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The increase in industrial waste is a significant threat to the environment
and economy, as most of it is non-biodegradable. The utilization of waste
materials in road construction is effective in terms of recycling, economy, and
ecology. The objective of the research is to investigate the potential use of
four different industrial wastes – red mud (RM), blast furnace slag (BFS), lime
production waste (LPW), and natural loam (NL) – as base materials in road
construction. The mechanical and chemical properties of these materials were
investigated through X-ray diffraction, X-ray fluorescence, atomic absorption
spectroscopy, scanning electron microscopy, energy dispersive spectroscopy,
and axial compressive strength testing. The structural performance was also
conducted for different compositions of the materials by varying ratios of these
materials. The results indicate that the combination of 40% RM, 35% BFS, and
8% LPW exhibited the maximum compressive strength of 14.21 MPa after 365
days with lower linear expansion. Themineral composition analysis confirms the
absence of heavymetal contaminants and hazardous compounds, which will be
environmentally friendly. The findings suggest that a mixture of RM, BFS, LPW,
and NL can be considered construction materials in the transportation sector.

KEYWORDS

road base material, red mud, blast furnace slag, lime production waste, natural loam,
road construction materials

Abbreviations: RM, Red mud; BFS, Blast furnace slag; SS, Steel slag; NL, Natural loam; LPW, Lime
production waste; SEM, Scanning electronmicroscope; XRD, X-Ray Diffraction; AAS, Atomic absorption
spectroscopy; XRF, X-ray fluorescence; EDS, Energy dispersive spectroscopy; LAMMA, Laser micro-
mass analysis.
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1 Introduction

Road construction and maintenance are crucial for social and
socioeconomicdevelopment, but they imposenegative environmental
consequences. However, these activities present significant challenges
by contributing to environmental degradation through greenhouse
gas emissions, material overuse, and waste generation, necessitating
innovative solutions tobalance infrastructureneedswithsustainability
goals.Constructionofteninvolvessubstantialmaterialexplorationand
masshauling, increasinggreenhousegasemissions(Baabouetal.,2022;
Qian et al., 2023a). The soil beneath a road pavement is referred to as
subgrade materials. These materials frequently need to be modified
or re-engineered to increase their capacity to handle the weight of
the road pavement and the traffic loads (Akinwumi et al., 2023).
The road pavement structure may break early due to expansive soils
generatingdiscomfort.Soil stabilizationisacommonlyusedprocedure
to improve the physical and geotechnical properties of soil. There are
twobroad categories of soil improvement approaches:mechanical and
chemical stabilization. Reports suggest that chemical soil stabilization
methodshavebeen successful in addressing issues related to expansive
subgrades (Qian et al., 2023b; Akinwumi et al., 2023). Various
industrialwastescanenhancethestrengthcharacteristicsofclayeysoils
by inducing pozzolanic reactions, ionic exchanges, and flocculation of
treated soil particles (Manso et al., 2013). Cement, commonly used for
improving the technical properties of expanding subgrade materials
(Finnveden et al., 2016), can be augmented with red mud (RM), an
easily accessible and cost-effective industrial by-product (Oguntola
and Simske, 2023; Corder et al., 2014). Redmud (RM) is a by-product
of the Bayer process for alumina extraction. It is characterized by its
high alkalinity and contains key components such as Fe₂O₃, SiO₂, and
Al₂O₃. Blast furnace slag (BFS) is a by-product of pig iron production
in blast furnaces, containing significant quantities of calcium, silica,
and alumina. Lime production waste (LPW) is generated during lime
manufacturingandisrich incalciumcompounds,making itapotential
activator in pozzolanic reactions. Natural loam (NL) is a naturally
occurring soil material with a balanced composition of sand, silt, and
clay, used as a base material for stabilization in this study.

