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The poly3,4-ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) hole
transport layer (HTL) has always played a crucial role in achieving high-efficiency
organic solar cells (OSCs) owing to its unique advantages of suitable energy
levels and high optical transparency. However, the inherent insulation and easy
aggregation property of PSS results in relatively low conductivity and high
surface roughness of the PEDOT:PSS film, which is unfavorable for charge
transport and the morphology of the top layer. To address these problems, we
use PEDOT:PSS diluted in a series of alcoholic solvents and evaluate them on the
PM6:Y6 system. Among these, the PM6:Y6 devices using PEDOT:PSS modified
with ethanol as the HTL demonstrate the best vertical phase segregation and
carrier extraction. In addition, the PEDOT:PSS film with added ethanol also has
the smoothest surface compared to those diluted in the other alcoholic solvents.
Finally, a high power conversion efficiency of 18.13% was obtained with the
PM6:Y6 devices based on PEDOT:PSS modified by ethanol. This work provides
a sufficient reference for the alcoholic modification of PEDOT:PSS and also
proposes a feasible solution for high-efficiency OSCs.

KEYWORDS

organic solar cell, PEDOT:PSS, alcoholic solvent, phase component, morphology

1 Introduction

Organic solar cells (OSCs) have attracted extensive attention for solving
the energy problem owing to their advantages, such as light weight,
semitransparency, flexibility, and roll-to-roll production (Lin et al., 2015; Li et al.,
2016; Lin et al., 2017; Zhao et al., 2017; Hou et al., 2018; Li et al., 2018; Li et al.,
2024; Peng et al., 2024). Recently, the power conversion efficiency (PCE)
of OSCs has improved significantly upon the emergence of non-fullerene
acceptors that are matched well with the absorption spectra and energy levels
of the donor (Sonar et al., 2011; Lin and Zhan, 2014; Cheng et al., 2018;
Hou et al., 2018; Yan et al., 2018). Through interface modifications, semiconductor
material design, and morphological optimization, the PCE of OSCs has
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FIGURE 1
(A) Schematic of a conventional organic solar cell (OSC). (B) Chemical structures of the active layer materials used in this work. (C) J–V characteristics
and (D) external quantum efficiency curves of the devices with four hole transport layers (HTLs).

exceeded 19% (Cui et al., 2021; Li et al., 2021; Zhang et al., 2021;
Chong et al., 2022; Sun et al., 2022; Zhu et al., 2022).

Suitable interface modifications can enhance charge extraction
and suppress carrier recombination, thereby resulting in
large photovoltages and photocurrent densities (Cheng et al.,
2009; Zhang et al., 2018; Zhao et al., 2018; Zhu et al., 2021;
Zhou X. M. et al., 2022; Liao et al., 2022; Yu et al., 2022; Zheng et al.,
2022). The currently available high-efficiency OSCs are based
on the conductive polymer poly(3,4-ethylenedioxy-thiophene)
poly(styrene-sulfonate) (PEDOT:PSS) as the hole transport
layer (HTL) because of its suitable energy levels, good optical
transparency, and solution processability. In addition, the
large work function of PEDOT:PSS (∼5.1 eV) approaches
the energy level of the least unoccupied molecular orbital
of the most polymeric donor material, which is conductive
enough to form good ohmic contacts at the anode/active layer
interface and enhance hole transport efficiency (Potscavage et al.,
2009; Bouthinon et al., 2015; Xu et al., 2020; Zhang et al., 2020;
Zhu et al., 2021). However, there are also some drawbacks to
using PEDOT:PSS, such as its relatively moderate conductivity,
strong acidity, and structural inhomogeneities caused by
the insulating PSS structure, which affect the photovoltaic
performance and stability of the device (Kemerink et al.,

2004; Lee et al., 2014; Shi et al., 2015; Zeng et al., 2020;
Zhou K. K. et al., 2022; Bertrandie et al., 2022).

It has been reported that isopropanol (IPA) can adjust
the morphology, charge transport, and optical properties
of a PEDOT:PSS film, thereby significantly improving its
hole extraction and transport efficiencies (Ouyang, 2013;
Donoval et al., 2017; Aimukhanov et al., 2021). Moreover,
isopropanol can also dissolve the insulating PSS portion in
PEDOT:PSS, thereby hindering the aggregation of PSS and
leading to a higher PCE in OSCs (Mengistie et al., 2015;
Zhu et al., 2016; Aimukhanov et al., 2021; Cassinelli et al.,
2021). Nevertheless, research on the effects of the types of
alcohols used with the PEDOT:PSS solution on the photovoltaic
performances of OSCs remains insufficient. Moreover, the effects
of alcohol-modified PEDOT:PSS on the vertical component
distribution of the active layer are not yet clear, seriously
limiting the application of PEDOT:PSS to high-efficiency OSCs
in the future.

Herein, we selected methanol, ethanol, and IPA as the
diluents for the PEDOT:PSS solution to enhance the photovoltaic
performances of the OSCs. Based on the transient photovoltage
(TPV) and transient photocurrent (TPC) measurements, the
effects of alcoholic solvent dilution of PEDOT:PSS on the
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TABLE 1 Extracted performance parameters of the OSCs equipped with different HTLs under AM 1.5 G illumination at 100 mW cm−2.

