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Sensorineural hearing loss (SNHL) occurs when the sound transduction
mechanism in the inner ear is compromised, because of impairments affecting
the sensory hair cells—the actual biological transducers (90% of cases)—or
the neurons. SNHL results in a broad spectrum of developmental, cognitive
and psycho-social damages. To date, only cochlear implants (CIs) can offer a
therapeutic solution to patients. They are multi-component electronic devices,
surgically implanted, which capture, elaborate and convert the sound into
electric stimuli delivered to the cochlea. Due to inherent limitations of the
current electronic-based CIs, a new class of devices has been envisioned, which
is based on piezoelectric materials. However, using piezoelectric membranes,
the obtained sensitivity was not enough. The new frontiers for piezoelectric
material-based CI aim at synergizing micro/nanofabrication aided by multiscale
materials modeling with an in vivo tissue engineering approach to provide an
implantable biomaterial-based system for SNHL, acting as a next-generation CI.
Specifically, the envisioned device will move forward the primitive concept of
bulk-structured piezoelectric CIs by designing a nanostructured material (e.g.,
based on nanofibers) to be precisely delivered and be intimately and efficiently
integrated with the cochlear microenvironment. Piezoelectric material-based
CIs are indeed hypothesized to have a much higher resolution of electrical
stimulation with more than hundreds of channels, compared to maximum 22
stimulating elements present in electronic-based CIs. Moreover, the stimulation
site will be closest to peripheral nerve fiber endings for maximal resolution.
This would be the first sensory implant with a feedback mechanism on a
micrometer scale.

KEYWORDS

sensorineural hearing loss, hair cells, electrospinning, piezoelectric polymers,
nanocomposites

1 Introduction

Ear consists of three sequential compartments: outer for collection, middle for
conduction and inner for mechanic-into-electric signal conversion of sound waves. In the
latter compartment, the proper sensory function takes place by means of the hair cells
that work as in-liquid mechano-electrical transducers; thus, the auditory neurons transmit
the electric signal to the brain, where the hearing sense is finally elaborated (Figure 1A)
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(Fettiplace and Hackney, 2006). Over 5% of the world
population—about 466 million people—suffer from disabling
hearing loss (WHO website, 2023). When the transduction
mechanism, namely, sensory cells and/or neurons, is damaged,
sensorineural hearing loss (SNHL) occurs (Liu et al., 2023), which
impacts the developmental, cognitive and psycho-social abilities. In
about 90% of cases, SNHL affects the inner ear because of damaged
sensory epithelium and most rarely involving the underlying
auditory neurons. The ear sensory cells, namely, hair cells, act as
biological transducers and reside in the organ of Corti, the core
structure of the cochlea. Here, they convert themechanical vibration
of the basilar membrane—a thin membrane dividing the cochlea
into fluid filled compartments—into stimulation of the underlying
spiral ganglion neurons via neurotransmitters (Figures 1B–D)
(Fettiplace and Hackney, 2006). Unfortunately, hair cells do not
self-renovate over time and are available in predefined and small
numbers with respect to other senses (Grandori and Martini, 1995).
Although ageing or external factors, such as traumas, exposure to
noise and ototoxic effects of certain drugs, can affect the viability and
function of the hair cells, in most cases (>60%) SNHL is associated
to inherited genetic conditions (Ciorba et al., 2009). SNHL results
in a broad spectrum of developmental, cognitive and psycho-social
damages, which include linguistic deficit in deaf-born children,
who are thus early implanted (Forli et al., 2011). Restoring SNHL is
much more complicated than conductive hearing loss, the latter (as
a mechanical impairment) performed by replacement prostheses
and reconstructive surgery, and only complex electronic implants,
namely, cochlear implants (CIs), can offer a therapeutic solution to
patients to bypass sensory cells and directly stimulate the auditory
nerve (Carlyonet al., 2022). The CI is a multi-component electronic
device implanted through a surgical procedure of the temporal bone,
which replaces the whole ear function. Despite of efforts towards
new biological and pharmaceutical strategies, nowadays, the only
successful treatment for SNHL still relies on the CI implant. In fact,
as today CIs represent the only option for deaf people affected by
profound or severe SNHL, while mild-to-moderate forms are only
treated with hearing aids due to the costs (e.g., ⁓ a hundred thousand
euro for a public national health system) and risks associated to CIs
(Berrettini et al., 2011; Tanna et al., 2024). Although conventional
CIs can bring patients back to an acceptable hearing, they suffer
from some important disadvantages impacting the quality of life
and hearing after implantation, such as water unsuitability, battery
recharge dependency and hearing sound differently, and for such
reasons a new class of CIs is highly desirable.

