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Introduction: The simplicity of integration and co-type features of microstrip
antennas make them intriguing for a broad variety of applications, particularly
with the growing usage of mmWave bands in wireless communications and the
constant rise in data transfer in communication situations.

Method: This paper proposes a novel design of micrstrip patch antenna for
mmWave B5G communication. The main idea is to realize four-mode antenna
the operates in four different frequencies. The geometry is rectangular patch
whose resonance frequency is adjusted by varying the walls and pins of the
structure.

Results: Simulation results show that the proposed antenna design has improved
fractional bandwidth and performance as compared with existing antennas.

Discussion: The observed curve indicates that, in agreement with the modeling
findings, there are four resonance spots in the operational frequency region of
2.5–3.4 GHz: 2.68 GHz, 2.9 GHz, 3.05 GHz, and 3.3 GHz, which correspond to
TM1/2,0, TM3/2,0, and TMRS, respectively, and TM1/2,2 four resonant modes,
within the frequency range, the observed antenna gain peak is around 9 dBi,
which is consistent with the measured results.

KEYWORDS

microstrip patch, antenna design, waveguide, resonator, beamform

1 Introduction

Millimeter-wave (mmWave) technologies, which need more capacity for high-speed
data transmission, have beenmore in demand in thewake of beyond 5G (B5G) development.
The low-profile planar structure of the microstrip antenna is easily conformable to carriers
with shapes such as cylinders and curved surfaces, and has been widely used. However,
the low-profile structure also causes the microstrip patch antenna to behave like a leaky
wave cavity, with resonance characteristics similar to an RLC parallel resonant circuit and a
high Q value, so the impedance bandwidth of the antenna is very narrow (Ullah et al., 2019;
Kumar et al., 2022). Currently, there are three main methods to broaden the bandwidth of
microstrip antennas: 1) Use high thickness or low dielectric constant dielectric substrates
to reduce the equivalent circuit Q value, thereby increasing the impedance bandwidth
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(Ullah et al., 2019; Kumar et al., 2022), but the surface wave
leakage in this planar antenna increases (Liu et al., 2018a; Ge et al.,
2018; Hao et al., 2019), resulting in poor radiation efficiency. 2)
Improve the feeding method, such as electromagnetic coupling
feeding (Fan et al., 2018; Soliman et al., 2022), L-shaped probe
(Fan et al., 2018; Farooq et al., 2021; Soliman et al., 2022) or M-
shaped probe (Yang et al., 2020a; Kumar et al., 2021) feeding, etc.,
but the antenna radiation pattern will change with frequency,
and the cross-pole higher. 3) Use parasitic elements to combine
multiple coupled resonance modes to increase the bandwidth, but
its volume will increase a lot (Beguad et al., 2018; Srivastava et al.,
2020; Karami et al., 2022). The authors in (Hannan et al., 2021;
Dicarlofelice et al., 2022) etched U-shaped grooves on the radiation
patch and introduced additional resonance modes near the main
resonance point to broaden the bandwidth, but the thickness of
the antenna was larger. Similar structures include single-layer E-
shaped microstrip antenna, stacked E-shaped microstrip antenna
(Dong et al., 2021), etc. Etching a slit on the surface of the patch
antenna changes the surface current distribution to achieve dual-
frequency resonance. Adjusting the position and size of the slit can
make the resonant frequencies closer to each other, and construct
dual-mode resonance to obtain wide-band characteristics. The
authors in (Tewary et al., 2021) proposed loading multiple slits
on a rectangular patch to simultaneously excite two orthogonal
modes, TM10 and TM01, to achieve bandwidth enhancement and
compact structure, achieving 3.8% on the basis of a low profile
of 0.01λ0 impedance bandwidth, but due to the use of high-loss
FR4 substrate and etching of multiple slits, the antenna gain is
low and the cross-polarization is as high as −5 dB. The authors
in (Khan et al., 2022) loaded a short circuit on the circular patch
needle, the resonant frequencies of the TM01 and TM02 modes are
reconstructed, a wide impedance bandwidth of 18% is achieved in
the monopole radiation mode, and the low profile characteristics of
0.024λ0 can be maintained. The disadvantage is that the radiation
peak cannot be stable within the operating frequency band. The
authors in (Chinnagurusamy et al., 2021) placed short-circuit pins
under the equilateral triangle patch and etched V-shaped gaps to
excite the TM10 and TM20 modes, making the antenna bandwidth
reach 32%, but the antenna thickness also increased to 0.09λ0. The
authors in (Yang et al., 2020b) designed a patch antenna based on
TM1/2,0, TM1/2,2 and TM3/2,2 three-mode resonance, and improved
the radiation performance of the antenna by loading multiple
short-circuit walls, which enhances the bandwidth to 26.2% at a
profile height of 0.059λ0. The authors in (Lu et al., 2018) designed
a broadband circular sector patch antenna based on TM4/3,1 and
TM8/3,1 modes. The design criteria were determined by multi-mode
dipole and cavity models. At 0.05λ0, a useable radiation bandwidth
of 14.5% is achieved under low profile conditions. The authors in
(Sharaf et al., 2020) designed a three-mode sector patch antenna
based on TM12/17,1, TM36/17,1 and TM60/17,1 based on the zero-
frequency scanning working principle of a direct electric dipole, the
antenna operating bandwidth is enhanced to 24%, and the thickness
is maintained at 0.05λ0.

