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A cold recycling asphalt mixture has significant economic and environmental
benefits compared to other pavement material recycling technologies. The cold
recycling mixture contains reclaimed asphalt pavement (RAP), new aggregate
particles (NAPs), asphalt emulsion, cement, and fillers. The internal material
composition is complex, and the interface form is changeable. Both have a
significant impact on the mechanical properties. Therefore, this paper aims to
study the influence of material composition and related content on the strength
performance of a cold recycling mixture from the two aspects of macroscopic
mechanical tests and microscopic characteristics analyses. In this paper, the
strength evolution law of a cold recycling mixture under changed amounts
of cement, emulsified asphalt, and RAP content is carried out. The test result
shows that low cement content has little effect on the strength of a cold
recycling mixture and is not the main factor affecting its strength composition.
The asphalt mainly plays the role of a binder. Compared with the NAPs, the aged
asphalt mortar and emulsified asphalt mortar have better interfacial bonding
effects. The NAP surface needs more asphalt to form structural asphalt. From
the microscopic characteristics of the interfacial transition zone, the cement
hydration products and asphalt mortar are intertwined to form a network
structure, and the pore structure is filled with asphalt. Compared with the
aggregate–asphalt interface, the cement hydration product has poor adhesion
with the aggregate. Some micro-cracks are visible in the interface transition
zone, which is mainly used as an interface modifier and interface improver to
enhance the interface bonding effect.

KEYWORDS

cold recycling mixture, interface transition zone, SEM, mechanical properties, strength
characteristics

1 Introduction

Mixture waste, such as reclaimed asphalt pavement (RAP) and recycling stabilized
base (RAI), is produced in highway maintenance engineering. Open-pit stacking,
landfill, and other traditional treatment methods will cause a certain degree of
environmental pollution and lead to waste of nonrenewable resources. Therefore,
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the reasonable reuse of waste asphalt pavement materials has
become the focus of many scholars (Walther et al., 2019; Jia et al.,
2023a; Ke et al., 2024; Salih, 2024). A cold recycling mixture is
composed of emulsified/foamed asphalt, cement, new aggregate,
and RAP material, and its strength composition is consistent with
that of a hot mix asphalt mixture (HMA). Mixture strength is
provided by the internal friction resistance between aggregates,
embedded extrusion force, and the bonding effect between binder
and aggregate. Different fromHMA, emulsified asphalt must form a
continuous asphalt film on the surface of the aggregate and perform
as a binder after infiltration adhesion, flocculation demulsification,
and water volatilization.

A cold recycling asphalt mixture has the characteristics of low
initial strength, high porosity, and continuous strength growth.
A certain proportion of cement is usually added to enhance the
early strength of the cold recycling mixture and improve its long-
term performance (Arimilli et al., 2016; Sabine et al., 2023); at the
same time, cement can be regarded as a modifier to enhance
the interfacial adhesion between aggregate and asphalt mortar.
The asphalt emulsion and cement hydration products interact and
penetrate each other, forming a spatial network structure and
a composite binder (Wang et al., 2020; Husain et al., 2023) and
reducing the gap between the interface transition zone. In addition,
the relative content of cement and asphalt emulsionwill significantly
affect the mechanical properties of cold recycling asphalt mixture
(Tangzhong et al., 2017). For RAP material, due to the existence
of aging asphalt, the interfacial bonding effect between the RAP
and the binder is significantly different from that of new aggregate
(Renken et al., 2018; Yunliang et al., 2018; Ngoc et al., 2023; Sadaf
and Amir, 2023). Pores in the RAP material will affect the strength
performance of the cold recycling mixture. Therefore, there is a
complex interaction between the material components of a cold
recycling mixture that leads to its complex strength composition
mechanism. It is necessary to comprehensively study the influence
of various material components and relative content changes on
the strength performance (Yan et al., 2011; Buczyński and Iwański,
2017; Zheng, 2017; Ayar, 2018;Min et al., 2018; Graziani et al., 2019;
Mazurek et al., 2021; Chakravarthi et al., 2022).

