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Microbiologically influenced corrosion (MIC) poses a threat to various fields,
particularly in piping and cooling water systems. As a green corrosion inhibitor,
polyaspartic acid (PASP) faces challenges in achieving the intended corrosion
inhibition against MIC due to biofilm. Therefore, mitigating biofilm might be the
key to improving the corrosion inhibition of PASP. D-Phenylalanine (D-Phe) was
selected as an enhancer to promote the inhibition of PASP on MIC caused by
Desulfovibrio vulgaris due to its potential role in biofilm formation in this work.
The joint application of PASP and D-Phe reduced the corrosion rate by 76.54%
and obviously decreased the depth of corrosion pits with the maximum depth at
0.95 µm. Also, fewer cells adhered to the coupon surface due to the combined
action of PASP and D-Phe, leading to thin and loose biofilm. Besides, both
cathodic and anodic reactions were retarded with PASP and D-Phe, resulting in
a low corrosion current at 0.530 × 10−7 A/cm2. The primary synergy mechanism
is that D-Phe promoted the formation of PASP protective film via decreasing
bacterial adhesion and thus inhibited electrochemical reaction and electron
utilization of cells from metal surface. This study introduces a novel strategy
to augment the effectiveness of PASP in inhibiting MIC.

KEYWORDS

corrosion inhibition, polyaspartic acid, D-amino acids, sulfate-reducing bacteria,
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1 Introduction

Currently, microbiologically influenced corrosion (MIC) poses a threat to various
fields, particularly in piping and cooling water systems, constituting a multi-trillion-
dollar problem annually (Zhong et al., 2020; Ye et al., 2023; Wang D. et al., 2024). MIC
primarily correlated with the biofilm on metal surface (Knisz et al., 2023). Microorganisms
within the biofilm generate organic acids, sulfides, and extracellular hydrogenases,
facilitating the oxidation of metallic iron (Fe0) alongside hydrogen (H2) generation.
Some anaerobic microorganisms could utilize H2 as an electron donor to support
anaerobic respiration, while others can directly accept electrons from Fe0, often
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through c-type cytochromes (Xu et al., 2023). Furthermore,
Sulfate-reducing bacteria (SRB) is commonly considered as
one of the primary species responsible for MIC in anaerobic
environments (Cheng et al., 2024). Metallic iron can serve as the
exclusive electron donor for SRB through extracellular electron
transfer (EET) during their respiration process (Gu et al., 2019;
Pu et al., 2023). Especially, SRB can gain electrons from the
pipe surface through the oxidation of metallic iron with sulfate
as ultimate electron acceptor (Unsal et al., 2016; Wang et al.,
2023). Currently, corrosion inhibitors and biocides are employed
to mitigate corrosion in cooling water systems (Hegazy et al.,
2014). For example, phosphorus corrosion inhibitors are widely
applied due to their low cost and high efficiency. However, the
residual phosphorus in effluent lead to eutrophication and algae
blooms in natural waters (Rott et al., 2018; Zhu et al., 2021).
Innovative corrosion inhibitors and biocides are being developed
to replace conventional phosphorus corrosion inhibitors. Wang
et al. achieved high corrosion inhibition (>86%) against SRB-
induced corrosion using rosin thiourea iminazole quaternary
ammonium salt (Wang Q. et al., 2024). However, there are
still high risk of environmental problems due to the low
biodegradability and high bioaccumulation of some innovative
corrosion inhibitors and biocides (Rott et al., 2017; Saverina et al.,
2023). Hence, it is necessary to develop green inhibitors for MIC
mitigation.

Polyaspartic acid (PASP) is currently regarded as a
green corrosion and scale inhibitor due to its non-toxicity
and biodegradability (Hasson et al., 2011). PASP can form a
protective film on metal surface, thereby effectively obstructing
active sites (Qian et al., 2013). Moreover, PASP can work as
an anodic inhibitor to reduce metal corrosion (Gao et al.,
2015). However, PASP faces challenges in achieving the
intended corrosion inhibition when used individually, and
the combination with traditional inhibitors greatly decreases
the environmental significance of PASP. It is commonly
recognized that biofilm plays a pivotal role in MIC, which
could disrupt the formation of the protective film by PASP
(Vahdati et al., 2022). Besides, various oxygen gradients exist in
mature biofilm, which facilitates the proliferation of SRB and
thus accelerates electron transfer within metal and corrosion
(Jia et al., 2017; Xu et al., 2018). Biocides are frequently utilized
to kill microorganisms and enhance the efficiency of corrosion
inhibitors. However, biofilm protects cells inside against adverse
environment, including biocides, which greatly reduce the efficacy
of biocides (Xu et al., 2019). Besides, even with a residual
bacterial population as low as 0.01%, biofilm regeneration
persists, resulting in escalated expenses and the potential
for secondary environmental contamination (Yu et al., 2016).
Therefore, biofilm reduction is crucial for improving the corrosion
inhibition of PASP.

