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To address the challenges related to lengthy construction period, complex
maintenance requirement, and the elevated risk of shrinkage cracking
associated with cast-in-place UHPC reinforcement of orthotropic steel bridge
decks. This paper proposes a novel solution that prefabricated ultra-high-
performance concrete (UHPC) slab with epoxy bond connection is used as a
reinforcement layer for orthotropic steel bridge decks. Four sets of bending
tests on composite bridge deck were carried out to compare the flexural
performance of composite bridge decks under different joint forms and loading
patterns. The results indicate that the precast UHPC decks delaminated from
the epoxy bonding layer without failure of the epoxy layer itself in all cases.
The positive bending capacity of the jointless composite bridge deck is
approximately 27.67 kN, while the negative bending capacity is around 16.58 kN.
For the composite bridge deckwith epoxy adhesive joints (EA-J-Ln), the negative
bending capacity is 2.54 kN, and the negative bending capacity of the joint area
reinforced with carbon fiber cloth (EA-JC-Ln) is increased to 4.17 kN. Therefore,
the use of carbon fiber cloth can significantly improve the bending resistance of
the joints. Finally, numerical model of the composite deck based on Cohesive
Zone Model (CZM) was established, validating the applicability of this simulation
method in the novel composite bridge deck.

KEYWORDS

ultra-high-performance concrete (UHPC), bridge deck joints, epoxy adhesive, flexural
performance, numerical simulation

1 Introduction

Ultra-high-performance concrete (UHPC) is an advanced construction material
known as its high strength, high ductility and excellent durability (Du et al., 2021;
2022; Jia et al., 2023). It is widely used in fields such as bridge structures, house
construction, maintenance and reinforcement, etc (Shao et al., 2018; Wang et al., 2021;
Zhang Z. et al., 2023; Zou et al., 2023b). It is worth noting that concrete shrinkage can
significantly impact the long-term performance of NC structures (Hung et al., 2021;
Men et al., 2023). However, this influence can be mitigated in UHPC components
treated with steam curing (Yoo et al., 2014a; 2014b), enabling the rapid achievement of
desired high strength within approximately 72 days. Therefore, UHPC is an exceptional
material for prefabricated structural components, which can saved time costs (Zhang et al.,
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2022; Benedetty et al., 2023) and provide higher strength, superior
durability, and lower life-cycle costs (Wang et al., 2021; Fang et al.,
2022; Jia et al., 2023).

Shear studs, one of the commonly used connecting components
between orthotropic steel bridge deck and UHPC (Jiang et al.,
2022), are widely used in composite structures due to their
convenient installation (Fang et al., 2022), simple load transferring
pathway (Hu et al., 2023), and cost-effectiveness, among other
characteristics (Shi et al., 2022; Bu et al., 2023). However, the
extensive use of shear studs inevitably introduces welding defects
and residual stresses (Khorramian et al., 2017; Ding et al., 2023;
Liu et al., 2023), which may pose inconvenience during the
later disassembly or replacement of the structure (Li Y. et al.,
2023). Furthermore, the availably shortest height of shear
studs in the market is currently 35 mm (Shao et al., 2018),
thereby limiting the development of ultra-thin UHPC panels
(Bu et al., 2023; Leng et al., 2024).