Researchers have made significant efforts to utilize RM
(Giurco et al., 2014) while minimizing its environmental impact.
However, the disposal of RM poses substantial challenges due to
its high pH (between 10 and 13) and large quantity (Jakab et al.,
2023). RM has harmful effects on humans and the environment.
Its high alkalinity, fine particles containing heavy metals, and
radioactive components such as uranium-238 and thorium-232 are
the leading causes of concern (Mayes et al., 2016). These materials,
when combined, create a matrix capable of generating essential C-
S-H and C-A-S-H gels, enhancing both strength and durability.
Each material contributes unique properties: RM introduces high
pozzolanic potential, BFS improves hydraulic properties, LPW acts
as an activator, and NL provides structural stability.

Extensive research efforts have been devoted to exploring the
gelation properties of RM and assessing the potential for fabricating
cementitious materials through its amalgamation with blast furnace
slag (BFS). This synergistic combination capitalizes on enhanced
pozzolanic reactions facilitated by the interaction between RM’s
silica and alumina components alongside the calcium oxide found
in lime production waste (LPW). The intricate interplay of these

elements culminates in the generation of essential C-S-H and C-A-
S-H gel formations.

The composition of RM, LPW, BFS, and natural loam (NL) are
mainly shaped by its elemental constituents, which prominently
include CaO, Fe2O3, SiO2, and Al2O3 as listed in Table 1 with
the references to literature sources. Additionally, BFS is a by-
product of pig iron manufacturing in blast furnaces, which is often
used for soil stabilization purposes. If BFS is used together with
RM, then BFS contributes its unique properties to the resulting
cementitious matrix (Liu and Poon, 2016).

The optimization of the material composition is a critical aspect
of this study, aiming to achieve the desiredmechanical properties and
environmental sustainability. By carefully selecting and balancing the
proportions of RM, BFS, LPW, andNL, this research seeks to enhance
theperformanceof the compositewhileminimizing its environmental
footprint. This approach not only addresses pressing challenges in
road construction but also underscores the potential of industrial by-
products in sustainable material development.

Previous research has demonstrated the potential benefits of
utilizing industrial wastes in construction. For example, Kumar and
Kumar (2013) investigated the use of RM in combination with
fly ash for soil stabilization, revealing significant improvements
in soil strength and reduced environmental impact (Kumar and
Kumar, 2013). Similarly, Valcuende et al. (2015) investigated the
shrinkage of self-compacting concrete with BFS as fine aggregate,
showing reduced shrinkage and increased strength (Valcuende et al.,
2015). These findings are corroborated by Ahmad et al. (2022),
who explored the mechanical and durability performance of
concrete partially substituted with waste glass ащкand recycled
concrete aggregate, highlighting the sustainable potential of such
materials (Ahmad et al., 2022).

Despite these advances, the combined use of multiple industrial
wastes in a single, optimized mixture for road construction remains
underexplored. Most studies have focused on individual materials
rather than synergistic combinations that could potentially offer
superior performance and environmental benefits.

This study aims to develop an environmentally sustainable
road-based material by replacing a substantial amount of natural
resources with industrial solid wastes, specifically LPW, RM, and
BFS. The objective is to reduce the dependence on natural resources
and promote a more environmentally conscious approach to road
construction. Unlike previous studies, this research comprehensively
characterizes the mechanical and chemical properties of these
materials through advanced analytical techniques and evaluates their
performance in various compositions. By identifying the optimal
mixture and confirming the absence of hazardous compounds, this
study contributes significantly to the fields of waste management and
sustainable construction.

2 Materials and methods

2.1 Raw materials

Materials were sourced from various locations within
Kazakhstan, including blast-furnace slag from the Metallurgical
Plant ArcelorMittal Temirtau in Karaganda, RM from the
Aluminum Plant in Pavlodar, and refuse from limestone production
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TABLE 1 Chemical components of RM, BFS, LPW, NL (%).

