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Treatment of large and complex irregular bone defects is a major clinical
challenge in orthopedic surgery. The current treatment includes bone
transportation using the Ilizarov technique and bone cement repair using
the Masquelet technique, but they require long-term manual intervention or
secondary operation. To improve this situation, we compared the different
implanting materials in the literature published in the past 10 years, finding that
glycolic acid copolymer (PLGA) and Calcium sulfate (CaSO4) are appropriated to
be used as synthetic bone materials due to their advantages of easy-availability,
nontoxicity, osteogenic properties and rapid degradation. Meanwhile, the
development of 3D printing technique and devices makes it relatively easier
to synthetize customized bio-mimetic porous scaffolds, thus facilitating the
release of modified protein. In this study, we compounded BMP-2/PLGA
microspheres with polylactic glycolic acid copolymer/CaSO4 (PC) 3D printed
scaffold to improve the osteogenic properties of the scaffold. The result of our
in vitro experiment demonstrated that the prepared PCB scaffold not only had
satisfactory bio-compatibility, but also promoted osteogenic differentiation. This
3D printed scaffold is capable to accelerate the repair of complex bone defects
by promoting new bone formation, suggesting that it may prove to be a potential
bone tissue engineering substitute.
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1 Introduction

Bone defects are one of the most common clinical conditions and can be caused by
trauma, tumors and skeletal abnormalities (Giannoudis et al., 2011). With the development
and prevalence of transportation, the incidence of open fractures caused by high-energy
injuries is increasing and becoming a serious health problem worldwide. Such injuries
often cause complex bone defects, which pose a great challenge for clinical management
(Myeroff and Archdeacon, 2011). Allogeneic bone transplantation, and artificial bone
transplantation are among the othermethods for the treatment of bone defects.However, the
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shortcomings of bone transplantation limit its wider application; for
instance, the current relatively single and fixed clinical bone graft
substitutes are far from adequate for filling and repairing complex
and variable bone defects (Dimitriou et al., 2011). Compared with
simple internal fixation, bone transplantation usually takes months
to complete numerous surgeries including installing and removing
the bone material, or using an external fixator for the large bone
defect, which often requires a relatively long rehab process, while
the recovery of limb function may not be fully satisfied. As the
currently available materials and techniques cannot meet all clinical
requirements for large bone defects, there is an urgent need to
search for a biomaterial that can meet the needs of various types of
bone defects.

In recent years, three-dimensional (3D)-printed technology
has received increasing attention in bone tissue engineering,
knowing that it can obtain porous scaffolds with certain mechanical
properties through precise parameter design (Kumar et al., 2011).
Such scaffolds can not only meet a variety of bone defect filling
requirements at the macroscopic level but also provide a good
microenvironment for bone tissue regeneration and promote
bone healing by simulating the natural human bone through
precise parameter design (Lutzweiler et al., 2020). A variety of
materials have been developed and used for 3D-printed scaffolds,
including natural polymers (Liu et al., 2019; Farris et al., 2022),
metals (Zadpoor, 2019; Ghorai et al., 2022), and ceramics (Ma et al.,
2018; Eugen et al., 2023). However, limited by the materials
themselves, the disadvantages of single-material scaffolds are also
very obvious, such as the slow degradation of metal scaffolds or
inadequate osteogenic induction (Helaehil et al., 2021). Therefore,
researchers have focused on composite materials, hoping to solve
the disadvantages of single materials through complementary
advantages (Turnbull et al., 2018). PLGA is a biodegradable
biopolymer approved by the US Food and Drug Administration
(FDA) due to its good biocompatibility (Kumari et al., 2010),
excellent processing properties (Lee et al., 2016), degradability and
suitable mechanical strength. In addition, PLGA scaffolds can be
loaded with various nanomaterials and a variety of bioactive factors
to promote the regeneration of bone defects (Han et al., 2019). So,
it is considered as one of the most promising materials for bone
defect repair. In our previous study (Liu et al., 2022), we synthesized
the PLGA/CaSO4 scaffolds 3D-printed scaffolds (PC) with different
ratios, and found that the incorporation of CaSO4 with 20% wt
in PLGA not only improved the mechanical properties of the
scaffold but also enhanced its in vitro osteogenic effect (Liu et al.,
2022), demonstrating that it is a promising material for bone repair.
However, it is difficult to achieve sufficient bone defect repair with a
single functional scaffold. Bone morphogenetic protein-2 (BMP-2)
is a potent bone-inducing cytokine from the transforming growth
factor-β (TGF-β) family and has currently been commonly used
as a protein bone graft alternative (Chen et al., 2004). It is the
most important and widely used bone growth factor because it
promotes the early enrichment of osteogenic precursor cells at the
site of bone injury, and their differentiation and mineralization
into mature osteoblasts, thereby facilitating osteogenic repair
(Zanotti et al., 2008; Kimura et al., 2010). However, it has the
disadvantages of a short half-life, high price, and easy inactivation in
vivo (Xu et al., 2019). Studies have shown that PLGA microspheres,
as microcarriers for drugs or proteins, can protect the activity of