In the field of PrefabricatedConcrete Segmental Bridges (PCSB),
the concept, development, and global acceptance of segmental
structures represent one of the most remarkable achievements in
civil engineering (Jiang et al., 2015).The use of prefabricated UHPC
segmental bridge decks can significantly shorten construction
time and improve the efficiency of bridge structure construction
(Yu et al., 2022). However, the inevitable issue of joints between
prefabricated UHPC bridge decks poses a challenge. Figure 1
illustrates the novel assembly of prefabricated UHPC bridge decks
were proposed in this study for reinforcing orthotropic steel bridge
decks. By adopting this system, the limitations posed by shear stud
connections on bridge structures can be effectively overcome, and
the construction of bridge decks using prefabricated components
can be realized. This approach not only reduces construction
time and economic costs but also facilitates the reinforcement
of orthotropic steel bridge decks. Additionally, the connection
between prefabricated UHPC decks and steel bridge decks can be
achieved using an epoxy bonding layer (Zou et al., 2021a). The
joints of prefabricated UHPC bridge decks are divided into wet
joints and epoxy joints. Ahmed and Aziz (2019) demonstrated
through direct shear tests that the shear resistance of epoxy
resin joints is 25%–28% higher than that of wet joints, with
a more uniform distribution of shear stress. Pan et al. (2023)
studied the shear performance of epoxy-bonded joints with large
teeth, considering parameters such as shear teeth. The study
showed that the large teeth has a significant impact on the
shear performance of joints, and proposed relevant specifications
for the teeth size. Connecting prefabricated UHPC decks with
steel plates using epoxy bonding (Sun et al., 2021; Li et al., 2022a)
can reduce damage to the steel bridge deck and satisfy load-
bearing capacity and construction convenience (Pang et al., 2022;
Zhang P. et al., 2023). Additionally, as a rigid connection layer,
bond can significantly reduce interfacial slippage and improve
the overall performance of composite structures (Luo et al., 2012;
Fang et al., 2024). Li C. et al. (2023) conducted experiments and
found that the shear performance using epoxy bonding interface
is related to the bonding area, and summarized various factors
affecting shear bond strength, such as the strength of epoxy
bonding agents, roughness of bonding surfaces, concrete strength,
and temperature. Further research on steel-UHPC components
under bending was conducted byWang et al. (2019) and Duan et al.

(2020), who studied the interfacial bonding performance under
combined bending and bending-shear actions based on three-point
bending and four-point bending tests. The extensive researches on
epoxy bonding interfaces in steel-UHPC composite bridge decks
evident that epoxy bonding interfaces can provide high load-
bearing capacity to meet the requirements of practical engineering
applications.

To investigate the flexural performance of the novel assembly-
type epoxy-bonded prefabricated UHPC bridge deck (Figure 1)
proposed in this study, four sets of bending performance tests
on composite bridge deck were conducted. Joints in the negative
bending moment zone often experience tension, and the bonding
performance of the interface at the joints needs to be verified.
Therefore, the bending performance of epoxy-bonded joints in
prefabricated UHPC panels under different joint forms, positive
bending moment loading, and negative bending moment loading
were discussed. Experimental failure modes, load-deflection curves,
load-interface slip curves, and strain distribution were evaluated to
determine appropriate epoxy bonding joint forms for prefabricated
UHPC panels. Furthermore, a numerical simulation method based
on Cohesive Zone Model (CZM) is proposed for analyzing this
bonding joint.

2 Materials and methods

2.1 Specimen design

To investigate the bending performance of steel- UHPC
composite bridge decks with epoxy bonded joints, four sets of
bending tests were designed. The overall specimen design is
illustrated in Figure 2, consisting of a steel plate, epoxy adhesive,
carbon fiber cloth, and precast UHPC slab. The overall dimensions
are 800 mm in length, 150 mm in width, and 42 mm in height. The
steel plate dimensions are 800 mm in length, 150 mm in width,
and 10 mm in thickness. The precast UHPC slab dimensions are
800 mm in length, 150 mm in width, and 30 mm in thickness. The
epoxy bonded layer dimensions are 800 mm in length, 150 mm
in width, and 2 mm in thickness, and the carbon fiber cloth
dimensions are 150 mm in length, 20 mm in width, and 2 mm in
thickness. To simulate the actual joints between precast UHPC slabs
in bridge structures, two sets of specimens with 2 mm thick epoxy
bonded joints were designed, and one set was reinforced with a
20 mm width carbon fiber cloth in the joint area. The specimens
without joints were subjected to both positive and negative bending
moments, while the specimenswith joints were subjected to negative
bending moments. All precast UHPC slabs had smooth surfaces,
and epoxy bonded joints were used to naturally bond the precast
UHPC slabs to the steel plates. Specific specimen parameters are
detailed in Table 1.