VOC (V)a JSC (mA cm-2)a FF (%)a PCE (%)a Rs (ohm) Rsh (ohm)

PEDOT:PSS 0.841 ± 0.003 27.27 ± 0.27 76.00 ± 0.18 17.42 ± 0.21 34.07 37106.66

PEDOT:PSS:CH3OH 0.835 ± 0.004 27.85 ± 0.14 77.19 ± 0.26 17.94 ± 0.05 24.15 25046.39

PEDOT:PSS:EtOH 0.834 ± 0.001 27.63 ± 0.32 78.66 ± 0.31 18.13 ± 0.19 18.31 54773.50

PEDOT:PSS:IPA 0.835 ± 0.001 27.32 ± 0.27 78.23 ± 0.43 17.86 ± 0.13 23.09 43787.40

FIGURE 2
(A) Transient photovoltage and (B) transient photocurrent curves of the devices with HTL treatments.

carrier recombinations and extraction process in devices
were studied thoroughly. In addition, film-depth-dependent
light absorption spectroscopy (FDDLAS) was employed to
understand the phase component information in the active
layer. The results of the investigations indicate that PM6:Y6
devices based on ethanol-modified PEDOT:PSS HTLs enable
faster charge extractions and suitable phase distributions,
which are conducive to efficient carrier and lower charge
combinations. Thus, the corresponding OSCs exhibit a maximum
PCE of 18.13%, which is much higher than the 17.42% of
the control OSCs.

2 Materials and methods

PM6 and Y6 were purchased from Solarmer Material
Inc. (Beijing, China), PNDIT-F3N was purchased from
eFlexPV Limited (Guangdong, China), and PEDOT:PSS
(Clevios PVP 4083) was purchased from Heraeus Inc.
(Hanau, Germany). All of the other reagents and chemicals
were purchased from Sigma-Aldrich or Aladdin and used
as received.

3 Results and discussion

The schematics of the device structure and chemical structure
of the photoactive layer are shown in Figures 1A, B, respectively.
Clearly, the polymer donor PM6 and non-fullerene acceptor Y6 are
selected as active layers, and the corresponding device architecture
was stacked in the form of ITO/HTL/PM6:Y6/PNDIT-F3N/Ag.
The related chemical structures of PEDOT:PSS and PNDIT-F3N
are shown in Supplementary Figure S1. Subsequently, the current
density vs. voltage (J–V) curves of OSCs with four different HTLs
were measured under AM 1.5 G illumination at 100 mW cm−2,
as shown in Figure 1C. The extracted photovoltaic performance
parameters from the J–V curves are summarized in Table 1. When
the pure PEDOT:PSS was used as the HTL, a relatively low short-
circuit current density (JSC) of 27.27 mA cm-2 and poor fill factor
(FF) of 76.00% were obtained, which resulted in a low PCE of
17.42%. When the alcoholic solvents (CH3OH, EtOH, and IPA)
were added to PEDOT:PSS, the PCE of the OSCs may be increased
by the enhanced JSC and large FF. The detailed optimizations of
the volume ratio between PEDOT:PSS and the alcoholic solvent
are shown in Supplementary Figure S2 and Supplementary Table S1.
For the PEDOT:PSS:CH3OH cast device, the JSC and FF reached
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FIGURE 3
(A–D) Composition ratios along the vertical directions of the active layer films by film-depth-dependent light absorption spectroscopy (FDDLAS).

27.85 mA cm-2 and 77.19%, respectively, resulting in a high PCE
of 17.94%. When EtOH was introduced into the PEDOT:PSS
solution, the FF of the device was greatly improved from 76.00%
(PEDOT:PSS) to 78.66% (PEDOT:PSS:EtOH), resulting in an
increased PCE of 18.15%. After deposition of PEDOT:PSS:IPA onto
the ITO electrode, the PCE of theOSCs based on the PM6:Y6 system
increased to 17.86%, which is a result of the modest increments
in JSC and FF (27.32 mA cm-2 and 78.23%). Moreover, the external
quantum efficiency (EQE) spectra of the OSCs with different HTLs
were measured, as shown in Figure 1D. It can be seen that the
EQE spectra of the devices equipped with PEDOT:PSS along with
added alcoholic solvents exhibit remarkable enhancements in the
range of 400–900 nm compared to the control device using pure
PEDOT:PSS as the HTL.The stabilities of OSCs with different HTLs
were measured in an N2 atmosphere (Supplementary Figure S3).
After 600 h of storage, the PCEs of the devices with PEDOT:PSS
modified by alcoholic solvents retain above 95% of their initial
values, higher than that of the control device (92.9%). In particular,

the PCE of the OSCs with PEDOT:PSS:EtOH as the HTL could still
reach 96.3% of that of the pristine device after 600 h of exposure in
the N2 atmosphere.