proteins and achieve a slow release of proteins (Wei et al., 2006;
Park et al., 2008).

In this study, we wrapped the BMP-2 into the PLGA to obtain
microspheres and then composited them on the surface of PC
scaffolds to prepare PCB scaffolds. Our experiment showed that the
osteogenic ability of the PCB scaffolds was superior to that of the PC
scaffolds in vitro (Figure 1). Therefore, PCB scaffolds may provide
a new idea for the treatment of bone defects, especially large and
complex defects.

2 Materials and methods

2.1 Scaffold preparation

2.1.1 Synthesis of 3D polylactic glycolic acid
Copolymer/CaSO4 scaffolds (PC)

The PLGA/CaSO4 scaffolds were synthesized by using a
biological 3D printer (Livprint® N series, Medprin, Guangzhou,
China). PLGA and CaSO4 (20 wt% of the quality of PLGA) powder
were added into the beaker and then stirred evenly at 200°C. The
mixture was then injected into the 3D printer and the scaffold
was printed according to the set parameters of the previous study
(Liu et al., 2022). The nozzle temperature was 180 °C, and the
temperature of supporting substrates during FDM printing was
120 °C.

2.1.2 Synthesis of BMP-2/PLGA microspheres
BMP-2/PLGA microspheres were prepared using a double

emulsion method (Li et al., 2022). 100 mg PLGA was dissolved
in 2.5 mL dichloromethane (DCM, Macklin, China) and 0.2 mL
BMP-2 solution (20 mg/mL) was added to the PLGA solution.
The primary emulsion (W/O) was obtained after 30-se swirling,
slowly dripped into 20 mL polyvinyl alcohol (PVA) solution (1%
w/v), and swirled again for 2 min to form a double emulsion
(W/O/W). The double emulsion solution was stirred at room
temperature for 12 h in a fume cabinet to evaporate DCM.
BMP-2/PLGA microspheres were collected by centrifugation
(4,000 rpm, 5 min), washed with deionized water 3 times, and
freeze-dried.

2.1.3 Synthesis of BMP-2/PLGA microspheres
modified PLGA/CaSO4 scaffolds (PCB)

Dopamine hydrochloride (2 mg/mL) and the PB scaffolds were
added to the Tris buffer solution (pH = 8.5). After being stirred
for 48 h, they were taken out and placed in a dehumidifier to dry.
Then, these scaffolds were placed into PLGA microspheres solution
(4 mg/mL) and mixed in a decolorization shaker for 4 h. Finally, the
scaffolds were dried in a dehumidifier and PCB scaffolds.

2.2 Characterization of scaffolds

2.2.1 Scanning electron microscopy (SEM)
analysis

The surface morphology and pore size of the scaffolds were
evaluated by SEM. All samples were dried under vacuum, coated
with gold, and then the sample placed on the sample stage of
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FIGURE 1
Schematic illustration of the preparation of scaffolds and osteogenesis in vitro.

SEM, using SEM (EM-30, COXEM, South Korea) to observe
the structure, surface, and compression fracture morphology of
the samples.