2.2 Material properties

2.2.1 UHPC and steel
The mixture proportions for the UHPC raw materials used

in the experiments are provided in Table 2. The UHPC mix
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FIGURE 1
OSD-UHPC epoxy bonding layer connection solution.

TABLE 1 Test specimen parameters.

Specimen number Joints Reinforcement type Loading mode Number of specimens

EA-Lm - - Positive bending moment 3

EA-Ln - - Negative bending moment 1

EA-J-Ln Rectangular joint - Negative bending moment 3

EA-JC-Ln Rectangular joint Carbon fiber cloth Negative bending moment 3

The specimen identification follows the naming convention of interface type + joint type + loading mode + loading step. EA represents the epoxy adhesive interface, J represents the mid-span
adhesive joint, JC represents the joint reinforced with carbon fiber cloth, Lm represents positive bending moment loading, and Ln represents negative bending
moment loading.

includes a volume fraction of 3% of straight steel fibers (yield
strength greater than 1,200 MPa) with a diameter of 0.12 mm
and a length of 8 mm. The manufacturing process of UHPC is
as follows: first, the dry materials are mixed according to the
proportions in Table 3, and then they are dry mixed in a mixer
for 2 min to ensure even mixing of the dry ingredients. After that,
water and a water-reducing agent are added evenly and mixed for
1 min. Once the dry materials are thoroughly mixed with water
and the water-reducing agent, steel fibers are evenly sprinkled
and mixing continues for 6 min to complete the preparation of
UHPC. Additionally, the strength grade of steel used for the
specimens was Q345.

UHPC and steel were tested according to the standards
“High-Performance Concrete” (GB/T31387-2015) (GB/T31387-
2015 (General Administration of Quality Supervision, 2015))
and “Metallic Materials - Tensile Testing - Part 1: Method of
Test at Room Temperature” (GB/T 228.1-2010) (GB/T 228.1-
2010 (General Administration of Quality Supervision, 2010)),
respectively. The schematic representation of the tests and the
material properties are shown in Figure 3 and Table 4, respectively.
In the table, fy, fu, and Es represent the yield strength, ultimate
strength, and elastic modulus of Q345 steel. fc, ft , and Ec
represent the compressive strength, tensile strength, and elastic
modulus of UHPC.

TABLE 2 Specific mix proportion of UHPC.

Component Weight (kg) Ratio of weight (%)

Dry material 100.000 82.09

Steel fiber 12.232 10.04

Water reducer 0.672 0.55

Water 8.916 7.32

Total 121.82 100

2.2.2 Epoxy binder and carbon fiber cloth
The epoxy adhesive used is CBSR-A/B Steel Filling Adhesive

produced by Cabon Technology Group Co., Ltd. The primary
components are the base agent CBSR-A and the hardener CBSR-
B, with a material weight mixing ratio of 2:1. According to
the “Test Methods for Properties of Resin Castings” (GB/T
2567-2021) (Test methods for properties of resin casting body:
GB/T 2567-2021) ([in Chinese]), tensile and compression
tests on the epoxy adhesive are conducted using an electronic
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FIGURE 2
Test specimen construction details (units: mm). (A) Specimen of EA; (B) Specimen of EA-J; (C) Specimen of EA-JC.

universal testing machine. The mechanical properties are
detailed in Table 5.

The carbon fiber fabric used in this study was acquired
from Shanghai Yuezi Industrial Co., Ltd. (Shanghai, China).
The fabric is woven from 12K carbon fiber filaments, with a
carbon content of more than 98%, a thickness of 0.167 mm,
and a density of 300 g/cm³. According to the “Code for
acceptance of construction quality of strengthening building
structures, 2010” (GB 50550-2010 ([in Chinese]), tensile tests
on the carbon fiber fabric were conducted using an electronic

universal testing machine. The mechanical properties are
detailed in Table 5.