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2024.1390242
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Pang et al. 10.3389/fmats.2024.1390242

D-amino acids are naturally occurring organic compounds
found in plants, microorganisms, and even within human body
(Aliashkevich et al., 2018). They could regulate peptidoglycan to
change the chemical properties of cell walls (Cava et al., 2011).
Besides, they also exhibit inhibition on biofilm formation via
interfering with the signaling molecules that control bacterial
adhesion (Xu and Liu, 2011; Li et al., 2021; Li et al., 2023). For
example, Kolodkin-Gal et al. found the dispersal of S. aureus
and B. subtilis biofilms with the addition of D-amino acids,
and Kao et al. reported the inhibition of D-amino acids on P.
aeruginosa biofilm formation (Kolodkin-Gal et al., 2010; Kao et al.,
2017). Besides, the membrane incorporating immobilized D-amino
acids exhibited significant inhibition on initial bacterial adhesion
and biofilm formation (Jiang et al., 2017; Yu et al., 2018). Hence,
D-amino acids might serve as potential enhancers for PASP on
MIC. It is crucial to explore the synergy effect of PASP and
D-amino acid on MIC from both economic and environmental
perspectives.

In this study, a strain of sulfate-reducing bacteria (SRB),
Desulfovibrio vulgaris, was employed, and D-phenylalanine (D-
Phe) was chosen as a representative D-amino acid to systematically
evaluate its roles in improving the corrosion inhibition of PASP.
The corrosion of 20# carbon steel caused by D. vulgaris was
assessed through weight loss analysis, scanning electronmicroscopy
(SEM), and confocal laser scanning microscope (CLSM). The
objectives of this study were to assess the impact of D-Phe and
PASP on MIC, as well as to explore the synergy mechanism on
corrosion inhibition. To our current understanding, this is the
first investigation to explore the synergy mechanism of PASP
and D-Phe in SRB-mediated corrosion. This work provides new
insights into enhancing green inhibitors and reducing their negative
environmental impact.

2 Materials and methods

2.1 Bacterium, culture medium, and
chemicals

Desulfovibrio vulgaris ATCC 7757, a strain of SRB utilized
in this study, was obtained from the General Microbiological
Culture Collection Center in China. The ATCC 1249 medium
(Supplementary Text S1) was used for bacterial cultivation (Jia et al.,
2018a). The medium underwent a 40-min deoxygenation process
using N2 and was subsequently autoclaved at 121°C for 25 min.
Additionally, L-cysteine (100 mg/L, Macklin, Shanghai, AR>98%)
was introduced as an oxygen scavenger (Jia et al., 2018b). D-Phe
(Macklin, Shanghai, AR>98%) and PASP (Macklin, Shanghai, AR
> 95%) were dissolved in deionized water and used after filtration
with 0.22 μm filters.The information on growth curve was provided
in Supplementary Text S2.

2.2 Operation of the reactor and weight
loss measurement

The microbial corrosion was evaluated in four reactors. The
dimensions of each reactor were 92 mm in height, 60 mm in inner

diameter, and a volume of 200 mL (Supplementary Figure S1).
Eight 20# carbon steel coupons (10 × 10 × 3 mm), a commonly
used material in industrial pipelines, were placed in each reactor.
The elemental composition of the carbon steel is presented
in Supplementary Table S1. The coupons first underwent a
sequential grinding process using silicon carbide paper with
varying grit sizes (220, 400, 800, 2000) and then received
ultraviolet light exposure for 30 min to ensure sterilization
(Jia et al., 2018b). Subsequently, all coupons were firmly secured
in rubber sleeves within the reactors. The SRB was cultured
in reactors with a medium that included PASP, D-Phe, and
PASP + D-Phe, denoted as PASP, D-Phe, and P + D group,
respectively. The concentrations of PASP and D-Phe were 40 mg/L
and 10 mg/L according to our previous study, respectively
(Gong et al., 2023). A blank group was prepared without the
addition of PASP and D-Phe. Additionally, an abiotic group
was designed without SRB. All reactors were incubated at
30°C for 14 days.