In order to address the above problem, this paper reduces the
high cross-polarization of the H-plane pattern by loading a short-
circuit wall on the non-radiating side of the rectangular patch, and
loading a short-circuit pin under the patch to increase the resonant
frequency of the TM1/2,0 mode.

FIGURE 1
Development of patch antenna with three-mode capability. (A)
Evaluation of S11 by shorting three walls. (B) Shorting four pins. (C)
Rectangle etching.

Themain contributions of this work are as follows.

• In the TM3/2,0 mode, a rectangular slot is cut at the zero current
position to excite the radiation slot mode, forming a three-
mode resonant patch antenna with low profile, wide bandwidth
and reduced H-plane cross-polarization performance.

• The antenna is only 3 mm thick (0.029λ0) In this case, an
impedance bandwidth of 18% (2.64–3.17 GHz) is achieved, and
the H-plane cross-polarization is reduced to below −20 dB.

• By appropriately increasing the patch width and adjusting
the antenna structure, the frequency of the TM1/2,2 mode is
reduced and brought closer to the TM1/2,0, TM3/2,0 and TMRS
modes, thereby further achieving four-mode resonance while
maintaining the antennawith the thickness unchanged (3 mm),
the bandwidth is further increased to 21.7% (2.67–3.32 GHz).

The remaining of this paper is organized as follows. In Section 2,
the proposed model design and working principle is discussed. In
Section 3, the practical implementation of the proposed antenna
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FIGURE 2
Variation of resonant frequency with different values of shorting pins. (A) With single short pin. (B) With two pins short. (C) With three pins short. (D)
With four pins short.

is presented and the experimental analysis is performed with
comparative evaluation. Finally, Section 4 concludes the paper.

2 Model design and working principle

2.1 Developing three-mode broadband
patch antennas

The illustration in Figure 1A shows a rectangular microstrip
patch antenna (Px = 56 mm, Py = 100 mm). By loading short-circuit
walls on three sides. It is even-ordermode can be suppressed and the
E-plane (x-z plane) high side lobes of the pattern and high cross-
polarization of the H-plane ( y-z plane) pattern (Srivastava et al.,
2020; Subha et al., 2020; Koutinos et al., 2022), the resonance of
the antenna in the three modes are TM1/2,0, TM3/2,0, TM1/2,2, and
frequencies f1/2,0, f3/2,0, f1/2,2 are 1.35 GHz, 2.84 GHz, and 3.21 GHz
respectively. An array of four short-circuiting pins (shown in the
inset of Figure 1B) is then loaded under the radiation patch, boosting
f1/2,0 to around 2.68 GHz while keeping f3/2,0 at 2.83 GHz, f1/2,2 is
also boosted to 3.75 GHz. Finally, a rectangular gap is etched near
the zero current line of the TM3/2,0 mode (as shown in the inset
of Figure 1C) to excite the gap radiation mode TMRS (Subha et al.,

2020; Koutinos et al., 2022). The TMRS mode operates at 3.07 GHz,
close to f1/2,0 and f3/2,0, the impact of this gap on the TM1/2,0
and TM3/2,0 modes is controllable, achieving three-mode resonance
based on TM1/2,0, TM3/2,0 and TMRS. Through these measures, the
bandwidth and radiation performance of the antenna are improved.

2.2 Design parameters and analysis

The number and position of short-circuit pins, the length,
width and position of the gap are several key parameters that affect
the performance of the patch antenna, and they will be analyzed
in depth.