2.3 Specimen preparation

The precast UHPC slabs were naturally bonded to the steel
plates using an epoxy bonded layer. The specific procedure was
as follows: a) Fabrication of molds and casting of precast UHPC
slabs; b) After casting, the UHPC required 48 h of curing at room
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TABLE 3 Dry material mix ratio of UHPC.

Component Cement Silica fume Quartz sand Quartz powder Water reducing agent Water

Mass ratio 1.000 0.250 1.100 0.300 0.019 0.225

The volume content of steel fiber 3%

FIGURE 3
Steel and UHPC material properties tests. (A) UHPC compressive test; (B) UHPC tensile test; (C) Steel tensile test.

TABLE 4 Material properties of steel and UHPC.

Material fc (MPa) ft (MPa) Ec (GPa)

UHPC 128.5 10.43 44.3

fy (MPa) fu (MPa) Es (GPa)

Q 345 359.5 494.4 202.2

temperature, followed by demolding and 72 h of steam curing at
95°C; c) Cleaning the surface of the steel plates with acetone to
remove all debris and rust; d) Fixing the precast UHPC slabs onto
the steel plates with a 2 mm gap maintained between them; e)
Preparation of epoxy adhesive; f) Injecting the epoxy adhesive into
the 2 mm gap through pre-drilled holes until a small amount of
adhesive overflowed from the edges; g) Curing the specimens at
room temperature for 7 days until the epoxy bonded layer reached its
full strength. The preparation process of the specimens is illustrated
in Figure 4.

2.4 Loading scheme and measurement
method

Figure 5A illustrates the loading method and measurement
point arrangement for the specimens. All composite bridge decks
are subjected to a four-point loading scheme, enabling a pure
bending region of 300 mm at the midspan using a distributing
beam. The load is applied using an electronic universal testing

machine (MTS Exceed E45.205) at a loading rate of 0.01 mm/s.
Displacement sensors D-4 and D-5 are placed 50 mm from the
edge of the composite plate to measure deflections at the supports,
while displacement sensor D-1 was positioned at the midspan
of the specimen to measure midspan deflection. Displacement
sensors S-1 to S-2 are arranged on the edge of the side of
the specimen to measure the slip at the interface between the
UHPC layer and the steel plate. Strain gauges are installed at
the top, bottom, and sides of the midspan region to measure
strains in the UHPC layer and the steel plate within the pure
bending zone.

For specimens subjected to positive bending moment loading,
the UHPC is positioned on top with the steel plate underneath.
Conversely, for specimens subjected to negative bending moment
loading, the arrangement is reversed. The bending tests of the steel-
UHPC composite bridge decks follow the loading scheme used
by Zou et al. (2021b). As shown in Figure 5B, preloading with
an amplitude of 30% of the ultimate load (Pu) was applied three
times to check the potential effects during the loading process.
Subsequently, continuous loading is applied until specimen failure,
with the observation and recording of crack propagation during the
loading process.

3 Results

3.1 Failure mode

The failure characteristics of the specimens under positive
bending moment without joints (EA-Lm) are as follows: as the load
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FIGURE 4
Test specimen fabrication process.

FIGURE 5
Test loading scheme and measurement point arrangement. (A) Specimen loading device and measurement point arrangement; (B) Monotonic
loading process.
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TABLE 5 Epoxy adhesive and carbon fiber cloth material properties.