2.2.2 X-ray diffractometer (XRD) analysis
X-ray diffraction (DMX-220, Rigaku, Tokyo, Japan) was

performed to investigate the scaffolds using Cu Kα X-rays generated
at 40 kV and 30 mA at a diffraction angle (2θ) from 10° to 60° with
a step size of 0.05°/step and an interval of 0.2 s/step.

2.2.3 Contact angle
Thehydrophilicity of each scaffoldwasmeasured using a contact

anglemeasurement system (ASUMIGIKENLimited, Tokyo, Japan).
A droplet of deionized water was deposited on the scaffold. Then,
the image of the static liquid deposition was obtained within a
few seconds and the contact angles were measured. Three samples
were assessed for each group to ensure reproducibility and the
average value.

2.2.4 Encapsulation efficiency of BMP-2/PLGA
microspheres and in vitro release kinetics of PCB
scaffolds

10 mg BMP-2/PLGA microspheres were added to a mixture
of 0.9 mL NaOH (1 mol/L) and 0.1 mL PBS, shaken at room
temperature for 2 h, and neutralized by addition of 1 mL 0.9 mol/L
HCl. The BMP-2 concentration in the solution was detected using a
human BMP-2 ELISA kit (Abcam) according to the manufacturer’s
instructions. The encapsulation efficiency was calculated using the
following formula (1):

Encapsulationefficiency = Actualprotein loading

/theoreticalprotein loading× 100%
(1)

Subsequently, the sustained release of BMP-2 was measured
as follows: 10 mg BMP-2/PLGA microspheres coated on the
PCB scaffold were soaked in 2 mL PBS and incubated at 37°C
and 100 rpm. At the set time intervals, 1 mL supernatant was

collected by centrifugation and the BMP-2 content in the
supernatant was determined using the human BMP-2 ELISA
kit. 1 mL fresh PBS was added every time after the supernatant
was collected.

2.2.5 Degradation of scaffolds
Thedegradation and pH values of the scaffolds were investigated

over 6 weeks in simulated body fluid (SBF). Initially, the scaffolds
were weighed (m1) and subsequently immersed in centrifuge tubes
containing 10 mL SBF at 37°C. After rinsing the scaffolds with
distilled water, they were dried until reaching a stable weight
and then re-weighed (m2) over 6 weeks. The degradation rate
was calculated using the formula: (m1–m2)/m1×100%. The pH of
the degradation medium was measured using a pH meter from
Mettler Toledo.

2.3 In vitro study

2.3.1 Cell proliferation and biocompatibility
Cell CountingKit-8 (CCK-8)was used to assess the proliferation

of MC3T3-E1 cells co-culture with the sterile scaffolds. 1 mL
suspension of cells (1×104/mL) was seeded in 24-well plates in
different scaffolds and incubated. After co-culture for 1, 3, and 5
days, 500 μL CCK-8 solution (10%) was added to each well for
continuous incubation for 1 h. Then, optical density (OD) was
measured at 450 nm using a microplate reader (Multiskan GO,
Thermo Scientific, USA).

2.3.2 Live/dead staining
The cytotoxicity of scaffolds was also determined by live/dead

staining classically. MC3T3-E1 cells were co-cultured with scaffolds
as described above. On days 1, 3, and 5, each well was washed
with PBS gently after removing the medium, and stained with 1 μM
calcein-AM (Beyotime Biotechnology, China) and 2 μM propidium
iodine (PI) for 30 min.The stained sampleswere then analyzed using
a fluorescence microscope (Leica, Germany).
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2.3.3 Hemolysis test
Healthy human blood was collected in anti-coagulant tubes and

then 8 mL of bloodwas taken and dilutedwith around 10 mL of PBS.
Then 0.2 mL of this diluted blood was added to 5 mL of PBS and
further scaffolds were added. PBS and deionized (DI) water added of
0.2 mL were set as the negative and positive control. Then these test
samples along with controls were incubated at 37°C for 30 min and
centrifuged at 3,000 rpm for 10 min. The supernatant was collected
and its optical density (OD) wasmeasured at 545 nm.The hemolysis
ratio (HR) was calculated as follows:

HR (%) = (ODsample‐ODnegativecontrol)

/(ODpositivecontrol‐ODnegativecontrol) × 100

2.3.4 Alkaline phosphatase (ALP) staining
For ALP staining, MC3T3-E1 cells were seeded in a 6-well

plate at a density of 1 × 104 cells per well and incubated with
different scaffolds for 7 days. ALP activity was assayed using the
BCIP/NBT alkaline phosphatase color development kit (Beyotime,
China) according to themanufacturer’s instructions. After removing
the ALP stain working solution and washing with PBS, the
stained MC3T3-E1 cells were visualized with an inverted research
microscope (Leica, Germany).