Piezoelectric material-based CIs would theoretically represent
an innovative and smart solution in this field: they work in a
biomimetic fashion, are self-powered and fully implantable (i.e.,
better water-compliant), less expensive (as material-based instead
of electronic-based) and a-magnetic, leading to improved magnetic
resonance imaging (MRI) compatibility than current bionic CIs
(Inaoka et al., 2011). By exploiting the mechanical tonotopy still
present in deaf cochleae, piezoelectric materials in contact with
the basilar membrane could potentially enable a fine-tuning
process of the sound vibrations, thus providing a better quality of
hearing versus discretized electrodes in electronic CIs. However,
several issues have still to be solved before reaching the clinical

practice, which demand a visionary and integrated research. On
the materials side, piezoelectric CIs in the form of solid slabs
have shown insufficient sensitivity (Inaoka et al., 2011).The research
efforts are still variegated, instead, synergistic multi-disciplinary
integrated approaches must be put in place for hearing restoration
(Latif et al., 2021).

2 Discussion

2.1 Mechano-electrical transduction in the
cochlea

The hearing frequency range in humans is in 20–20.000 Hz
(in ⁓ 2½ rounds of the spiral), wherein speech frequencies are in
500–5.000 Hz (Figure 1A). The capability of decoding the sound
waves into frequencies, each one resonating locally at a specific
length of the membrane is in fact a characteristic of the cochlea
as a physical system discussed by the Nobel prize laureate G.
von Békésy in his “travelling wave theory”, which provides the
basics of cochlear organ function (von Békésy, 1970). As the sound
waves are transmitted across these ramps, they induce vibration
of the basilar membrane. At the core of inner ear physiology, hair
cells convert mechanical into electrical signals to excite sensory
neurons and ultimately work as mechano-electric transducers.
Thanks to their stereocilia, hair cells sense the local movement of the
tectorial membrane induced by the underlying basilar membrane
and respond by converting this displacement into ion-activated
neurotransmitters that finally trigger the afferent nerve receptors
(Fettiplace and Hackney, 2006). The central axis of the cochlea
contains the auditory neurons which distribute their dendrites
radially across the spiral to reach each segment of the basilar
membrane (Figure 1B). The mechanism by which the hair cells
stimulate the neurons is complex and relies on environmental
factors generating the endocochlear potential (+80 mV) in the
endolymphatic spaces of the scala media, which combines with the
resting potentials of hair cells by giving rise to amassive 110–150 mV
battery across hair cell membranes, which generates the highest
electrochemical driving force in the body (Javel, 2003). In addition,
the hair cells induce sound amplification (Le Masurier et al., 2005).
According to mechanical tonotopy, high frequencies stimulate
cochlear hair cells in the basal portion, and low frequencies in
the apical portion of the cochlea (Figure 2A). This is due to the
geometrical andmechanical characteristics of the basilarmembrane,
shorter (average section: 100 μm × 4.5 µm) and stiffer (E = 50 MPa)
at the base, longer (average section: 500 μm × 1.5 µm) and softer (E
= 3 MPa) at the apex of the cochlea, for a 28–40 mm total length
(Figure 2B) (Liu et al., 2015). As a consequence of biomechanical
cues, a sound wave, initially travelling at ≈100 m∙s−1 at the base
of the cochlea, slows down as the mechanical impedance of the
cochlea decreases and increases in amplitude. Near the resonance,
where the stiffness and the mass compensate, the wavelength
becomes short and the amplitude is maximum. All energy is spent
to excite the hair cells and the wave breaks up. Basing on the
sound stimuli (0–120 dB range), the basilar membrane can show
displacements up to 100 nm.
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FIGURE 1
The human cochlea: (A) Schematic of the ear and hearing (adapted from Wikimedia under Creative Commons Attribution-Share Alike 4.0); (B)
Schematic of a cross-section of the cochlea indicating the several anatomic structures (Adapted from OpenStax under the CC BY license); (C)
Scanning electron microscopy micrograph of a cross-sectioned cochlea, displaying the thin basilar membrane and other decellularized cochlear
structures (original image of the authors); (D) Schematic of a portion of the organ of Corti, showing a couple of hair cells with the tectorial membrane
(Adapted from OpenStax under the CC BY license).