Material Tensile
strength
(MPa)

Bending
strength (MPa)

Compressive
strength (MPa)

Elastic
modulus (MPa)

CBSR-A/B 62 55.0 70 3,920

Carbon
fiber cloth

2,840 - - 45,300

increases, cracks begin to appear in the pure bending region at
mid-span. When the ultimate load Pu is reached, the UHPC slab
delaminates from the epoxy bonding layer, accompanied by a “bang”
sound. The top of UHPC slab in the pure bending section of the
specimen collapses under pressure. The failure mode of this type
of specimen indicates excellent bonding performance between the
epoxy bonding layer and the steel plate, while the bonding strength
between the smooth UHPC slab and the epoxy bonding layer is
significantly insufficient, resulting in separation of the steel plate
from one side of the UHPC slab. The failure mode of the EA-Lm
specimen is shown in Figure 6A.

The failure mode of the specimens under negative bending
moment without joints (EA-Ln) is shown in Figure 6B. This type
of specimen exhibits UHPC rupture and exposed steel fibers on
the basis of the failure mode of the EA-Lm specimen. After
reaching the peak load Pu, cracks extend upward along the
main crack at mid-span, ultimately resulting in rupture of the
UHPC slab along the mid-span. At the same time, the bonding
strength between the UHPC slab and the epoxy bonding layer is
completely lost, leading to separation between the steel plate and
the UHPC slab.

The failure modes of the specimens under negative bending
moment with joints (EA-J-Ln) and the specimens with joints
reinforced with carbon fiber cloth under negative bending moment
(EA-JC-Ln) are shown in Figures 6C, D, respectively. The failure
characteristics of the two types of specimens are consistent: once
the joint cracks, the cracks continue to extend upward, eventually
leading to delamination of the prefabricated UHPC slab from the
epoxy bonding layer near the joint, while the interface far from the
joint remains intact.

3.2 Load-deflection curve

Figure 7A presents the load-deflection curves for the EA-Lm
specimen, which can be divided into three stages: a) Elastic stage:
Before reaching the ultimate load Pu, the interface of the specimen
remains undamaged, and it is in the elastic stage. During this stage,
the load continues to increase, and the deflection increases slowly. b)
After reaching the ultimate load Pu, there is a sudden failure at the
interface, resulting in a sharp drop in load, indicating irreversible
damage to the interface. c) Continued loading: The upper load is
borne by the steel plate, and the deflection of the specimen continues
to increase, but the load increases slowly. Local fragmentation occurs
in the UHPC layer near the loading point, resulting in bending
failure of the composite bridge deck. The load-deflection curves for

these three types of specimens exhibit a similar trend, and their
ultimate load Pu is approximately 27.67 kN.

The load-deflection curves for the negative bending moment
tests are shown in Figure 7B, including three types of specimens: EA-
Ln, EA-J-Ln, and EA-JC-Ln. It can be observed that the specimen
EA-Ln without joint is capable of resisting external loads under
negative bending moment loading, with an ultimate load Pu of
approximately 16.58 kN. Before reaching the ultimate load Pu, the
composite bridge deck is able to jointly bear the external load,
and a primary crack appears at the mid-span of the UHPC board
and continues to propagate upwards during this process. After
reaching the ultimate load Pu, the UHPC board detaches from the
epoxy bonding layer in the mid-span bending section. As the load
continues to increase, the UHPC board is pulled apart along the
primary crack at the mid-span, eventually the composite function
was lost, and only the steel plate beared the external load.