2.3.5 Alizarin red S staining (ARS)
After 14 days culture as described above, the medium was

removed and the cells were washed with PBS 3 times, fixed with 4%
paraformaldehyde for 30 min, washed twice with double-distilled
water (ddH2O), and stained with ARS solution (Solarbio, China) for
2 h. After removing the dye solution and washed with ddH2O three
times, cells were observed under a microscope (KEYENCE, VK-
X1,100, Tokyo, Japan). To quantitatively evaluate the coloration, 10%
cetylpyridinium chloride solution was added to each scaffold and
incubated for 2 h.The solution was transferred to an Eppendorf tube
and centrifuged at 13,000 rpm for 15 min. From each group, 100 μL
solution was collected, placed in a 96-well plate, andmeasured using
a microplate reader at 620 nm.

2.3.6 Expression of osteogenic genes
The osteogenic gene expression level of MC3T3-E1 was

evaluated by real-time quantitative polymerase chain reaction
(RT-qPCR). After 7 and 14 days of culture, total RNA was
extracted using TRIzol reagent (AG, China), and then reverse
transcribed into cDNA using a reverse transcription kit (AG,
China). The gene expression of osteogenesis-related factors BMP-
2, COL-1, and OCN was quantitatively detected using SYBR Green
qPCR kit (AG, China), using the housekeeper gene GAPDH
as a control. The primer sequences for all genes are listed in
Supplementary Table S1.

2.3.7 Immunofluorescence (IF) staining
The expression of BMP-2 was further evaluated by IF staining.

Briefly, after 14 days of culture, MC3T3-E1 was fixed with 4%
paraformaldehyde, washed with PBS 5 times, and blocked with
5 wt% BSA in PBS at 37 °C for 30 min. After adding 200 μL rabbit
anti-Rat BMP-2 IgG antibody (Abcam, UK, diluted 1:200 in PBS),
samples were incubated at 37 °C for 12h, washed with PBS again

5 times, added with 200 μL goat anti-rabbit IgG antibody (Abcam,
UK, diluted 1:500 in PBS), and incubated at 37 °C for 1 h. After
five washes with PBS, the nucleus was stained with 4,6-diamino-
2-phenyl indole (DAPI) for 5 min at room temperature. Finally,
the stained cells on the samples were observed using an inverted
fluorescence microscope (Nikon, Japan).

2.4 Statistical analysis

The analysis was performed by SPSS (V20. IBM Corp). The
experimental results are expressed as the mean ± standard deviation
(SD). The significance level was determined by an analysis of
variance. Statistical significance was set at p < 0.05.

3 Results and discussion

3.1 Synthesis and characterization of
scaffolds

PLGA microspheres are often used as microcarriers for drugs
or proteins to protect the activity of proteins and achieve slow
release of proteins (Wei et al., 2006; Park et al., 2008). In this study,
we used a strategy of PLGA microspheres encapsulating BMP-
2 to achieve a long-lasting slow release of bone morphogenetic
protein (BMP-2) to better promote bone defect repair. It was
found that the BMP-2/PLGA microspheres were spherically shaped
with a smooth and rounded surface and a mean particle size of
approximately 182 ± 54.68 nm, with 72.18% of the microspheres
ranging from 150–220 μm in size (Figure 2A). The encapsulation
rate of the BMP-2 microspheres was 48.55% ± 5.67%. Subsequently,
we used the classical method to synthesize the PC 3D-printed
scaffolds (Ye et al., 2022). As reported in our preliminary study
(Liu et al., 2022), the PC scaffold was a typical plastic material,
and its stress-strain was improved markedly compared with the
pure PLGA material. When the content of CaSO4 was 20%wt, it is
breaking strength and yield strength reached themaximum,with the
best compressive strength and shore hardness, close to the natural
cancellous bone, which is a more ideal scaffold material for bone
tissue engineering. To further improve the osteogenic effect of the
scaffolds, we compounded BMP-2/PLGA microspheres on the PC
scaffolds. The electron micrographs of PC and PCB scaffolds are
shown in Figure 2B. It could be found that all scaffolds had a regular
3D porous structure, which facilitates the growth of osteoblasts
and blood vessels (Swanson et al., 2021). In particular, when the
BMP-2/PLGA microspheres were compounded with PC scaffolds,
the scaffold surface became rougher, which was more favorable
to the adhesion of osteoblasts (Chen et al., 2018; Rahmati et al.,
2020).