After 14-day incubation, the coupons underwent a treatment
to remove biofilm and corrosion products according to the ASTM
G1-03 standard (Zhang B. et al., 2015). Subsequently, the coupons
underwent three rounds of cleaning with anhydrous alcohol,
followed by drying in a vacuum oven at 60°C. Then, the weight
loss was calculated via measuring the difference in mass of the
coupons before and after the incubation. In each reactor, four
coupons were prepared for weight measurement, the average
weight loss was calculated for each data point, and the average
corrosion rate (V) and inhibition rate (η) were determined using the
following formulas:

V =
8760× 10× (m−m0)

A ∙T ∙ ρ
(1)

η =
v0 − v1
v0
× 100% (2)

whereV is the corrosion rate (mm/a). m is themass reduction of the
coupons. m0 is the average weight loss of the blank test for the acid
etching of the test coupons (g). A is the coupon surface area (cm2).
T is the incubation time (h). ρ is the density of the coupon (g/cm3).
v0 is the corrosion rate in blank group and v1 is the corrosion rate in
other groups.

Additionally, a synergy parameter (S) was determined in terms
of corrosion activities according to Aramaki–Hackerman model:

S =
1− ηthresholdAtamaki

1− ηmeasured
(3)

where ηthreshold is the threshold inhibition efficiency. ηmeasured is the
evaluated mixture’s inhibition efficiency. S > 1 indicates synergism,
and S < 1 indicates antagonism (Aramaki and Hackerman, 1969;
Kozlica et al., 2021; Kokalj, 2023).

2.3 Corrosion morphology and corrosion
products

After the incubation, the coupons with biofilm were collected
and rinsed with phosphate-buffered saline (PBS, pH = 7.4) three
times to clear the residual medium. Then, the coupons were fixed
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with 2.5% glutaraldehyde in PBS solution for 2 h and washed
with PBS solution three times, followed by dehydration. Ultimately,
the coupons were dried in a CO2 dryer, and subsequent to this,
palladium coating was applied to enhance conductivity before
conducting SEM (Quanta 250 FEG, FEI, United States of America)
analysis. The coupons were subjected to pretreatment to remove
biofilm prior to SEM analysis to observe the pitting corrosion
morphology. Subsequently, corrosion pits of coupons were observed
and analyzed with a confocal laser scanning microscope (CLSM,
LSM 800, Carl Zeiss, Germany) and ZEISS ConfoMap software,
respectively (Li et al., 2021). Each sample was scanned in 10
regions to find the maximum pit depth. In addition, the corrosion
products were collected, and the composition of sulfur-related
components was recorded with X-ray photoelectron spectroscopy
(XPS, Thermo Fisher Nexsa, United States of America). The
XPS spectra was analyzed with Avantage software and the XPS
reference binding energies (B.E.) of sulfur species were listed in
Supplementary Table S2.

CLSM was also applied to observe cells in biofilm. Briefly, the
collected coupon containing biofilm was gently washed using PBS
solution and stained using SYTO 9 (live cells) and PI (dead cells)
stain. Stained coupons were incubated in dark for 20 min to ensure
optimal staining, after which the coupons were carefully washed
using a PBS solution again to remove excess stain and to enhance
the clarity of observations. Finally, the coupons were observed
with CLSM (LSM 900, Carl Zeiss, Germany), and the images
were obtained with ZEISS ZEN 3.7 software. ImageJ software was
employed to measure the total fluorescence intensity of each image,
and the relative amounts of cells were calculated in comparison with
in blank group.