The load-deflection curves for EA-J-Ln and EA-JC-Ln
specimens exhibit similarities and can be analyzed in three stages:
a) Elastic Stage: During this stage, the load continues to increase
gradually, and the deflection increases slowly, resulting in a straight
upward-sloping curve. The composite bridge deck are jointly
stressed and the interface is intact in this stage. b) Ultimate Load
Pu Stage: When reaching the ultimate load Pu, cracks propagate
upward along the seam near the mid-span. The load experiences
a sudden drop, and the deflection increases rapidly, leading to a
steep decline in the curve. This phase continues until the UHPC
board detaches from the epoxy bonding layer near the seam. c)
After Reaching Ultimate Load: In this phase, the UHPC board and
epoxy bonding layer at the seam have detached. The composite
structure loses its capacity, and all external loads are borne by
the steel plate. Comparing the test results of all specimens, it is
evident that the failure of EA-J-Ln and EA-JC-Ln specimens occurs
at the seam. This indicates that the composite bridge deck has poor
resistance under negative bending moment loading, whereas the
seam-less specimen EA-Ln can effectively resist external loads in
negative bending moment mode. Additionally, the epoxy bonding
layer-bonded composite bridge deck exhibits effective resistance to
external loads in positive bending moment mode. Therefore, in the
design of orthotropic steel bridge decks using prefabricated UHPC
deck combined with epoxy bonding layers, it is recommended to
place the seam at the location where positive bending moments are
generated in the bridge deck. From Figure 7B, it can be observed
that the ultimate load of the EA-JC-Ln specimen is approximately
twice as high as that of the EA-J-Ln specimen. This indicates that
reinforcing the joint area with carbon fiber cloth can enhance its
bending performance.
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FIGURE 6
Specimen damage model. (A) EA-Lm; (B) EA-Ln; (C) EA-J-Ln; (D) EA-JC-Ln.

3.3 Load-slip curve

Figure 8 shows the load-slip curves of the specimens. As shown
in Figure 8A, the load-slip curve of the EA-Lm specimen indicates
that, prior to reaching the ultimate load, the epoxy adhesive
layer ensures an effective connection between the UHPC panel
and the steel plate, with negligible slip occurring at this stage.
Subsequently, upon reaching the ultimate load, the slip at both
ends of the specimen escalates and continues to increase. Larger
slip occurs on the S-1 side, with a maximum slip value of S-1
= 13.9 mm. Hence, a smooth UHPC panel can achieve effective
bonding through the epoxy adhesive layer. The load-slip curves
of the EA-Ln, EA-J-Ln, and EA-JC-Ln specimens, as shown in
Figures 8B, C, are characterized by the fact that the failure of
all three types of specimens occurs at the mid-span joint, and
debonding occurs between the UHPC panel and the epoxy layer

at the joint, resulting in minimal and almost negligible slip at
the ends. The maximum slip value for specimens with only epoxy
joints is S-1 = 0.08 mm. For the EA-JC-Ln specimen, which
was reinforced at the joint with carbon fiber cloth, the slip at
the ends is significantly larger, indicating that the reinforcement
of the joint with carbon fiber cloth enhances the bending
performance of the epoxy joint, with a maximum slip value of only
S-1 = 0.31 mm.

3.4 Strain distribution

The strain distribution curves were drawn after averaging the
values for specimens in the same group. However, the strain
distribution curve for the EA-JC-Ln specimen could not be plotted
due to damage to the strain gauges during initial loading. Figure 9A
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FIGURE 7
Load-deflection curve. (A) Positive bending moment test. (B) Negative bending moment test.

shows the strain distribution curve along the height direction
at mid-span for the EA-Lm specimen. Before the applied load
reaches the ultimate load Pu = 27.3 kN, the strain at mid-span
exhibits a linear distribution. As the load continues to increase,
the strain at mid-span shows an increasingly evident nonlinear
distribution. However, the strain distribution across the mid-span
section always remains linear. The distribution is discontinuous at
the steel-UHPC interface, where both the thin UHPC panel and
the steel plate exhibit a linear strain distribution. Once the ultimate
load Pu = 27.3 kN is reached and the epoxy adhesive layer interface
is damaged, the assumption of plane sections being plane no
longer holds.