The XRD patterns (Figure 2C) of the PC scaffolds showed
characteristic crystalline peaks at 15, 25, 30, 31, and 48°
corresponding to (200), (020), (002), (102), and (302) planes of
CaSO4 (Sindhura Reddy et al., 2014; Zhu et al., 2022), indicating
the successful doping of the CaSO4 into the PC scaffolds. However,
when the BMP-2/PLGA microspheres were compounded with
the scaffolds, all the characteristic absorption peaks of CaSO4
disappeared, indicating that the microspheres were successfully
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FIGURE 2
Characterization of scaffolds. (A) SEM images of the BMP-2/PLGA microspheres. (B) SEM images of the scaffolds. (C) XRD analysis of the scaffolds. (D)
Release kinetics of the PCB scaffolds in vitro. (E) Contact angle measurement of the scaffolds.

coated on the printed filament surface of the PC scaffolds, resulting
in a weakened signal for detection. The surface hydrophilicity of
the scaffolds was evaluated by the water contact angle test. The
encapsulation rate of the BMP-2 microspheres prepared in this
study was tested as 67.13% ± 9.43%. The release profile of BMP-
2 from the PCB scaffolds in vitro is shown in Figure 2D. The
release of BMP-2 on the first day was approximately 21.36% and
the subsequent release rate gradually slowed down to approximately
58.92% ± 3.14% by day 30. It was found that with the degradation of
PLGA, BMP-2 was still slowly released after more than 30 days, thus
effectively and continuously promoting osteogenic differentiation.
The contact angle images of the scaffolds are shown in Figure 2E.
It was found that the addition of BMP-2/PLGA microspheres
reduced the contact angle of the scaffold and therefore the PCB
scaffold was more hydrophilic, knowing that hydrophilicity plays
an important role in protein uptake and cell proliferation (Liu et al.,
2018).

The degradation performance of materials holds significant
importance in bone tissue engineering.The degradation products of
materials should be non-toxic to surrounding tissues and not induce
allergic reactions or rejection. Excellent degradation performance
ensures that the material can harmoniously coexist with biological
tissues in the body. The degradation rate of materials should match
the rate of new tissue formation. If the degradation rate is too
slow, the implant may persist for an extended period, affecting the
development of new tissues. Conversely, if the degradation rate
is too fast, the material may lose its function before new tissue
formation occurs. We found that the scaffolds degraded slowly in
the first 2 weeks (Figure 3A). The early and slow degradation of the
scaffold can provide long-term stable support after implantation,
which is crucial for initial bone tissue formation. The existence of
the scaffold can simulate the structure of natural bone and provide
support during the process of bone cell adhesion, proliferation, and
differentiation. In addition, the slow early degradation of the scaffold
can also allow new bone tissue to grow on its surface, while the

mechanical properties of the scaffold gradually weaken.This smooth
transition helps avoid stress concentrations and promotes adaptive
growth of the new bone tissue. After 2 weeks, the degradation rate
of the scaffold accelerated and was degraded at 6 weeks. As shown
in Figure 3B, after 6 weeks of soaking in SBF solution, the pH value
of the scaffold showed a slowly decreasing trend, and there was no
significant difference in the change of culture medium pH during
degradation.