2.4 Electrochemical tests

The incubation, while maintaining stringent control over
experimental conditions, was reproduced in three-electrode
cells. The platinum sheet functioned as the counter electrode.
Carbon steel, with a 1 cm2 exposed surface, served as the
working electrode, and Ag/AgCl (KCl-saturated) was used as
the reference electrode. The open circuit potential (OCP) and
Electrochemical Impedance Spectroscopy (EIS) were measured
at 1, 3, 6, 10, and 14 days, and potentiodynamic polarization tests
were conducted at 14 days using an electrochemical workstation
(CHI 660e, CH Instruments Inc., United States of America). The
EIS measurement was conducted at the OCP using a sinusoidal
signal with an amplitude of 10 mV, covering a frequency range
from 100,000 Hz–0.01 Hz. The EIS data were fitted with ZsimpWin
software. Additionally, the Tafel curve was automatically recorded
at a scanning rate of 0.167 mV/s, ranging from −0.25 V to +0.25 V
vs. the OCP.

2.5 Statistical analysis

Thedifference among sampleswere assessed employing the SPSS
software through one-way ANOVA, and the levels of significance
were denoted by p-values less than 0.05.

3 Results and discussion

3.1 Corrosion analysis

Weight loss was first measured and corrosion rates were
calculated to assess corrosion. As shown in Figure 1, the corrosion
rate increased from 0.018 mm/a in abiotic group to 0.034 mm/a
in blank group, confirming that SRB can cause serious metal
corrosion. Less weight loss was observed in both PASP group and
D-Phe group with corrosion rates at 0.017 mm/a and 0.024 mm/a,
respectively. The corrosion inhibition by D-Phe might be attributed
to that D-Phe decreased the initial attachment of SRB on coupons,
consequently limiting the consumption of iron by SRB. Besides, the
corrosion greatly reduced in P + D group, with the corrosion rate
decreasing by 76.54% than that in blank group. In previous studies,
a corrosion inhibition of 80% was attained with the application
of 4000 mg/L PASP, which is 100 times than our used dosage
(Cui et al., 2011). Besides, Zeino et al. achieved high corrosion
inhibition at 97% through the joint application of 500 mg/L
PASP and 10 mg/L zinc ions (Zeino et al., 2018). In this study,
a remarkable corrosion inhibition, up to 76.54%, was achieved
with low doses of PASP (40 mg/L) and D-Phe (10 mg/L), both of
which are non-toxic and biodegradable. Furthermore, according
to the Aramaki-Hackerman model, the synergy parameter S was
1.48, indicating the synergism between D-Phe and PASP on
corrosion inhibition.

After incubation, the coupons were cleaned to remove attached
cells and observed with SEM and CLSM. Serious corrosion
was detected on coupons surface in blank group with a huge
area and depth at 7.65 μm (Figure 2A, A′). In the D-Phe group,
some small and shallow-depth pits were observed, and the
maximum depth was 3.26 μm (Figure 2C, C′), suggesting that D-
Phe could alleviate pitting corrosion. Moreover, few deep pits were
detected in PASP group and P + D group (Figures 2B,D) with
maximum depths at 1.44 and 0.95 μm, respectively (Figures 2B’, D’).
Typically, ferrite on the iron coupons is more susceptible to
corrosion than cementite (Li et al., 2021; Li et al., 2023). It can be
explained that cementite contains covalent bonds, which reduce
electron activity and make it difficult for bacteria to utilize
electrons (Hao et al., 2016; Liu et al., 2021). In this study, the joint
application of PASP and D-Phe led to a decrease in the depth of
pitting corrosion, consequently preventing the exposure of ferrite,
ultimately resulting in fewer electrons lost from the coupons
and utilized by SRB. These results are consistent with corrosion
rates and confirm the synergetic role of PASP and D-Phe in
corrosion inhibition.

Hydrogen sulfide and other sulfides, the corrosive products
formed during the reduction of sulfate by SRB, play an important
role in metal corrosion by Desulfovibrio vulgaris in anaerobic
environments (Yuan et al., 2013). In this study, XPS analysis
was performed on the sulfur components in corrosion products
(Supplementary Figure S2). After a 14-day incubation, the curve-
fitted S 2p spectra indicated a complex mixture of sulfur species.
The peak of SO4

2− is likely attributed to the sulfate deposition
from the culture medium (Pu et al., 2023). In P + D group, the
relative amount of SO4

2-, serving as the ultimate electron acceptor
for SRB, is the highest. It may be attributed to the lower biofilm
formation observed on coupon in the P + D group, as discussed
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FIGURE 1
Weight loss and corrosion rate in different corrosion conditions for 14 days. The dates were analyzed using one-way ANOVA, and the different letters
indicate significant differences between different groups (p < 0.05).

in subsequent sections. Furthermore, the presence of organic
sulfides implies that biologically derived organic proteins are likely
contributing to the generation of sulfide species within the passive
films (Yuan et al., 2013).