Ref. CaO Fe2O3 Al2O3 TiO2 SiO2 Na2O K2O MgO SO3 P2O5

Red mud

Luo et al. (2022) 13.60 11.89 22.36 — 19.50 6.67 1.64 0.77 0.35 —

Mukiza et al. (2019) 13.26 19.55 22.45 3.90 19.48 8.83 2.16 0.83 1.14 —

Sas et al. (2019) 5.64 43.76 16.25 10.17 8.58 4.68 0.09 0.07 0.16 0.32

Blast furnace slag

Li et al. (2021) 57.20 0.55 12.10 1.60 20.50 0.36 0.58 5.05 0.83 —

Zhang et al. (2016) 37.25 1.22 12.53 0.41 34.19 0.22 0.51 9.33 2.13 —

Mandal et al. (2016) 36.20 0.49 18.69 0.70 33.67 0.14 0.57 8.18 0.20 0.02

Lime production waste

Mymrin et al. (2021) 46.1 7.4 7.2 <0.1 4.9 — 3.7 27.3 3.4 <0.1

Farage et al. (2019) 57.12 0.20 0.07 — 3.58 2.32 0.26 0.91 0.40 0.03

Hu et al. (2020) 90.6 0.04 0.07 0.01 0.18 0.48 0.10 1.05 0.11 0.75

Natural loam

Mymrin et al. (2019) 17.42 4.40 14.70 4.60 34.71 1.23 1.67 18.40 0.54 —

Hamid Abed et al. (2024) 18.27 10.70 6.36 — 17.26 - 1.49 0.44 0.08 —

Anik Hasan et al. (2022) 4.25 5.36 10.29 — 64.75 - 0.03 3.59 2.44 1.09

at the Lime Plant in Maikain of the Pavlodar region. A sample of NL
was collected from a quarry near Astana city for the extraction of
non-metallic materials.

2.2 Methods

The mineral composition was analyzed using XRD with the
Philips PW 1830/40 Powder diffractometer situated in Caerphilly,
United Kingdom. Scanning electron microscopy (SEM) analysis
was performed with the Ultra Plus instrument from Carl Zeiss
AG to investigate the surface morphology of the samples. The
atomic absorption spectroscopy (AAS) on a Perkin Elmer 4100
spectrometer (Waltham, MA, United States) was employed to
conduct elemental analysis of the solubility and leaching of metals
from liquid extracts. For the leaching tests, the following conditions
were used: a liquid-to-solid ratio of 10:1 (L/kg), a leaching time
of 24 h, and a rotation speed of 10 rpm. These conditions were
selected to simulate standard environmental leaching scenarios and
ensure consistent and reproducible results. The carbonate content
of the developed materials is determined by the calcimeter method.
The study of strength changes in the samples during material
hydration was conducted by examining the uniaxial compressive
strength using an EMIC automatic press with a total capacity of 1,
10, and 100 tons, using a calibrated compression testing machine
conforming to relevant standards, such as ASTM C39/C39M for

concrete specimens.The specimens were cylindrical with a diameter
of 30 mm and a height of 30 mm. Specimens were cured under
standard laboratory conditions at an optimal humidity of 10%–12%.

2.3 Experimental procedures

Nine different samples were tested at various time intervals
of 3, 7, 14, 28, 60, 90, 180, and 365 days, resulting in a total of
approximately 900 samples. These nine samples were created by
mixing different ratios of RM, BFS, LPW, and NL components. The
proportions of RM, BFS, LPW, and NL were determined based on
prior research and an extensive literature review. Several variations
of the mixture were prepared to optimize the composition, and 9
samples were selected for further testing. The strength properties
of these samples were evaluated, guiding the selection of the final
composition. For instance, the first mix (R20-B25-L4) contained
20% RM, 25% BFS, and 4% LPW. The proportions of all mixes
are summarized in Table 2. The other eight mixes were labeled
similarly (Figure 1).

3 Results and discussions

This section presents the results of a study of changes in samples’
physical and mechanical properties due to their hydration and
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TABLE 2 Composition of the mixes used for stabilization.

Mix ID RM (%) BFS (%) LPW (%) NL (%)

R20-B25-L4 20 25 4 51

R30-B30-L8 30 30 8 32

R40-B35-L8 40 35 8 17

curing for 365 days. The mechanical properties of the samples were
calculated as the average and standard deviation of nine sample
measurements. Raw materials characterization was discussed in
the authors’ previous article (Alzhanova et al., 2022). Among
the prepared variations, 9 samples were systematically tested for
strength and durability. The selected composition demonstrated
optimal mechanical properties, aligning with the study’s objectives.