3.2 In vitro biocompatibility of the scaffolds

Biocompatibility is one of the most important functions of
biomaterials, which requires that the materials have no damage
to cells and tissues (Wang et al., 2020). In our previous study, we
used the CCK-8 assay to test the cytotoxicity and proliferation of
the scaffolds, finding that PC scaffolds had good biocompatibility
in vitro (Liu et al., 2022). First, we verified the biocompatibility of
the scaffolds again using live/dead cell staining (Figure 4A). The
number and proportion of live cells (green) and dead cells (red)
were similar in both PC and PCB scaffold groups compared with
the control group. Then, we further explored the effect of the
scaffolds on cell proliferation in the two groups (Figures 4B, C) and
found that after co-culturing the MC3TE-E1 cells with scaffolds
for 1, 3 and 5 days, cell proliferation was the same in each group,
indicating that none scaffold had significant adverse effects on cell
proliferation, which is consistent with the results of live/dead cell
staining experiment.These results show that our scaffolds have good
biocompatibility in vitro and can meet the basic requirements for
bone tissue engineering scaffolds. The hemolysis test is another
essential parameter to assess the safety of biological materials,
reflecting the rejection of the implant by the blood in the body
(Wang et al., 2019). As shown in Figure 4D, the supernatant of the
positive control group was red due to the rupture of erythrocytes
in response to hemolysis. In contrast, the supernatant of the
other two groups of stents and the negative control group was
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FIGURE 3
Degradation of the scaffold. (A) Weight of scaffolds after degradation in vitro. (B) pH value in the simulated body fluid.

FIGURE 4
Biocompatibility of the scaffolds in vitro. (A) Live/dead staining of preosteoblasts after incubation with the scaffolds. Scale bar = 200 μm. (B) Cell
viability of preosteoblasts after incubation with scaffolds. (C) The proliferation of preosteoblasts after 1, 3, and 5 days of incubation with the scaffolds
(determined by a CCK-8 assay). (D) Hemocompatibility test and hemolysis rate of the scaffolds. (E) The hemolysis ratio was measured at 545 nm. Data
are presented as the mean ± SD (∗p < 0.05,∗ ∗p < 0.01,∗ ∗ ∗p < 0.001; n = 3).

a clarified solution, and the hemolysis rate was less than 0.5%
(Figure 4E), proving that all stents had a negligible effect on
erythrocytes.

3.3 In vitro osteoinductivity of the scaffolds

Bone tissue engineering scaffolds should have good
osteoconductivity and osteoinductivity to facilitate the repair of
bone defects (Tang et al., 2016). Among them, osteoinductivity
refers to its ability to contribute to osteogenic differentiation
and is an important index for the performance evaluation of
bone repair materials (Meijer et al., 2007). In this study, we
used ALP staining, alizarin red staining, cellular IF analysis,

and osteogenesis-related gene expression levels to detect the in
vitro osteoinductivity of the scaffolds. ALP is an exonuclease of
osteoblasts, and its expression activity is an important marker of
osteogenic differentiation (Sun et al., 2018). Figure 5A shows ALP
staining of MC3T3-E1 cells after 7-day co-culture, demonstrating
that ALP staining in the PC scaffold group was not significantly
deeper than that in the control group, both were lavender in
color, and a small number of calcium crystals are visible in the
field of view. However, the staining of the PCB scaffold group was
significantly deeper, with a dark purple color, and a large distribution
of calcium crystals could be seen microscopically. This result
suggests that the released BMP-2 protein significantly promoted
the osteogenic differentiation of MC3T3-E1 as the microspheres
were compounded.
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FIGURE 5
In vitro osteogenesis of the scaffolds. (A) ALP staining of preosteoblasts after 7-day culture with the scaffolds. Scale bar = 400 μm. (B) Alizarin red S
staining of the extracellular calcium nodules in preosteoblasts cultured with the scaffolds for 14 days. Scale bar = 400 μm. (C) Semi-quantitative
analysis of alizarin red S staining. Cetylpyridinium chloride solution. The stained extracellular calcium nodules were dissolved in a cetylpyridinium
chloride solution. (D) The relative expression of ontogenetic genes of preosteoblasts cultured with different scaffolds. (E) Representative images of IF
staining of BMP-2. Data are presented as the mean ± SD (∗p < 0.05,∗ ∗p < 0.01,∗ ∗ ∗p < 0.001; n = 3).