3.2 SRB growth and biofilm analysis

SRB could attach to the coupons, utilize the electrons, and cause
MIC (Jia et al., 2019). Therefore, biomass on the coupons is an
important factor for MIC, which directly determines the utilization
of electrons by SRB (Vahdati et al., 2022). Therefore, this study
evaluated the growth of SRB in the presence of PASP and D-Phe.
The growth curves exhibited a remarkably close overlap in all groups
(Supplementary Figure S3), suggesting that both PASP and D-Phe
showed negligible impact on the growth of SRB. Based on this, it was
speculated that the joint application of PASP and D-Phe primarily
reduced corrosion via inhibiting the attachment of SRB rather than
inhibiting SRB growth. Therefore, SEM and CLSM were employed
to observe the biofilm on the coupons. As shown in Figure 3A and
Supplementary Figure S4A, the coupons in blank group exhibited
complete coverage by biofilm and corrosion products after 14-day
incubation. Biofilms with varying sizes and shapes were observed
with large patchy and mushroom-like structures. The cells within
the biofilm were tightly embedded, displaying a high degree of
alignment and minimal open gaps. Moreover, the biofilm was
looser, thinner, and contained significantly more gaps in D-Phe
group (Figure 3C). Also, the cellular morphology with the addition
of D-Phe was different from that in blank group, aligning with
other studies (Li et al., 2018; Li et al., 2021). D-Phe can alter
cell morphology via substituting the original D-amino acids in

peptidoglycan, which serves as a cell wall framework (Dramsi et al.,
2008; Lam et al., 2009; Kolodkin-Gal et al., 2010; Carniello et al.,
2018). It also affects the synthesis of flagella and adhesion-like
proteins, which contribute to initial bacterial attachment and
irreversible adherence, respectively (Clark et al., 2007; Karatan and
Watnick, 2009; Zhang et al., 2021). Furthermore, the presence of
non-uniform bacterial shapes would diminish the efficacy of biofilm
formation (Young, 2006). It might be a reason that D-Phe reduced
the corrosion by SRB.

Moreover, cells were sparser on the coupon in PASP group
(Figure 3B), and fewer corrosion products were observed than
those in blank group, which might be attributed to the protective
film formed by PASP (Supplementary Figure S4B). Generally, PASP
can attach to the surface of coupon in a parallel orientation via
carboxyl groups and amide groups in polymer chain to form a
dense protective film (Zeino et al., 2018). The functional groups
in PASP can complex with iron ions and prevent their further
participation in corrosion reactions, and thus inhibit the dissolution
of metal ions (anodic reaction) (Xu et al., 2016; Jia et al., 2019).
Besides, the protective film effectively obstructs the reaction sites
for H+ ions, leading to the inhibition of the hydrogen evolution
reaction (cathodic reaction) (Qian et al., 2013). In this study,
PASP might also impede direct contact between SRB and the
carbon steel surface, decreasing the electron utilization of SRB
from coupon. It is because D. vulgaris primarily accepts electrons
from Fe0 through H2, which serves as an intermediary electron
carrier (Wang et al., 2020; Woodard et al., 2023). Furthermore, in
P + D group, almost no biofilm and little corrosion products
were found (Figure 3D), resulting from the combined effect of
PASP and D-Phe. It is consistent with results in weight loss
measurements.
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FIGURE 2
SEM images and CLSM pit depth profile of coupons after removal of the biofilm following a 14-day immersion in different corrosion conditions: blank
group (A,A′), PASP group (B,B′), D-Phe group (C,C′) and P + D group (D,D′).