Figure 9B depicts the strain distribution curve along the height
direction at mid-span for the EA-Ln specimen. Throughout the
loading process, the strain distribution of the specimen consistently
adheres to the plane section assumption, with the neutral axis
maintaining a constant position as theoretically expected, as shown
in Figure 13B. This is consistent with the low level of interfacial
slip for the EA-Ln specimen shown in Figure 8B. In Figure 9C,
for the EA-J-Ln specimen, when the load is below 2.5 kN, the
strain distribution at mid-span is approximately linear. Before
reaching the ultimate load, the epoxy adhesive interface can
achieve reliable connection between the thin UHPC panel and
the steel plate. After the load exceeds 2.5 kN, sudden extensive
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FIGURE 8
Load-slip curve. (A) EA-Lm interfacial slip curve; (B) EA-J-Ln interfacial slip curve; (C) EA-Ln and EA-JC-Ln interfacial slip curve; (D) Interface slip
measurement point location.

damage occurs at the interface around the joint, leading to a
sharp increase in strain, which indicats that the joint has fractured
and damaged.

4 Numerical simulation

4.1 Finite element models

In this study, a finite element model of the steel-UHPC
composite bridge deck was established using the static analysis
method in ABAQUS. Based on the symmetry of the steel-
UHPC composite bridge deck, a half-model was developed
to improve computational efficiency. The symmetrical plane
is the x-plane. The steel plate, ultra-thin UHPC, and epoxy
adhesive layer were simulated using C3D8R (three-dimensional,
8-node linear solid integrated elements). According to the
experimental results, the bonding behavior between the UHPC

panel and the epoxy adhesive layer was simulated using cohesive
contact properties. The specific finite element model is shown
in Figure 10.

4.2 Material constitutive model

4.2.1 UHPC
The damage and cracking behavior of UHPC can be defined in

ABAQUS by defining the concrete plastic damage (CDP) model.
Its constitutive model (Li et al., 2022b) is shown in Figure 11.
For the elastic parameters of UHPC, the modulus of elasticity
is 42.1 GPa and the Poisson’s ratio is 0.3. The plastic parameters
include the dilation angle, eccentricity, the ratio of biaxial to uniaxial
compressive strength, K, and the viscosity parameter, with values
of 36°, 0.1, 1.16, 0.6667, and 0.0005, respectively. The remaining
parameters are all displayed in the figure.
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FIGURE 9
Strain distribution. (A) EA-Lm strain distribution; (B) EA-Ln strain distribution; (C) EA-J-Ln strain distribution.

4.2.2 Steel
The steel material is primarily referenced from the existing

literature (Cao and Shao, 2019), and the stress-strain curve is
shown in Figure 12. Experimental results indicate that the steel
plate undergoes yielding during the bending failure process of
the composite bridge deck, thus a trilinear hardening elastic-
plastic constitutive model is adopted for simulation. All steel
components have a material strength grade of Q345, with a
yield strength of 387.1 MPa, an ultimate strength of 542.3
MPa, and an elastic modulus of 202.2 GPa based on material
testing results.

4.2.3 Interfaces
The cohesive zone model is applicable for numerical analysis

of the steel-concrete interface (Yin et al., 2019). Complex interface
behaviors can be simulated by the traction-separation relationship
of nodes in the cohesive elements (Ranz et al., 2020). In Figure 13,
the thickness of the interface is much smaller than that of the

composite bridge deck. Therefore, a cohesive contact behavior is
employed to simulate the interface elements of the epoxy bonding
layer. Additionally, referring to previous research, the shear stress-
slip curve is bilinear (Zou et al., 2023a; Fang et al., 2024), suggesting
that the cohesive model should adopt a bilinear stress-separation
relationship. The stress-displacement relationship of the bonding
elements can be determined by a bilinear traction-separation
relationship, achieving the simulation of complex interface behavior
in the local model, as detailed in Table 6.

4.3 Model validation

Figure 14 displays the load-deflection curves for both the EA-
LmandEA-J-Ln specimens (experimental andmodeled). Both types
of specimens exhibit good consistency in their curves. Compared to
the experiment, the finite element model for the EA-Lm specimen
exhibits debonding between the UHPC panel and the epoxy
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FIGURE 10
Introduction to models.

TABLE 6 Cohesion model ontology parameters.