The use of industrial wastes such as RM, BFS, and LPW
contributes not only to environmental sustainability but also
to enhancing the composite’s mechanical properties. These
components play a crucial role in improving strength, durability,
and economic feasibility, aligning with the objectives of sustainable
material development.

3.1 Compressive strength of test specimens

Analysis of the strength testing results of samples from NL,
strengthened with RM and BFS, activated by the addition of LPW,
show an almost constant increase in the strength of all compositions
up to 365 days of age in the samples. Figure 2 shows the changes
in the samples’ compressive strength test from 3 to 365 days. The
samples’ strength was 0.67–3.56 MPa in 3 days, 3.33–7.38 MPa
after 90 days, after 180 days 5.5–10.43 MPa, and 8.12–14.21 MPa
after 365 days. The results indicated that the optimum strength
was obtained from the samples R30-B30-L8 and R40-B35-L8. The
addition of BFS, RM, and LPW improved compressive strength.
The strength of composites increases slowly during the year. In
the context of mixing soil with RM, BFS, and LPW, chemical
reactions occur between these components, significantly improving
strength. The alkaline solution acts as an activator of binding
on particle surfaces. Increasing LPW, RM, and BFS content in
materials invariably increases their strength over time.This increase
in strength leads to a decrease in the consumption of alkaline Ca and
Mg ions to create and maintain the high alkalinity necessary for the
processes of alkaline excitation of surfaces of chemically neutral soil
particles and slag particles with the removal of amounts of Ca and
Mg ions into the interstitial space. The development of the C–S–H
gel was aided by reactive CaO, SiO2, and Al2O3 in raw materials.
Components react exceedingly slowly with water, resulting in the
development of a hardening binder. This slow but steady reaction
process is crucial for the long-term strength development of the
composites.

The observed trends can be further explained by examining
the pozzolanic and hydraulic properties of BFS and RM. The
pozzolanic reaction between the silica and alumina in RM and
the calcium hydroxide from LPW leads to the formation of

additional C-S-H, which is responsible for the strength gain.
Similarly, the hydraulic reaction of BFS, which involves the
hydration of latent hydraulic components like CaO and SiO2,
contributes to the development of a dense microstructure,
enhancing compressive strength (Meena et al., 2024).

Moreover, the synergistic effects of these materials result in
improved packing density and reduced porosity, which are critical
for themechanical performance of the composites.The fine particles
of RMfill the voids between larger particles of BFS andNL, resulting
in a denser matrix. This enhanced packing density reduces the
pathways for water ingress, thus improving the durabilit and long-
term performance of the material.

3.2 Changes in the carbonate content of
materials during the hydration of samples

Figure 3 illustrates the carbonatization of the studied
compounds after the mixtures are hydrated for up to 365 days.
The amount of carbon dioxide absorption from the atmosphere is
directly proportional to the amount of calcium oxide injected and
the time after hydration begins.

Carbonatization is a crucial phenomenon in the context of
cementitious materials, as it influences the long-term durability
andmechanical properties of concrete structures.The incorporation
of carbon dioxide into the material matrix leads to the formation
of carbonate minerals, such as calcite, which can affect the
microstructure and overall performance of the material.

Figure 3 shows that the synthesis of crystalline or amorphous
calcite cannot provide such increases in the strength of samples.The
carbonate content values of the samples ranged from 4.38%–6.98%
at 3 days, 10.00%–13.23% at 90 days, 11.4%–13.97% at 180 days, and
12.38%–14.92% at 365 days.

These findings underscore the dynamic nature of
carbonatization and its implications for the performance of
cementitious materials over extended periods. By elucidating the
relationship between carbon dioxide absorption, calcium oxide
content, and hydration time, our study contributes to a deeper
understanding of the mechanisms underlying the long-term
behavior of materials.