To explore the reasons behind the improved photovoltaic
performance, the TPV and TPC curves of the OSCs were
analyzed for the effects of these HTLs on carrier recombinations
and extraction processes (Figure 2A; Figure 2B). Based on
the TPV curve, the extracted carrier lifetime (τ lifetime)
values of the devices are 3.056 μs (PEDOT:PSS), 3.232 μs
(PEDOT:PSS:CH3OH), 3.338 μs (PEDOT:PSS:EtOH), and 3.433
μs (PEDOT:PSS:IPA). From Figure 2B, the related charge extraction
time constant (τextract) values are 0.227 μs (PEDOT:PSS), 0.203 μs
(PEDOT:PSS:CH3OH), 0.182 μs (PEDOT:PSS:EtOH), and 0.226 μs
(PEDOT:PSS:IPA). After adding EtOH to PEDOT:PSS, the device
exhibits the shortest τextract and suitable τ lifetime as compared to the
other OSCs, indicating reduced carrier loss and effective extraction.

FDDLAS was used to obtain the vertical distribution
information of the donors and acceptors in the OSCs to analyze
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FIGURE 4
(A–D) Exciton generation maps along the vertical directions of the ITO/HTL/PM6:Y6/PNDIT-F3N/Ag devices; the unit of the scale bar is
“nm−3 nm−1 s−1.” The ETL and HTL stand for the electron transport layer and hole transport layer, respectively.

the effects of the HTL on the vertical gradient in the active
layer (Bu et al., 2016; Wang et al., 2019). The FDDLAS data
of various PM6:Y6 films with different HTLs are shown in
Supplementary Figure S4. Furthermore, the vertical distributions
of PM6 and Y6 were extracted by fitting the FDDLAS data
with the absorption values of the PM6 and Y6 films, as
displayed in Figures 3A–D. It is observed that the HTLs are
able to adjust the composition distributions of the PM6:Y6
film in the top (0–30 nm) and bottom (90–100 nm) regions.
Concretely, the proportions of PM6 in the active layers of the
films near the HTL interfaces were 52.22% (PEDOT:PSS), 54.72%
(PEDOT:PSS:CH3OH), 66.89% (PEDOT:PSS:EtOH), and 51.38%
(PEDOT:PSS:IPA). The PEDOT:PSS:EtOH/PM6:Y6 structure thus
achieves the highest PM6 content near the HTL interface and
an optimal Y6 content near the electron transport layer (ETL)
interface, which is conducive for enhancing hole transfer and

reducing charge recombination at the interface between the active
layer and electrode.

By combining the optical interferences of the different layers
in the device, the exciton distribution profile was also extracted
from the FDDLAS data based on the modified optical transfer
matrix model (Figures 4A–D) (Bu et al., 2016; Gao et al., 2017).
It can be seen that almost all the excitons generated by the
PM6 donor (absorption at 500–620 nm) are distributed within
the depth range of 0–50 nm for all sample films. However, this
phenomenon is modestly different for the excitons produced by
the Y6 acceptor in the blend film. For the PM6:Y6 films based on
the PEDOT:PSS, PEDOT:PSS:CH3OH, and PEDOT:PSS:IPAHTLs,
significant numbers of the excitons generated by the Y6 acceptor
(absorption at 620–900 nm) were observed on the surfaces of the
blend films near the ETL regions (depth at 0–10 nm). This implies
that the free holes generated after exciton separation must travel a
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FIGURE 5
(A-D) Atomic force microscopy height images of the ITO substrates modified by different HTLs.

greater distance to reach the HTL interface, which could damage
the efficiency of electron transport. When EtOH was added to
PEDOT:PSS, the exciton-rich region near the surface generated by
Y6 shifted from the top to the middle region in the blend film,
indicating ameliorative transport of the free electrons generated by
exciton separation.

To study the influences of the alcoholic solvents on the
morphology of PEDOT:PSS in greater depth, the height images of
the ITO/HTL films were tested by atomic force microscopy (AFM)
using the tapping mode. As shown in Figure 5, the root mean-
squared (Rq) values of the heights in these ITO/HTL films are
1.54 nm (PEDOT:PSS), 1.43 nm (PEDOT:PSS:CH3OH), 1.39 nm
(PEDOT:PSS:EtOH), and 1.48 nm (PEDOT:PSS:IPA). These results
indicate that the use of alcoholic solvents can reduce the roughness
of PEDOT:PSS and facilitate good interfacial contact with the
active layer.

4 Conclusion

In this study, we propose a method of improving the
photovoltaic performances of OSCs using diluted PEDOT:PSS
with alcoholic solvents as the HTLs. The PCEs of the PM6:Y6
devices with alcohol-modified PEDOT:PSS as the HTLs are
17.94% (PEDOT:PSS:CH3OH), 18.13% (PEDOT:PSS:EtOH),
and 17.86% (PEDOT:PSS:IPA), which are higher than that
of OSCs based on the traditional PEDOT:PSS (17.42%).
The optimal photovoltaic performance of the device with
the PEDOT:PSS:EtOH HTL was attributable to the smooth
surface morphology and high PM6 content near the HTL
interface, which could achieve a suitable carrier lifetime and fast
charge extraction. This study shows that diluting PEDOT:PSS
with alcoholic solvents is an effective method of deriving
high-efficiency OSCs.
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