2.2 SNHL therapy

Hair cells are present in a predefined number at birth, about
12.000 outer and 3.500 inner hair cells, and unfortunately are
not able to self-renew (Grandori and Martini, 1995). Such cells
are terminally differentiated, and endogenous stem cells lack
regenerative capacity (Simoni et al., 2017). Absence, dysfunction,
impairment or death of hair cells represent the major causes
of SNHL. This disease widely occurs due to inherited genetic
conditions (60%). However, not all patients are eligible for or can
truly benefit from treatments (Liu et al., 2023). In the current CI
technology, the conversion of sound stimuli into electric signals is
performed by a speech processor and a transmitter as an external
device powered by a battery in which the sound is captured,
processed and finally transmitted to a subcutaneous receiver; the
latter is connected to the electrode array implanted inside the

cochlea, which directly stimulates the auditory nerve (Copeland and
Pillsbury, 2004). Since the seventies, different electrode arrays have
been developed, with a variable number of electrodes (currently,
12-22) and configurations; however, recognition of speech in
noisy environments or music appreciation remain the pinnacle
of CI-implanted patients (Park, 2015). The battery to be daily
charged is able to provide the electrode with an electric potential
in the order of magnitude of volts, thus, much higher than
the endocochlear potential. Owing to the extensive surgery, the
permanent implantation of an electronic device, the health costs
and the possible complications, CIs are implanted in severe-to-
profound SNHLand often only unilaterally. Shortcomings of current
CIs experienced by patients include loss of hearing frequencies
(e.g., hearing sounds differently, hearing noise, losing of residual
hearing, incomplete language understanding, difficulty in music
perception, perceiving interactions with static electricity, magnetic
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FIGURE 2
(A) Schematic of an unrolled cochlea working at different frequency ranges (i.e., tonotopy); (B) 3 view design of a basilar membrane in its spiral
conformation and size variation; (C,D) Schematics of a cochlear slice with application of a piezoelectric material in the form of: (C) a bulky film, and (D)
a nanostructured device.

fields, mobile phones, metal detectors and hearing aids), battery
charge dependency, aesthetic problems and water unsuitability.
Even if clinical benefits of CIs have remarkably improved over the
past 50 years, hearing is still far from natural (Le Masurier et al.,
2005). At research level, regenerative therapies (Park, 2015),
as well as otoprotective drugs (Ciorba et al., 2008), are being
investigated, but no clinically exploitable results have been found
until now.