CLSM was employed to evaluate the distribution of cells on the
coupon (Figure 3A’–D’). Live cells (green) were obviously observed
while there were almost no dead cells (red) on the coupon in
all groups, confirming the minimal effect of PASP and D-Phe on
SRB growth. Furthermore, fluorescence intensities were recorded
to evaluate the relative amounts of adhered cells. Compared to
blank group, the amounts of adhered cells in PASP group reduced
by 64%, which might be due to the protective film formed
by PASP. Besides, it reduced by 82% and 96% in D-Phe and

P + D groups, respectively, confirming that D-Phe could inhibit
bacterial adhesion.

3.3 Electrochemical analysis

The OCP tests were first performed (Figure 4A). On Day 1, the
OCP values were at a low level in all groups, resulting fromminimal
bacterial adhesion on the coupon surface (Starosvetsky et al., 2000).
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FIGURE 3
SEM and CLSM images of biofilm after 14-day immersion in different corrosion conditions: blank group (A,A′), PASP group (B,B′), D-Phe group (C,C′)
and P + D group (D,D′). The semi-transparent numbers represent the relative amounts of adhered cells.

HigherOCP valueswere detected in the presence of PASP, indicating
high resistance to corrosion, which might be due to the protective
film formed by PASP. Then, the values increased sharply on Day

3 due to the formation of FeS-biofilm (FeS film underneath the
biofilm) on the coupon surface (Xu et al., 2019). Besides, there
were higher OCP values in D-Phe group and PASP group at
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FIGURE 4
Open circuit potential (A), Nyquist plots (B–F), Rct + Rb (G), potentiodynamic polarization curves (H) of coupons at different times: (B) 1 day, (C) 3 days,
(D) 6 days, (E) 10 days, (F) 14 days.

most time during incubation than those in blank group, implying
a higher resistance to corrosion (Vasudevan et al., 1998; Li et al.,
2021). These results indicated that D-Phe and PASP reduced the

electron utilization of SRB from coupon, corresponding to weight
loss measurement. For the P + D group, the values of OCP did not
change dramatically and were always lower than other groups. It can
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TABLE 1 Electrochemical parameters of potentiodynamic polarization curves in different groups.

Ep (V) Icorr (×10
−7 A·cm-2) ba (V·dec

−1) bc (V·dec
−1)

Blank −0.645 1.863 3.573 11.784

PASP −0.591 0.630 6.265 20.478

D-Phe −0.646 1.644 2.940 21.727

P + D −0.692 0.530 9.422 35.027

FIGURE 5
Schematic diagram of synergy mechanisms of PASP and D-Phe on corrosion inhibition.

be explained by the combined effect of PASP and D-Phe, resulting
in minimal formation of the FeS-biofilm on the coupon surface
throughout the entire 14-day incubation (Xu et al., 2019).

EIS was then measured with stable OCP on Day 1, 3, 6, 10,
and 14, and the Nyquist plot was used to assess the corrosion
(Figures 4B–F), where the diameter in the Nyquist plot is correlated
with the corrosion resistance (Gamry Instruments, 2007). On day
1, the diameters were much larger in other groups compared to
blank group, which is consistent with OCP values. Moreover, the
diameters in P + D group were consistently larger than those in
other groups, indicating that the coupon in P + D group exhibited
the highest corrosion resistance during the incubation, confirming

the synergy effect between PASP andD-Phe on corrosion inhibition.
Furthermore, equivalent electrical circuits were employed to fit
the impedance spectra (San et al., 2014). The equivalent electrical
circuits involved parameters Rs (solution resistance), Qdl (double
film capacitance), Rct (charge transfer resistance), Qb (biofilm
capacitance), and Rb (biofilm resistance). The values of Rct + Rb
are shown in Figure 4G. There is a close correlation between Rct
+ Rb value and corrosion rate, where a lower Rct + Rb value
corresponds to a higher corrosion rate. Compared to blank group,
the Rct + Rb values in other groups were similar but obviously
higher on Day 1, indicating that the corrosion rates in PASP group,
D-Phe group, and P + D group were close but lower than those
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in blank group. After 6 days-incubation, compared to the blank
group, the Rct + Rb values in D-Phe group were lower, which
might be due to a larger exposed electrode area and a thinner
FeS-biofilm on coupon surface. These results could be attributed
to two reasons. Firstly, the D-Phe impeded the initial attachment
of bacteria, thus reducing the biofilm formation (Carniello et al.,
2018). Consequently, the coupon in D-Phe group displayed high
corrosion resistance on Day 1, which is consistent with results
in Figures 4A, B. Secondly, D-Phe induced cell wall deformation
and weakened cell-to-cell connections, ultimately resulting in the
collapse of the biofilm (Beech and Sunner, 2004; Castaneda and
Benetton, 2008; AlAbbas et al., 2013; Bucher et al., 2015). There
were high Rct + Rb values in the presence of PASP, indicating
that PASP enhanced the charge transfer resistance of coupons and
thus decreased the corrosion rate. It also verified the existence of
protective film formed by PASP. Moreover, the Rct + Rb values were
highest at most time during incubation in P + D group, confirming
the synergy effect of PASP and D-Phe.