Direction t0n,s,t (MPa) Knn,ss,tt (N/mm3) Gn,s,t (N/mm)

Normal 3.74 174.33 0.06

Tangential I 5.3 209.28 0.1224

Tangential II 5.3 209.28 0.1224

adhesive layer, while for the EA-J-Ln specimen, debonding occurs
at the joint between the UHPC panel and the epoxy adhesive layer,
with the area of failure being consistent. This indicates that the
bending behavior of the composite bridge deck can be simulated by
Cohesive Zone Model (CZM) to represent the bonding between the
UHPC panel and the epoxy adhesive layer. The deviation between
the experimental ultimate load and the model calculated value
is within 5%, demonstrating that the finite element analysis can
accurately simulate the bending behavior of the EA-Lm and EA-J-
Ln specimens.

4.4 Discussion

Figure 15 presents the numerical simulation results of the EA-
Lm and EA-J-Ln specimens. CSDMG is an indicator used to
determine the degree of interface damage. When CSDMG reaches
1, it indicates delamination between the interface layers, and when
its value ranges between 0 and 1, it signifies interface damage.
DAMAGEC and DAMAGET represent the indices for evaluating
compression and tensile damage inUHPC, respectively.Their values
also range between 0 and 1, indicating damage to the UHPCmatrix
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FIGURE 11
Stress-strain relationship of UHPC. (A) UHPC Tensile Constitutive Model; (B) Compresssive stress-strain relationship.

FIGURE 12
Stress-strain relationship of Steel.

when they reach 1. According to Figure 15A, under the ultimate
load Pu = 24.87 kN, there is extensive debonding between the epoxy
adhesive layer and the UHPC panel, rendering them ineffective
in working together. Additionally, significant tensile damage and
minor compressive damage are observed near the loading point on
the UHPC panel, but no destruction occurs. From Figure 15B, it
can be seen that under the ultimate load Pu = 2.45 kN, extensive
debonding occurs between the UHPC panel and the epoxy adhesive
layer near the joint, while the UHPC matrix exhibits only minor
tensile damage and no compressive damage.

5 Conclusion

The following conclusions are drawn.

(1) For specimens using smooth surface UHPC bridge deck
without joints under positive bending loadingmode, the epoxy
adhesive layer interface can provide a load-bearing capacity of
approximately 27.67 kN. However, there is a risk of debonding
between the UHPC panel and the epoxy adhesive layer, which
prevents the full utilization of thematerial properties ofUHPC.
It is recommended to roughen the surface of prefabricated
UHPC panels to ensure effective bonding with the epoxy
adhesive layer.

(2) For specimens containing epoxy glue joints, under the negative
bending moment loading mode, the interface damage first
started at the joint position, and after the joint damage, the
UHPC board close to the joint position and the epoxy adhesive
layer debonded.

(3) Under the negative bending moment loading mode,
the ultimate bearing capacity of the jointless specimen
is 16.58 kN, which is about 6.5 times lower than the
ultimate bearing capacity of the specimen containing
epoxy joints.

(4) The use of carbon fiber cloth to enhance the epoxy glue
joints can effectively improve the bending resistance of the
joints and increase the ultimate bearing capacity by about
2 times. However, the width of the carbon fiber cloth has
a significant impact on the bending performance of the
composite plate joints.

(5) Establishing a numerical model for composite panels
based on CZM can effectively simulate the bonding
behavior between UHPC panels and steel plates. Using
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FIGURE 13
Constitutive model of cohesive element.

FIGURE 14
Model verification. (A) EA-Lm; (B) EA-J-Ln.
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FIGURE 15
Numerical simulation results. (A) EA-Lm; (B) EA-J-Ln.

epoxy adhesive layers to connect steel plates with
prefabricated UHPC bridge deck ensures more uniform
stress transfer at the steel-UHPC interface. Additionally,
the ultra-thin UHPC panel does not fail before interface
failure occurs.
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