3.3 The morphological structure of the
compositions

Figure 4 shows the microscopic images of the composition
obtained by SEM. Analyzing samples reveals the accumulation
of primarily amorphous new forms in the pore space. SEM
images of samples R30-B30-L8 and R40-B35-L8 cured for 28 days
are shown in Figure 3 (a and b, respectively). As illustrated, an
amount of ettringite features filled the interspaces of other particles,
followed by some hydrated C-S-H gel. The results of SEM and XRD
agree with one another. The strength of samples may be influenced
by both ettringite and C-S-H gel. As a result, the structure is more
packed, denser, and compacted, with increased strength. Increased
curing time will result in more C-S-H gel, which will improve the
compressive strength of the mixture.
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FIGURE 1
The mixing combination of Natural Loam, Red Mud, Blast Furnace Slag, and Lime Production Waste (wt.%).

FIGURE 2
Changes in axial resistance of samples (MPa).

Previous research by Vanhatalo et al. (2018) demonstrated
the role of ettringite and C-S-H gel in improving the mechanical
properties of cementitious materials, corroborating our findings.
Additionally, studies conducted by Johnson et al. (2019) have
highlighted the impact of curing time on the formation of C-S-H
gel and its subsequent effect on compressive strength.

3.4 Change in mineral composition during
hydration

On a semi-quantitative basis, X-ray phase analysis was
performed on powder using a diffractogram of powder samples
using equal attachments and artificial mixtures. A quantitative

ratio of crystal phases was determined. Characteristic diffraction
reflexes allowing identification of the phases present are noted.
The mineral composition of dry mixes for compositions R30-B30-
L8 and R40-B35-L8 are presented in Figure 4. In both mixtures,
the main components are fayalite, gehlenite, quartz, and calcite.
Figure 4A shows the presence of minerals fayalite (33%), gehlenite
(29.7%), quartz (22.4%), calcite (6.2%), albite (4.6%), andmicrocline
(4.0%) in a dry mix of composition R30-B30-L8. Figure 4B shows
the presence of minerals fayalite (41.7%), gehlenite (37.9%), quartz
(14.6%), and calcite (5.7%) in a dry mix of composition R40-B35-
L8. The presence of albite and microcline minerals in the dry
mixture R30-B30-L8 is related to the amount of NL (34%). CaO
is critical in the strength development process; in the presence
of moisture, it forms Ca (OH)2, which serves a dual purpose by
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FIGURE 3
Change in the carbonate content of materials.

FIGURE 4
The SEM images of the samples (A) R30-B30-L8 and (B) R40-B35-L8.

providing an alkaline environment while also reacting with siliceous
and aluminous compounds present in raw materials to form C-S-
H and C-A-S-H gels. In an alkaline environment, these siliceous

and aluminous compounds react with Ca (OH)2 generated from
the hydration of cement to form cementitious materials that will
enhance the strength of the road base. The detailed mechanism is
explained in the XRD of samples.

The compositions R30-B30-L8 and R40-B35-L8 were chosen
for analysis due to their high physical properties and maximum
intensity of the processes that took place, making them more
accessible for detection. XRD patterns of composites R30-B30-L8
and R40-B35-L8 after 90 and 180 hydration days (Figures 5, 6)
show a rise in intensity in all three mineral peaks - calcite, quartz,
and albite. Indeed, materials hydrated with lime and left in open
air for 180 days would produce carbonates. However, a more
significant amount of crystalline quartz cannot be created under
these circumstances as it requires extremely high temperatures
and pressures. The only explanation for the rise in quartz peaks
is the alkaline corrosion of the sand particles at the surface,
which have been mechanically eroded throughout their lengthy
geological history.

Figure 6 shows the XRD patterns for composition R30-B30-
L8 at 90 and 180 days of curing. The analysis reveals that certain
crystalline phases, such as quartz, calcite, and albite, retained their
nature even after the alkali activation process. However, there were
notable changes in their relative content. The results of semi-
quantitative X-ray phase analysis of crystalline phases of composite
R30-B30-L8 in 90 days (Figure 5A) show the presence of minerals
like akermanite (32.0%), quartz (26.6%), forsterite (16.6%), calcite
(8.2%), albite (7.4%), ferrocarpholite (5.5%), and microcline (3.6%).
The akermanite peak appears around 27° and has a greater intensity.
The results of composite R30-B30-L8 in 180 days (Figure 5A) show
the presence ofminerals like staurolite (28.1%), akermanite (23.3%),
quartz (20.9%), calcite (10.0%), calcium silicate (7.7%), magnetite
(5.6%), and albite (4.5%).