Potentiodynamic polarization tests were also conducted on Day
14 to evaluate the corrosion (Figure 4H), and the parameters related
to potentiodynamic polarization tests were listed in Table 1. The
polarization curves in PASP group and P + D group exhibited
distinct variations in comparison with that in blank group,
suggesting disparate reaction kinetics of the anode and cathode
process. It might be attributed to the change in the electron transfer
process, which was caused by attached SRB and PAPS protective
film (Valcarce and Vazquez, 2010; Zhang et al., 2011; Farag and
Hegazy, 2013; Zhang P. et al., 2015; Lv et al., 2022). Typically, there
is a positive correlation between corrosion current and corrosion
rate (Chilkoor et al., 2018). Tafel curves of both anodic and cathodic
in P + D group shifted to lower corrosion current at 0.530 ×
10−7 A cm−2, significantly lower than that in blank group (1.863 ×
10−7 A cm−2), indicating that the joint application of PASP and
D-Phe decreased corrosion rate. For D-Phe group, the corrosion
current at 1.644 × 10−7 A cm−2 was close to that in blank group, and
the polarization curve on Day 14 was also similar to that in blank
group, which might be attributed to the weak effect of D-Phe due
to its decomposition over 14 days. These results correspond with
weight loss measurement.

3.4 Synergy mechanism of PASP and D-Phe
on corrosion inhibition

Based on the preceding discussion and results, the possible
synergy mechanism of PASP and D-Phe on corrosion inhibition
was summarized in Figure 5. In particular, PASP adsorbed onto
the surface of coupons to form a compact protective film. This
film acted as a barrier, obstructing the active sites on the coupons
and inhibiting direct interaction between SRB and iron on coupon
surface (Qian et al., 2013). As a result, the protective film obstructed
the electron uptake by SRB from the elemental iron. Nevertheless,
as the biofilm forms on the surface of the protective film, the cells
within the biofilm instigated a significant challenge to the integrity
of this protective film. Upon the rupture of this protective film, the
corrosion is initiated, leading to the release of iron ions.The released
iron ions at the corrosion sites on the carbon steel surface interacted
with PASP to form complexes, effectively hindering the dissolution

of metal ions. Additionally, D-Phe effectively suppressed the initial
bacterial adhesion, notably extending the period for SRB to establish
biofilms on the protective film. During the biofilm formation, D-Phe
induced the deformation of cell walls, along with the attenuation of
intercellular connections, leading to the collapse of biofilm.Thin and
loose biofilms significantly diminished their aggressiveness towards
the protective film. Consequently, the presence of D-Phe obviously
enhanced both the efficiency and duration of PASP on corrosion
inhibition.

4 Conclusion

In this work, the synergy effect of PASP and D-Phe was assessed
on MIC induced by Desulfovibrio vulgaris. The joint application of
D-Phe and PASP significantly reduced corrosion rate and the depth
of corrosion pits. Besides, both cathodic and anodic reactions were
retarded in the presence ofD-Phe andPASP, leading to low corrosion
current. The possible synergy mechanism is: (1) PASP formed a
protective film to inhibit the corrosion via reducing electrochemical
reaction and impeding direct contact between SRB and carbon
steel surface; (2) D-Phe decreased the bacterial adhesion, retarded
biofilm formation and thus decreased electron utilization of SRB
from coupon; (3) D-Phe promoted the formation of protective film
by PASP via reducing initial bacterial adhesion. This study provides
a novel approach to augment the effectiveness of PASP in MIC
inhibition and is helpful to reduce the adverse environmental impact
caused by traditional corrosion inhibitors.
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