For asphalt concrete materials, the interfacial transition
zones between different materials have different microstructure
characteristics (binder thickness, immersion depth, pore size, and
number) (Büchner et al., 2019; Wang et al., 2023; Wu et al., 2024).
Research shows that especially the difference in pore parameters
of the interfacial transition zone will directly affect the mechanical
strength and failure mode of the mixture (Guofeng et al., 2017).
The crack initiation position of a cold recycling mixture under
stress is usually located in the internal weak position, especially the
micro pores in the interfacial transition zone and asphalt mortar.
Therefore, it is helpful to reveal the strength and failure mechanism
of a cold recycling mixture by studying the pore characteristics of
the interface transition zone. At present, many scholars use scanning
electron microscopy (SEM) (Luan et al., 2021; Jia et al., 2023b),
nanoindentation and atomic force microscopy (AFM) (Kyu et al.,
2017; Shan et al., 2020), and other technical means to study the
microscopic physical characteristics and mechanical properties of
asphalt mixture. Among them, SEM technology has been widely
used in the study of themicrostructuremorphology and distribution
of asphalt mixtures. Combined with image processing analysis

methods such as BSE, the characteristic microstructure parameters
can be quantitatively analyzed.

In this paper, mechanical strength tests were carried out on
cold recycling mixtures with different contents of RAP, cement,
and emulsified asphalt, and the strength evolution law of cold
recycling materials under different factors was clarified. Based
on this, the microscopic characteristics of cold recycling mixture
in different aggregate–cement interface transition zones were
tested. Compared with the macro performance test results, the
strength composition mechanism of the cold recycling mixture
is clarified.

2 Test design

2.1 Proportion design

The cold recycling mixture in this article adopts CR25
with medium grain gradation, and the raw materials include
RAP material, new aggregate, cement, and emulsified asphalt
(Kumar et al., 2024). Based on the screening results of RAP
materials, due to the maximum grain limit of RAP and the design
gradation requirements, the new aggregate is used in two grades
of 16–19 mm and 19–26.5 mm. To maximize the utilization rate
of RAP materials, RAP materials are used for aggregates less than
16 mm. The mixing ratio of cold recycling mixture to aggregate
part is RAP:NAP: mineral filler = 86.8:10:3.2. The gradation curve
is shown in Figure 1. The mineral filler is limestone mineral filler,
and NAP is basalt. Shanghai Conch P.O 42.5 ordinary Portland
cement is used, and the technical indicators are shown in Table 1.
Cationic slow-cracking ordinary emulsified asphalt is used, and
the test results and technical requirements are shown in Table 2
(Author Anynomus, 2024).

2.2 Test scheme

A test scheme of RAP material content, asphalt content, cement
content, and other factors was designed to study the influence of
different material compositions on themechanical strength of a cold
recycling mixture. The specific scheme is shown in Tables 3, 4.

2.3 Test methods

2.3.1 SEM test
An FEI Inspect F50 scanning electron microscope was used for

the SEM and BSE analysis reported in this article. In cold recycling
asphalt mixtures, cement, and emulsified bitumen work together
to provide adhesion as a binder. In order to effectively compare
and distinguish the microscopic characteristics of the two types of
binders, three mortars were mixed: cement–filler mortar, emulsified
asphalt–filler mortar, and cement–emulsified asphalt mortar. The
mortars were poured onto a glass slide and placed in a 60°C oven
for 3 d. The surface of the mortar was kept clean and tidy during
maintenance. The molded specimen is shown in Figure 2.

To observe the interfacial transition zone of the cold recycling
mixture, theMarshall compactionmethodwas used to form the cold
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FIGURE 1
CR25 gradation curve.

TABLE 1 Cement technical indicators.