2.2.1 Load short circuit pin reassign TM1/2,0 mode
By appropriately adding short-circuit pins, the resonant

frequency of the TM1/2,0 mode can be effectively controlled, while
it has little effect on the TM3/2,0 mode, and the frequency ratio
can be significantly reduced: f3/2,0/f1/2,0. Figure 2 shows how the
resonant frequency and frequency ratio of the antenna change with
the position and number of short-circuit pins. Figure 2A shows the
case where a single pin is located Bx from the short-circuit wall
along the x-direction at the center plane of the patch (Lu et al.,

Frontiers in Materials 03 frontiersin.org

https://doi.org/10.3389/fmats.2024.1364159
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Tiang et al. 10.3389/fmats.2024.1364159

FIGURE 3
Impact of trunking length on the resonant frequency of the antenna.
(A) Variation with Sy. (B) Variation with Sx. (C) Variation with Sw.

2017; Liu et al., 2018b; Lee et al., 2019). When Bx/Px = 0.1, f1/2,0 and
f3/2,0 are approximately 1.4 GHz and 2.9 GHz respectively, resulting
in a large frequency ratio of f3/2,0/f1/2,0 = 2.1. When Bx/Px reaches
about 0.75, because the short-circuit pin is properly placed around
the node line of the electric field of the TM3/2,0 mode, a minimum

f3/2,0/f1/2,0 of about 1.55 is obtained. After Bx/Px is greater than 0.75,
the frequency ratio of the dual modes gradually increases (Liu et al.,
2017a; Jian et al., 2020; Wu et al., 2020), moving away from each
other. The results show that the minimum frequency ratio can be
obtained when Bx is 0.75Px.

Figure 2B shows the analysis of loading two short-circuit pins
when Bx/Px = 0.75. As By/Py increases from 0.1 to 0.9, f1/2,0 has
a maximum value of 2.2 GHz at By/Py = 0.3, whereas f3/2,0 almost
remains around 2.85 GHz. Therefore, by choosing Bx/Px = 0.75
and By/Py = 0.3, the minimum value of f3/2,0/f1/2,0 ≈ 1.30 can be
achieved. Figures 2C, D further study f1/2,0, f3/2,0 and f3/2,0/f1/2,0-
when loaded with three and four short-circuit pins respectively at
Bx/Px = 0.75 (Liu et al., 2017b; Gao et al., 2019; Ma et al., 2021).
Compared with Figures 2A, B, similar trends for f1/2,0 and f3/2,0 are
obtained. Therefore, when four short-circuit pins are loaded, and
Bx/Px = 0.75 and By/Py = 0.5, the minimum value of f3/2,0/f1/2,0 ≈
1.06 can be reached.

2.2.2 Etching gap to excite TMRS mode
To further broaden the impedance bandwidth of the antenna,

a linear groove is etched on the radiation patch near the TM3/2,0
mode zero current line to excite the TMRSmode of the patch antenna
and move it closer to TM1/2,0 and TM3/2,0 mode (Cao et al., 2021;
Liu, 2021; Cao et al., 2022). By appropriatelymodifying the trunking
length (Sy), TM3/2,0 and TMRS modes can be combined to extend
the bandwidth. It can be seen from Figure 3A that as Sy increases
from 40 mm to 50 mm, fRS drops sharply from 3.5 GHz to 3.1 GHz,
but f1/2,0 and f3/2,0 remain unchanged, so to obtain the widest
bandwidth, Sy = 50 mm (Chung et al., 2022; Jiang and Li, 2022).
Further adjust the gap position (Sx) and width (Sw) to analyze the
impedance matching problem. Figures 3B, C show that Sx increases
from16.7 mm to 17.7 mm (Wu et al., 2020), Sw increases from2 mm
to 4 mm. The impedances are not always well matched, and only
when Sx = 17.2 mm and Sw = 3 mm can awider bandwidth and good
impedance matching be achieved.

What needs to be pointed out here is that the TMRS mode
excited by the loading gap also radiates electromagnetic energy.
Since the resonant frequencies of the TMRS mode and the TM3/2,0
mode are close to each other, when the two slots operate at the
same time (Mao et al., 2022a; Mao et al., 2022b; Dai et al., 2023),
they will affect the pattern of the TM3/2,0 mode, causing the main
beam direction to be deflected. The resonant frequency of TM1/2,0
mode is lower, and the frequency separation from TMRS is large.
The electrical distance between them is very small for the TM1/2,0
mode. Therefore, the loading gap has little impact on the pattern of
the TM1/2,0 mode.