The recorded XRD data plotted in Figure 7 shows the
mineralogical composition change of R40-B35-L8 during
the 90 and 180 days of cure. According to the graph at
90 days of age (Figure 6A), the sample reflects the peaks of new
minerals, such as akermanite (28.8%), vesuvianite (27.5%), forsterite
(12.4%), pyrite (6.2%), ferrocarpholite (4.8%). The akermanite peak
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FIGURE 5
The mineral composition of dry mix (A) R30-B30-L8 and (B) R40-B35-L8.

appears around 31° and has a greater intensity. The presence of
vesuvianite mineral corresponds to the diffraction peak at 34.5°.
Vesuvianite [Ca10Al4(MgFe)2Si9O34(OH)4] is a mineral of complex
composition crystallizing in the tetragonal systemdue to isomorphic
impurities. The mineral is a product of contact metamorphism

involving clay, limestone, dolomite, and marl. Additionally, it
is conceivable that the mineral might have been pre-existing
within the raw materials. Forsterite is found in dolomitic marble,
formed by the metamorphism of high-magnesium limestones
and dolomites.
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FIGURE 6
XRD patterns of the compositions R30-B30-L8 on the 90th (A) and 180 (B) days of cure.

The XRD patterns of the R40-B35-L8 composite
at 180 days (Figure 6A) reveal the presence of various minerals, with
the following relative percentages: staurolite (28.1%), akermanite
(23.3%), quartz (20.9%), calcite (10.0%), calcium silicate (7.7%),
magnetite (5.6%), and albite (4.5%).

3.5 Mechanism of hydration product
formation

The synergy of all raw components results in the formation
of hydration products. According to the following equations,
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FIGURE 7
XRD patterns of the composition R40-B35-L8 on the 90th (A) and 180th (B) days of cure.

Ca3SiO5 and Ca2SiO4 from RM and BFS are hydrated to
produce Ca2SiO4·4H2O, CaSiO3·H2O and Ca(OH)2, respectively as
Equations 1, 2:

Ca3SiO5 + 5H2O → Ca2SiO4 · 4H2O+Ca(OH)2 (1)

Ca2SiO4 + 2H2O → CaSiO3 · H2O+Ca(OH)2 (2)

The production of Ca (OH)2 helps to create an alkaline
environment that is beneficial for the formation of hydration
products. This process also contributes to the pozzolanic reactions.
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As the curing ages increase, the reaction between BFS and lime
begins, leading to the formation of hydration products, as shown in
Equations 3, 4.

Ca(OH)2+ nSiO2+ (x− 1)H2O → CaO · nSiO2 · xH2O (3)

Ca(OH)2+ nAl2O3+ (x− 1)H2O → CaO · nAl2O3 · xH2O (4)

During pozzolanic reactions, it is continually consumed to
produce ettringite, C-A-S-H, and N-A-S-H gels from raw materials
and reactive aluminous and siliceous compounds. The resulting
reactions can be expressed as Equations 5–9.

SiO2 +OH− +H2O → [H3SiO4]
− (5)

AlO−2 +OH
− +H2O → [H3AlO4]

2− (6)

[H3SiO4]
− + [H3AlO4]

2− +Ca2+ → C–A–S–H (7)

[H3SiO4]
− + [H3AlO4]

2− +Na+ → Na–A–S–H (8)

AlO−2 + 2OH
− + 2H2O → [Al(OH)6]

3− (9)

These reactions are known as cementitious and pozzolanic
reactions because they result in the formation of cementitious
gels. The resulting C-S-H or C-A-S-H gels bind the solid particles
together, leading to a more robust soil matrix. The early strength
development of road base materials made from RM, BFS, LPW,
and NL is due to the predominance of hydration products of C-
S-H, C-A-S-H, and N-A-S-H gels, as well as ettringite. Ettringite
is a hexacalcium aluminate trisulfate hydrate with the general
formula 6CaO·Al2O3·3SO3·32H2O or 3CaO·Al2O3·3CaSO4·32H2O
when expressed as oxides. Since the chemical composition of BFS
is similar to cement, subjecting it to conditions similar to the initial
stages of hydration produces ettringite from BFS.