Calcium nodules are a product of late osteogenic differentiation,
which can be detected by binding specifically to an alizarin red
stain to form a dark red substance (Lee et al., 2020). The result of
alizarin red staining of each scaffold group showed that the number
of calcium nodules in the PCB scaffold groups was significantly
increased compared with the scattered calcium nodules in the
control group and PC group (Figure 5B). Microscopically, MC3T3-
E1 cells produced a large number of calcium crystals after the
addition of BMP-2/PLGAmicrospheres, which gradually fused into
clusters and were deeply stained by the staining solution, indicating
that the osteogenic differentiation of cells in the PCBgroupwasmore
advanced. Semi-quantitative analysis showed that OD in both PC
and PCB groups was higher than that in the control group, being the
highest in the PCB group (Figure 5C). These data demonstrate that
PT/CA/Cu scaffolds possess excellent osteoinductivity.

The expression levels of osteogenic-related genes also directly
reflect the level of osteogenic differentiation of cells. We examined
the expression levels of BMP-2, COL-1, and OCN genes using qt-
PCR, and the results are shown in Figure 5D.ThemRNA expression
levels of all three genes showed similar trends, with the highest
expression in the PCB group, followed by the PC group, and the
lowest expression in the control group. Gene expression levels in
the PC group were only upregulated at day 14 except for the BMP-
2 gene, which might be related to the release of more calcium from
scaffold degradation. In contrast, the expression of the remaining
PCB groups was significantly higher at both 7 and 14 days compared
with the control group, demonstrating a stronger osteogenic effect.
It is interesting to find that the BMP-2 gene was most upregulated
in the PCB group at day 14 compared with COL-1. COL-1 expresses
the type I collagen, which is a major component of the extracellular
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FIGURE 6
Representative images of immunofluorescence staining of BMP-2. Scale bar = 50 μm.

matrix and could direct calcium salt deposition and mineralization,
thus promoting new bone formation (Park et al., 2014). This would
also explain why the difference in our ALP staining was significantly
higher than the result of the alizarin red staining.

Based on the above results, we used cellular IF to further
detect the protein expression level of the BMP-2 gene, and the
results are shown in Figure 6. After 14-day co-culture, the expression
level of BMP-2 was generally low and the fluorescence signal
was weak in the control groups. However, we found that the
fluorescence signal was enhanced in the other two groups, and
the PCB group had the highest fluorescence intensity, which was
significantly different from the rest of the scaffolds. This indicates
that the osteogenic differentiation of the cells gradually deepened
as the osteogenic induction proceeded, and the effect was more
obvious with the addition of BMP-2/PLGA microspheres, which
is consistent with the previous findings. In summary, our study
shows that PCB scaffolds can effectively promote the osteogenic
differentiation of cells and are expected to accelerate the repair of
bone defects.

Repairing bone defects by using artificial bonematerial has been
widely researched in recent years, and its most essential property is
its osteogenic ability. With the development of nanometer materials
and 3D printing, many innovative materials were designed and
proved their effectiveness. Some researchers have summarized the
application of nanofiber scaffolds in hyaline cartilage tissue repair
(Ahmadian et al., 2023). Due to the natural association between
bone cells and highly nano-rough surfaces, the adhesion ability
and biocompatibility of nano-modified scaffolds are effectively
improved. Besides, by using internal and external triggers, the
release of growth factors and cells could be more precisely and
individually controlled (Khalilov, 2023). Therefore, we can also
expect the application of nanometer materials in the research

about complex bone defects/infections by precisely and individually
designing the modified growth factor or antibiotics.

4 Conclusion

A PCB 3D printed scaffold was successfully prepared in this
study. Our in vitro experiments demonstrated that the scaffold
had good biocompatibility, and the addition of BMP-2/PLGA
microspheres could markedly improve its in vitro bone-enabling
ability. These findings provide a new idea for the treatment of long
bone shaft and metaphysis defects. So we can also expect that the
PCB scaffoldwill have a broad prospect in the treatment of long bone
shaft and metaphysis defects due to its excellent characteristics of
easy availability, good biocompatibility, osteogenic properties, and
rapid degradation.
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