2.2.3 The impact of loading short-circuit wall 2
To verify the effect of loading short-circuit wall 2 on H-

plane cross-polarization, this paper uses a three-mode resonant
broadband antenna without loading short-circuit wall 2 for
comparison. To make both antennas resonate in the same mode
and have close operating frequencies, the structure is optimized by
adjusting the short-circuit pins, the position and size of the gaps,
etc (Li et al., 2021a; Dai et al., 2022; Zhang et al., 2023a). Figure 4A
shows the port reflection coefficients of the two antennas. It can
be seen that they have three identical resonance modes, but the
bandwidth of the antenna without short-circuit wall 2 is slightly
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FIGURE 4
Impact of loading short-circuit wall 2 under different operating conditions. (A) S11. (B) TM1/2,0. (C) TM3/2,0. (D) TMRS.

wider. Figures 4B–D is a comparison of the H-plane radiation
patterns of the two antennas in three modes (Zhang et al., 2023b;
Wang et al., 2023). It can be seen that the cross-polarization of
the H-plane of the antenna loaded with short-circuit wall 2 is
reduced by more than 15 dB, proving that short-circuit wall 2
can greatly improve the radiation performance of the antenna in
the far area.

2.2.4 Implementation of three-mode antenna
and experimental results

Figure 5A shows the top view and side view of the three-mode
patch antenna, and its cross-sectional height is 0.029λ0 (3 mm).
Figure 5B shows the simulated and measured port return loss |S11|,
and compares it with a conventional planar inverted-F antenna
(PIFA) (Zhou et al., 2022a; Zhou et al., 2022b; Wen et al., 2023). It
can be found from Figure 5B that there are threeminimum values in
the operating frequency band of 2.6–3.2 GHz, which are consistent
with the three simulated resonance modes, namely, TM1/2,0, TM3/2,0
and slot mode (TMRS). Due to the combination of three resonance
modes, themeasured center bandwidth extends to 18% (from2.64 to

3.17 GHz), which is 3.4 times the traditional PIFA center bandwidth
(5.2%, 2.81–2.96 GHz).

Figure 6 further shows the simulation and test pattern of the
antenna at three resonance points. Due to the asymmetric structure
of the antenna along the x-direction, the radiation pattern is slightly
tilted, and the simulation results are in good agreement with the
measured results (Gao et al., 2019; Yang et al., 2023a; Jannat et al.,
2023). In addition, due to the loading of short-circuit wall 1, the side
lobes of the E-plane (x-z plane) radiation pattern are lower. After
loading the short-circuit wall 2, the cross-polarization of the H-
plane ( y-z plane) radiation pattern is better. The overall gain within
the frequency band is greater than 6.5 dBi, and the peak gain is
about 8 dBi.

3 Implementation and analysis of
four-mode microstrip antenna

It can be seen from Figure 1B that as the short-circuit pin is
loaded, the resonant frequency f1/2,2 of the TM1/2,2 mode will be
far away from f3/2,0 and cannot be directly used to increase the
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FIGURE 5
Implemented prototype and return loss of three-mode microstrip
patch antenna. (A) Implemented prototype of 3-mode antenna. (B)
Simulation and measured S11.

bandwidth (Chen et al., 2022a; Yin et al., 2022; Jiang and Xu, 2023).
The resonant frequency ( fmn) of TMmn in traditional PIFA can be
obtained from the cavity model theory:

fmn =
c

2√εr
√(m

Px
)
2
+( n

Py
)
2

(1)

In the formula:m = 1/2,3/2,5/2,…; n = 0,2,4,….; c is the speed
of light. Eq. 1 shows that increasing the patch width (Py) can
effectively reduce f1/2,2. The fRS can be adjusted by adjusting the gap
length Sy. To further increase the center bandwidth, the patch width
can be increased to reduce f1/2,2 (Jiang et al., 2022; Xu et al., 2023a;
Fang et al., 2023). Make it close to f3/2,0 and fRS, and simultaneously
correct other parameters of the antenna, such as the size of the
short-circuit pin and the position of the gap, etc., so that TM1/2,0,
TM3/2,0, TMRS and TM1/2,2 four modes are close to each other,
further broadening the bandwidth.

The specific parameter analysis of the four-mode resonant
antenna is similar to that in Section 2.2 andwill not be repeated here.
The specific structure of the four-mode resonant broadband antenna
is shown in Figure 7A, and the antenna structural parameters are
shown in Table 1. Figure 7B shows the simulated and measured
return loss and gain (Hu et al., 2019; Liu et al., 2022). It can be
found from the measured curve that there are four resonance

TABLE 1 Physical parameters of the proposed four-mode antenna.