Test item Unit Result of test Technical requirements

Soundness - Qualification Le Chatelier soundness test/Cooking method

Fineness (80 μm) % 4
Screening amount

≤10%

Initial setting time min 185 ≥45

Final setting time min 247 ≤600

3D strength
Compressive MPa 28.4 ≥17.0

Flexural MPa 5.7 ≥3.5

recyclingmixture specimen.The 15 mm× 15 mm× 5 mm specimen
was placed in a vacuum drying oven at room temperature for
drying.Then, the sample was impregnated with low-viscosity epoxy
resin, and the resin was fully solidified for 48 h to ensure that the
sample had a high vacuum degree during observation and stabilize
the pore structure inside the sample. After the epoxy resin was
completely solidified, 400 mesh, 600 mesh, 800 mesh, 1,000 mesh,
and 3,000 mesh silicon carbide sandpapers were successively
selected by the polishingmachine to polish the sample surface to fine
smoothness. The surface smoothness of the sample was examined
by an optical microscope before the SEM test until the surface
was polished to have a clear light reflection. The test process is
shown in Figure 3.

This paper adopts different mixing orders and forms cold
recycling mixture specimens with different interfaces: NAP–asphalt
mortar–cement slurry, old material–asphalt mortar–cement

slurry, new material–cement slurry–asphalt mortar, and old
material–cement slurry–asphalt mortar. First, the aggregate was
mixed with added water for 150 s, and the first binder was added
for 90 s. Then, the second binder was added for 90 s, and Marshall
compaction was used. The specimens were kept in an oven at 60°C
for 3 d, and the specimens of appropriate size were taken to form
different small specimens in a 2 cm inner diameter mold, as shown
in Figure 4. Then, the specimens were treated according to the test
method in Section 2.3.1 and transferred to the scanning electron
microscope for observation.

2.3.2 Split test
The splitting strength test is used to test the strength

performance of the cold recycling mixture. The test temperature
was set to 25°C, and the loading rate was 50 mm/min. The
test size was height 100 mm × diameter 63.5 mm. The splitting
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TABLE 2 Performance index of emulsified asphalt.

Test type Unit Test result Technical requirement

Demulsification speed - Slow-breaking Slow-breaking or medium-breaking

Particle charge - Uniform Uniform

1.18 mm Residue on sieve % 0.02 0.1

Enguera viscosity - 7 2–30

Residue

Residue content % 60 ≥60

25°C Penetration 0.1 mm 74.4 50–130

15°C Ductility cm 63.4 ≥40

Adhesion with coarse aggregate - ≥2/3 ≥2/3

Mixing test with coarse and fine aggregates - Even Even

Storage stability at room temperature
1d

%
0.2 ≤1

5d 1.2 ≤5

TABLE 3 Test scheme for cement and asphalt content (100%RAP).

Binder type Cement/asphalt content (%)

Cement (0% asphalt)
1 1.5% 2% 2.5%

Cement (4.5% asphalt)

Asphalt (0% cement)
4 4.5% 5% 5.5%

Asphalt (1.5% cement)

tensile strength (x) of the cold recycling mixture specimen was
calculated and obtained based on the maximum split load value
and sample size.

RT = 0.006287PT/h

RT: splitting tensile strength (MPa);
PT: maximum split load value (N);
h: specimen height (mm).

3 Analysis of performance test results

3.1 Analysis of different cement content

Four test schemes are adopted to study the performance of cold
recycling mixtures with different binders, as shown in Figure 5.
Taking cement (4.5% asphalt) as an example, Figure 5 indicates that
under this condition, the cement content is changed from 1.0% to
2.5%, and the fixed asphalt content is unchanged at 4.5%. Asphalt
(1.5% cement) indicates that the asphalt content changes from 4%
to 5.5%, and the fixed cement content remains unchanged at 1.5%;

0% represents none of this type of binder. In order to clearly and
conveniently display the diagram of the test results, the horizontal
coordinates of Figure 5 are double labeled.