3.6 Environmental performance of road
base materials

Particular solid wastes may contain hazardous substances,
including radioactive elements and heavy metals, raising concerns
about potential contamination of ground and surface water
systems. It is essential to assess their environmental impact
by comparing them to the maximum permissible quantities of
hazardous or radioactive elements allowed in building materials
to avoid secondary pollution during use. RM contains traces of
radioactive elements, which are known to be harmful even at
low concentrations. Studies have shown that RM concentrations
of various toxic metals are between 0.01% and 1% of the
total weight (Qi et al., 2018).

The atomic absorption spectroscopy (AAS) method was
employed to conduct elemental analysis of the solubility and
leaching of metals from liquid extracts. This analysis served a dual
purpose: first, it characterized the elements present in the material;
second, it identified the elements that are leachable after compliance
with standard leaching tests. Leaching tests were performed to

evaluate the materials under controlled conditions, ensuring
thorough analysis of their potential for use in road construction.
The AAS method detected the presence of heavy metals such as As
(0.47%), Pb (0.17%), Zn (0.10%), and Cu (0.05%), highlighting both
their inherent presence in the material and their potential to leach
into the environment.

Radioactive elements such as isotopes of potassium, radium,
and thorium can be present in the composition of iron slag. Many
studies have observed that large amounts of deposited slag can leach
toxic elements such as Cd, Cr, Cu, Pb, Ni, and Zn, contaminating
soils and groundwater (Wang et al., 2024). Therefore, evaluating
the environmental performance of road base materials necessitates
a comprehensive assessment of both the chemical composition
and leaching potential of these materials to mitigate the risks of
secondary pollution effectively.

4 Conclusion

The combination of RM, BFS, and LPW exhibited positive
outcomes in enhancing the strength and durability of NL, both
in dry and wet conditions. The study confirms the potential of
developing road construction materials using various industrial
wastes: RM, BFS, LPW, and NL. Based on the experiments, it is
suggested that the optimal proportions of samples are R30-B30-L8
(32% NL, 30% RM, 30% BFS, 8% LPW) and R40-B35-L8 (17% NL,
40% RM, 35% BFS, 8% LPW) to achieve maximum strength. These
proportions offer a balanced combination of materials, leading to
enhanced performance characteristics.

The utilization of industrial waste materials in construction
offers significant environmental benefits. By diverting these
materials from landfills and extending the lifespan of industrial
waste disposal sites, we contribute to reducing environmental
impact. Additionally, reducing reliance on natural raw materials
through the use of industrial waste helps mitigate the ecological
damage associated with their extraction.

Moreover, the economic feasibility of utilizing industrial waste
materials in construction is noteworthy. Not only do these materials
often come at a lower cost compared to traditional natural raw
materials, but their potential for large-scale utilization makes
them economically viable alternatives. This lower cost not only
benefits construction projects economically but also contributes to
sustainable resource management practices.

In summary, the integration of RM, BFS, and LPW into NL
for road construction presents a win-win solution, offering both
environmental and economic advantages. By embracing the use
of industrial waste materials, we move closer to sustainable and
responsible construction practices while simultaneously improving
the performance and longevity of infrastructure projects.

This research highlights the importance of utilizing industrial
by-products in innovative ways to address both environmental and
engineering challenges. Future studies could focus on evaluating the
long-term performance of these materials under various climatic
and load conditions to further validate their practical application.
Additionally, exploring the potential of other industrial by-products
or optimizing curing processes could further enhance the properties
of the proposed composite materials.
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