
interaction (Figure 10).

The thin samples are hence dominated by surface relaxations,
similar to the relaxations in dislocations, while such relaxations do
not exist in thick samples. Kink-kink interactions in bulk samples
interact as “monopoles” with a d-1 dependence when they are
separated by the distance d. As the sample size decreases, the
interaction for thin samples decays following a characteristic d-2

trend similar to that of dipoles. This behaviour of any singularity
(dielectric, dislocations, interstitials, etc.) is commonly described
analytically by the concept of “image forces”. The construction is
based on the calculation of the surface relaxation as having the same
energy as if a fictitious image force was placed outside the sample.
Such image forces have also been used to describe the dynamics of
dislocationmovements (Gurrutxaga-Lerma et al., 2015). Our results
clarify the role of a wide crossover regime near d = 1,000 l. u.
The exact value of the crossover region depends on the model
parameters but the order of magnitude is estimated to be between
200 nm and a few microns. This places the crossover behaviour
in the typical region for nano-crystals and small grain devices
in neuromorphic computer elements. The results show that the
expected self-generated nano-structure differs greatly as a function
of size: while larger grains show organized domain walls with the
classic patterns of needle domains and junctions, this is not true
for small grains where more complex structure with higher wall
densities and curved walls are expected.
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FIGURE 7
Strain maps of kink-kink configurations inside horizontal wall with equilibrium separation distances resulting from repulsive interactions between kinks.
The system sizes in y direction are 51 l. u. in (A), 201 l. u. in (B) and 601 l. u. in (C). Strain colour maps are coded by atomic-level normal strains (exx and
eyey) and shear strain (exy).

Discussion

Neuromorphic computing uses physical artificial neurons
for computation (Burr et al., 2017; Marković et al., 2020). These
neuromorphic elements often operate analogue rather than
digital with memristors (Kumar et al., 2022), spintronic memories,
threshold switches, transistors (Fuller et al., 2019; He et al., 2021),
as attractive physical realisations. Domain boundary-based systems
exist in all these options where the relevant elements (like ionic

diffusion over interatomic distances, spin flips, charge induces
switches and transistor junctions) can be constraint to domain walls.
Following this route, we have then to consider how the domain walls
form complex networks from ferroelastic stripe pattern to glassy
structure (Salje andCarpenter, 2015), Skyrmions (Pantel et al., 2012)
and tweed structures (Salje and Parlinski, 1991; Parlinski et al., 1993;
Salje et al., 2016a). The fundamental idea is that neuromorphic
engineering explores individual neurons, circuits, applications, and
overall architectures that are desirable for computation but also the
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FIGURE 8
Atomic structure of kink-kink (A) and kink-antikink (B) residing inside two parallel domain walls. The colours are coded by the atomic shear strain (exy).
Green atoms (indicated by dashed lines) represent the domain walls with kinks in the insets.

FIGURE 9
Interaction energy of kink-kink configurations residing inside two parallel walls as function of wall-wall distances. The system size in (A), (B), and (C) are
600 l. u.×51 l. u., 600 l. u.×201 l. u., and 600 l. u.×601 l. u. 1–12 in (A)–(C) indicate the interaction energy of kink-kink configurations with wall-wall
distances of 10 l. u., 18 l. u., 58 l. u. and 200 l. u. (D) The corresponding strain maps for each configuration. Insets in (B) and (C) show the scaling
exponent E ∼ d-2 between the interaction energy and the wall-wall distances. The colors are coded by atomic-level normal strain exx.
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FIGURE 10
Interaction energies of kink-kink configurations residing inside two parallel walls as a function of the wall-wall distance d. (A) Interaction energy on
logarithmic scales with the fitted scaling exponents (B) Scaling exponents as a function of sample sizes. The thickness scaling changes from d-2 for thin
samples to d-1 for thick samples.

adaptation to fast change (plasticity).This plasticitymay partly come
from the artificial neuron but also from inter-neuron interactions.
In addition, each neuron may have an internal adaptive structure
generated by the domain boundaries (Viehland and Salje, 2014). In
the approach of Seidel and Sharma (Sharma and Seidel, 2023), only
two crossed domain walls are considered. If the domain wall density
is much higher in tweed and glassy structures, we expect typical
repetition units of the nano-structure of some few unit cells so that
the total size of the artificial neuron remains below some 20 nm and
still contains a fully adaptive and complex domain boundary array.

We have shown in this paper that one opportunity to ‘tailor’
responsive, plastic systems is to use adaptive domain boundary-
based arrays which contain enough complexity to relax an-
harmonically when stimulated. Such responses have been observed
in test cases like SrTiO3 (Salje et al., 2013; Pesquera et al., 2018;
Kustov et al., 2020), where the time constants of the glass relaxation
stretch over several decades. The same effect is expected in WO3
where glassy behaviour was observed (Hutchins et al., 2007) and
related to the existence of small polarons and low temperature
relaxations (Schirmer and Salje, 1980). The smallness of the neuron
makes it likely to see domain patterns related to our case of
open boundary conditions, which is expected to contain much
greater wall densities than under clamped boundary conditions.
The exact solution will depend greatly on the interface between
the neuron and the substrate which may reduce the relaxation and
the image forces. As several different highly conducting interfaces
are in use, this issue may need experimental clarification while
the possible options for the wall configurations are described
in this paper.
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