Figure 5 shows that when the asphalt contents of 0% and
4.5% are fixed, and the cement content is changed, the splitting
strength of the cold recycling mixture increases linearly with the
increase in cement content. When the cement content increases
from 1.0% to 2.5%, the overall strength of the cold recyclingmixture
with 0% asphalt content is lower, the splitting strength increases
from 0.24 MPa to 0.35 MPa, and the strength increasing range is
0.11 MPa. The splitting strength of the cold recycling mixture with
4.5% asphalt content increases from 1.31 MPa to 1.40 MPa, and the
strength increasing range is 0.09 MPa.Therefore, the effect of cement
on the strength increase of the cold recycling mixture is less affected
by emulsified asphalt. Compared with the 0% and 4.5% asphalt
content samples, the splitting strength of the cold recycling mixture
increases by 300%–400% with different cement contents. Therefore,
adding a small amount of cement has little effect on the strength of
the cold recycling mixture and is not the main factor affecting its
strength composition. Asphalt plays a major role as a binder.

When the cement content is fixed, and the emulsified asphalt
content is changed, the splitting strength increases first and then
decreases. The splitting strength corresponding to 5.0% asphalt
content is the maximum. When the asphalt content exceeds the
optimal asphalt content, the splitting strength decreases.

The influence of emulsified asphalt and cement on the strength
performance of a cold recycling mixture is further clarified. Figure 6
shows the results of two schemes of fixing cement content at 1.5%
and 0% and changing the asphalt content. The two schemes are
treated differently. That is, to compare the influence of changing
asphalt content on the strength of a cold recycling mixture without
cement, the figure is expressed as “asphalt (1.5%–0% cement),” and
the “cement (4.5%–0% asphalt)” scheme is obtained.
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TABLE 4 Design scheme of RAP material content change.

RAP material content (%) Binder type Cement/asphalt content (%) Scheme number

100
Cement (4.5% asphalt) 1 1.5% 2% 2.5% Ⅰ-Ⅰ

Asphalt (1.5% cement) 4 4.5% 5% 5.5% Ⅰ-Ⅱ

50
Cement (4.5% asphalt) 4 4.5% 5% 5.5% Ⅱ-Ⅰ

Asphalt (1.5% cement) 1 1.5% 2% 2.5% Ⅱ-Ⅱ

FIGURE 2
Cold recycling cement mortar molding diagram. (A) Cement-filler mortar. (B) emulsified asphalt-filler mortar. (C) the cement-emulsified asphalt mortar

FIGURE 3
SEM of scanning electron microscope.

Figure 6 shows that two schemes of changing asphalt content
were compared by using 0% cement and 1.5% cement. The splitting
strength of the cold recycling mixture with 1.5% cement content
is higher than that with 0% cement content, and the strength
difference between the two increases with the cement content.
Similarly, compared with the fixed 4.5% asphalt content and 0%
asphalt content, the splitting strength of the cold recycling asphalt
mixture under the former scheme is higher than that under the
latter scheme, but the difference in strength between the two
schemes is less affected by the change of cement content. When
cement and asphalt are used together as binders, the overall strength

of a cold recycling mixture can be improved. Cement develops
hydration reactions with needle-like microstructures and forms
a spatial network structure. The interaction between cement and
asphalt enhances the overall cohesion of the binder. Cement can be
regarded as an interface adhesion enhancer between the aggregate
and the asphalt.

3.2 Analysis of different RAP content

Figure 7 shows that the splitting strength of cold recycling
asphalt mixture with 100% RAP content is higher than that with
50%RAP content.This ismainly because the adhesion effect of aging
asphalt mortar on the RAP surface is better than that of NAPs and
asphalt. This phenomenon can be observed under SEM.

Second, whether RAP content is 50% or 100%, the splitting
strength of a cold recycling mixture increases significantly with
the increase of asphalt content. For the 50% RAP specimen, the
splitting strength increases first and decreases later with the increase
of asphalt content, and 5% emulsified asphalt is the optimum asphalt
content. For 100% RAP content, the splitting strength increases
rapidlywith the increase of asphalt content.The5.5% asphalt content
is not the optimum asphalt content. Scheme II-II includes 50% RAP
and 50% NAPs, and the NAP surface needs more asphalt to form
structural asphalt.