Parameter Value (mm)

Px 56

Py 122

Gx 86

R 3.15

Bx 40

By 30.9

Sx 16

Sy 57

Sw 4

Fx 25

H 3

points in the operating frequency band of 2.5–3.4 GHz: 2.68 GHz,
2.9 GHz, 3.05 GHz, 3.3 GHz, corresponding to TM1/2,0, TM3/2,0,
TMRS respectively, and TM1/2,2 four resonant modes, consistent
with the simulation results. The measured antenna gain peak
within the frequency band is approximately 9 dBi. The small
differences between simulation and actual measurements of return
loss and gain are mainly caused by processing errors (Chen et al.,
2022b). Due to the combination of four resonant modes, the
measured center bandwidth of the antenna is further extended
from 18% (2.64–3.17 GHz) of the three-mode antenna to 21.7%
(2.67–3.32 GHz).

Figure 8 further shows the electric field distribution
corresponding to these four modes. In Figure 8A, there is only
one zero value line in the y direction, corresponding to the TM1/2,0
mode. In Figure 8B, two zero value lines in the y direction appear,
corresponding to the TM3/2,0 mode (Li et al., 2021b; Xu et al., 2022;
Xu et al., 2023b). In Figure 8C, only the radiation around the gap is
strong (Huang et al., 2018;Min et al., 2023;Min et al., 2024), and the
rest are weak, corresponding to the TMRS mode. In Figure 8D, there
is a zero value line in the y direction, and two zero points appear in
the x-direction, corresponding to the TM1/2,2 mode (Huang et al.,
2023; Huang and Liu, 2023; Lan et al., 2024). Figures 9A–D further
shows the four resonance modes of the four-mode broadband
antenna (Lu and Osorio, 2018; Yang et al., 2023b; Gao et al., 2023).
The simulation and measured diagrams at the points are in good
agreement with the actual measurement results (Chen et al., 2022c;
Xu et al., 2023c).

Table 2 further shows the comparison between the
antenna designed in this article and the reference broadband
antennas. It can be seen that the proposed antenna
has comprehensive advantages in terms of thickness and
electrical performance.

Frontiers in Materials 06 frontiersin.org

https://doi.org/10.3389/fmats.2024.1364159
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Tiang et al. 10.3389/fmats.2024.1364159

FIGURE 6
Comparison of radiation pattern and normalized gain of three-mode antenna. (A) 2.7 GHz. (B) 2.9 GHz. (C) 3.1 GHz.
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FIGURE 7
Implemented prototype of four-mode antenna and evaluation of return loss. (A) Decomposed and top view. (B) S11 and gain comparison.

TABLE 2 Perforamance comparison of the proposed and existing antenna designs.

References Dimension Peak gain (dBi) Maximum
cross-polarization

(dB)

Impedance
bandwidth (%)

Dicarlofelice et al. (2022) 0.059 λ0 8.0 −12.3 26.2

Hannan et al. (2021) 0.054 λ0 10.0 −8.0 14.5

Tewary et al. (2021) 0.036 λ0 10.8 −9.2 33.3

Khan et al. (2022) 0.032 λ0 6.8 −18.0 15.2

Chinnagurusamy et al. (2021) 0.036 λ0 5.0 0 15.3

Yang et al. (2020b) 0.037 λ0 5.9 −16.0 18.0

Proposed
0.029 λ0 (3-mode) 8.0 <-20.0 18.0

0.03 λ0 (4-mode) 8.0 <-20.0 21.7
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FIGURE 8
Comparison of E-field distribution in different modes and frequencies.
(A) TM1/2,0 (2.68 GHz). (B) TM3/2,0 (2.9 GHz). (C) TMRS (3.05 GHz). (D)
TM1/2,2 (3.3 GHz).
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FIGURE 9
Comparison of radiation patter and normalized gain of four-mode microstrip antenna. (A) 2.7 GHz. (B) 2.9 GHz. (C) 3.1 GHz. (D) 3.3 GHz.
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4 Conclusion

This article designs a low-profile, multi-mode, broadband patch
antenna that improves radiation performance. By loading a short-
circuit wall on the non-radiating edge of the patch, the E-plane
side lobes of the antenna radiation pattern are reduced, effectively
reducing the H-plane cross-polarization. By adjusting the number
and position of the pins, the size and position of the opening slit,
and the width of the patch antenna, we further introduced the three-
mode patch antenna based on TM1/2,0, TM3/2,0 and TMRS made by
predecessors. In TM1/2,2 mode, a four-mode low-profile broadband
patch antenna is designed, which achieves an operating bandwidth
of 21.7% with a thickness of only 0.03λ0.
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