The above analysis shows that the type and content of aggregate
and binder will affect the overall strength performance of the
cold recycling mixture. At the micro level, different types and
contents of binder will form a cohesive state, thus affecting
the cohesive performance of asphalt mortar. Second, different
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FIGURE 4
SEM test specimens with different interface forms.

FIGURE 5
Test results of splitting strength under different cement content.

aggregate–cement interface forms will affect the pore structure
and the distribution of microstructures in the interfacial transition
zone, which greatly influences the adhesion performance of the
mixture. The adhesion effect of aggregate and cement is particularly
important to the mechanical properties of a cold recycling mixture
mixed at room temperature. Therefore, SEM microscopic tests with
different interface forms are carried out below to extract the key pore
parameters and reveal the strength performance mechanism of the
cold recycling mixture.

FIGURE 6
Effect of single binder on strength performance.

FIGURE 7
Results of splitting strength test under different RAP content.

4 SEM result analysis

Because the cold recycling mixture has both cohesive and
adhesive strength, SEM tests were carried out on the interface
transition zones of the cold recycling binder and the aggregate
cement, respectively.

4.1 The SEM binder test results

Figure 8 shows the microscopic scanning diagram of different
mortar systems.

Figure 8A shows the scanning electron microscope image of the
cement slurry–filler structure at 500× magnification. It can be seen
that the hydration products of cement are branched and bifurcated,
which is due to the bending and twisted band of C-S-H crystals.
At the same time, the cement hydration products are mixed with
a large number of filler particles. Due to the hindrance of filler
particles, cement hydration products do not form continuous C-H
crystals. At the same time, filler particles can better fill the pores
of cement hydration products. The emulsified asphalt–filler mortar
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FIGURE 8
SEM images of different mortar systems of cold recycling mixture. (A) Cement slurry–filler mortar. (B) Emulsified asphalt-filler mortar. (C)
Cement-emulsified asphalt mortar.

FIGURE 9
NAP-cement slurry-asphalt mortar.

can be seen in Figure 8B. In addition to some larger particles, the
filler is more evenly dispersed in the emulsified asphalt, and the
surface of the emulsified asphalt is smoother. In Figure 8C showing
the cement–emulsified asphalt mortar, Picture 1 shows that some
cement particles did not experience a hydration reaction, which is
more evenly dispersed in asphalt and plays the role of filler. Picture
2 shows the cement hydration products that have initially formed an
interconnected structure. The growth of a single hydration product
becomes larger, and the pore structure is gradually compacted.
Picture 3 shows that the cement hydration products and asphalt
mortar are intertwined to form a network structure. Compared with
the complex pore structure in the cement paste shown in Figure 8A,
the pore structure in Picture 3 is densely filled with asphalt to
form a good overall structure. At the same time, compared with
the emulsified asphalt mortar in Figure 8B, due to the hydration
reaction of cement after adding cement, the hydration products have
the characteristics of high porosity, which will lead to the increase

of pores in the mortar system (in the red circle in the figure). The
hydration products in Picture 4 show smooth strips.

4.2 SEM test result of aggregate–binder
interface

The microstructure of cold recycling composite mortar and its
interface with aggregate were studied in this section.

The observed morphology of NAP–cement slurry–asphalt
mortar is shown in Figure 9. The vertical red line area is, from
right to left, NAPs, cement slurry, and asphalt mortar. Area A is
the cement hydration product area, and the local magnification
map of area A shows that the cement slurry has the characteristics
of multi-porosity, and the local hole phenomenon is obvious.
Area B is the transition zone between cement slurry and asphalt
mortar. The transition zone is smooth and flat, and the interface
is dense. The immersion depth of the interface between asphalt
mortar and cement hydration products is approximately 15 μm.
AreaC is the interface transition zone between the cement hydration
products and the aggregate, and the width is approximately 90 μm.
The microstructure of the area is loose, and the local cracks are
obvious. The fracture characteristics suggest that the cement slurry
is dry shrinking during maintenance, and the micro-cracks are
interconnecting to form a more visible local crack.

The observation morphology of NAP–asphalt mortar–cement
slurry is shown in Figure 10. The deep black area in the middle is
the asphalt mortar belt with a thickness of approximately 100 μm.
Area A is the interface between the NAPs and the asphalt mortar,
and the interface transition is more natural.The immersion depth of
asphalt is approximately 6 μm, and the NAPs present a block joint
shape. Area B is the transition zone between the asphalt mortar
and the cement slurry, and the cement hydration products are
distributed in granular form. The immersion depth of asphalt is
approximately 2.5 μm. Compared with the bond between cement
hydration products and asphalt mortar, the immersion depth of
asphalt mortar and NAPs is greater.
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FIGURE 10
NAP—asphalt mortar—cement slurry.

FIGURE 11
RAP—cement slurry—asphalt mortar.

Figure 11 shows the observed morphology of RAP
material–cement slurry–asphalt mortar, and the areas A, B, and
C are RAP, cement slurry, and composite mortar, respectively. The
surface of the RAP material in area A is wrapped with different
thicknesses of old asphalt mortar. Area B1 is a strip of hydration
products with a thickness of approximately 200 μm.The amplification
map of the local area B1 shows that the C-S-H crystal is in the shape of

a sheaf of wheat.Thewidth of cement hydration products in area B2 is
approximately 70 μm, and the particles are loose with more voids and
micro-cracks. The immersion depth of the cement–asphalt interface
transition zone is approximately 5.5 μm and is mainly composed of
cement hydration products, and asphalt is wrapped on the surface of
hydration products. Area C shows the transition zone between the
cement slurry and the emulsified asphalt mortar.
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FIGURE 12
RAP—asphalt mortar—cement slurry.

The observed morphology of the RAP material–asphalt
mortar–cement slurry is shown in Figure 12. Area I is RAPmaterial,
area II is asphalt mortar, and area III is cement hydration products.
The left image in Figure 12 shows that the thickness of the asphalt
mortar belt is approximately 40 μm, and the immersion depth with
RAP material is approximately 7.5 μm. The right SEM image shows
that there is a clear transition zone between the cement hydration
products and the asphalt mortar, and the immersion depth of the
cement hydration products and asphalt mortar is approximately
6 μm.

4.3 Summary

The SEM tests of the different interface forms indicate that
the cement hydration products show porous characteristics and a
certain degree of dry shrinkagemicro-cracks.The apparent adhesion
of cement hydration products and asphalt is good. Compared
with the asphalt–aggregate interface, the adhesion effect of cement
hydration products and aggregates is poor, andmicro-cracks appear
in the interface transition zone, which is consistent with the
conclusion that cement has little effect on the growth of cold
regeneration strength in themacroscopicmechanical properties test.
Cement can be considered as an interface bonding performance
improver that promotes the demulsification of emulsified asphalt
and consumes water to improve the early strength of the cold
recycling mixture.

5 Conclusion

In this paper, the mechanisms influencing the strength of cold
recycling asphalt mixtures based on material composition were
studied. The main conclusions are:

(1) The splitting strength of a cold recycling mixture increases
linearly with the increase of cement content and increases first
and decreases later with the increase of asphalt content.

(2) The effect of cement on the strength of a cold recyclingmixture
is less affected by emulsified asphalt, and the effect of low-
dose cement on the strength of the cold recycling mixture is

smaller. Low-dose cement is not the main factor affecting the
strength composition of themixture. Asphalt plays amajor role
in cementing material.

(3) The adhesion effect of aging asphalt mortar on the RAP surface
is better than that of NAPs and asphalt; compared with RAP,
the NAP surface needsmore asphalt to form structural asphalt.

(4) For the cement–asphalt mortar system, the filler is uniformly
dispersed in emulsified asphalt. The cement hydration
products and asphalt mortar are intertwined to form a network
structure, and the pore structure is densely filled with asphalt.

(5) The adhesion effect of cement hydration products and
aggregate is poor, and asphalt as the main binder has a great
influence on the strength performance of a cold recycling
mixture.
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