2.3 Current material-based approaches to
treat SNHL

Piezoelectric materials possess the unique feature of generating
electric charges via intrinsic and reversible polarization under
mechanical force application, thus properly acting as mechano-
electrical transducers (Danti, 2016). The possible transition from an
electronics-based to a material-based CI has opened the intriguing
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possibility for an a-magnetic, fully implantable material with
no need for an external energy supply (Mukherjee et al., 2000;
Shintaku et al., 2010; Inaoka et al., 2011) (Figure 2C). Based on
preliminary experiments on a 40 μm thick poly (vinylidene fluoride)
(PVDF) film fixed on a substrate with a trapezoidal slit and a
detecting electrode array, the function of frequency selectivity was
demonstrated (Nakagawa and Kawano, 2014). After implantation
in guinea pigs, such a piezoelectric membrane generated biological
Auditory Brainstem Responses. A totally implantable device was
then tested consisting of a silicon frame and a piezoelectric PVDF
bulky film. However, the vibration amplitude in the piezoelectric
film measured by laser doppler vibrometry, was smaller than that
of the basilar membrane, thus yielding an insufficient sensitivity
(Inaoka et al., 2011). On the other hand, ceramic materials with
a perovskite-like structure, like lead zirconate titanate (PZT),
possess higher piezoelectric properties than those of piezopolymers,
but are very rigid and difficult to process, so they failed as a
self-standing basilar membrane device, even though such PZT
transducers were able to generate 45–60 μV with a vibration
displacement of 7–17 nm at the frequency range of 100–1,600 Hz
(Dufay et al., 2018). In addition, using PZT in implanted
devices poses biocompatibility concerns. Among piezoceramics,
BaTiO3 owns excellent piezoelectric properties exploited in
piezoelectric actuators, capacitors and recently in biomedical
devices (Candito et al., 2022). Nanostructured materials have
shown the ability to modulate cell activity, by smartly combining
topographical, chemical and physical cues in a single platform
(Lang et al., 2016). Preliminary studies have demonstrated neural
guidance by aligned nanofiber patterns in PVDF scaffolds enhancing
neurite sprout induced by mechanically activated piezomaterials
(Corey et al., 2007). While producing ultrafine fibers (typical
diameter range: 10–1,000 nm), the electrospinning process can
inherently apply mechanical stretching and a poling effect, which
results to enhance the piezoelectric properties of piezopolymers.
Nanocomposites based on piezoelectric ceramic nanoparticles as
a filler and a piezopolymer as a matrix represent a strategy to
increase the final piezoelectric properties (Magnani et al., 2022). By
electrospinning 20% (w/w%) BaTiO3/PVDF and LiNbO3/PVDF-
trifuoroethylene (PVDF-TrFE) nanocomposites, the piezoelectric
coefficients and the electric voltage outputs were doubled with
respect to those of the plain polymers (Mota et al., 2017; Danti et al.,
2020). In 20/80 (w/w%) LiNbO3/PVDF-TrFE ultrafine fibers
collected at 4,000 rpm, the resulting output voltage was 90 ±
2 mV and the thickness-normalized sensitivity was 1.06 mV/N‧µm
(Danti et al., 2020). Moreover, 20/80 (w/w%) BaTiO3/PVDF
nanocomposite fibers demonstrated improved viability of SH-SY5Y
neural cells under mechanical motion (Mota et al., 2017), whereas
LiNbO3 nanoparticles up to 50 μg/mL in the culture medium
showed remarkable ability to reduce pro-inflammatory cytokines
of epithelial cells and excellent otocompatibility with OC-k3 inner
ear cells (Danti et al., 2020). Computational studies at different
scales have described how different parameters play a role over
the mechanical and electrical behaviour, although a comprehensive
dissertation on electrospun fiber meshes is still missing. Scientists
have also developed finite elements models to understand the
macroscale behavior of the auditory apparatus, unveiling the
chance to simulate the complex physics of the acoustic phenomena
with different boundary conditions, however, such insight has

not been yet combined with biomaterial-based approaches
(Gan et al., 2007).

2.4 Nanomaterials and nanotechnologies
to overcome current limitations

By comparing the electric output obtained by the PVDF
slab device with that of CIs, a 1000-time difference has been
highlighted. Therefore, four major challenges to be overcome for
the future piezoelectric device have been pointed out: 1) Increase
the output voltage; 2) Perform a proper fixation to the basilar
membrane; 3) Increase the frequency selectivity, as it is naturally
performed by outer hair cells that mechanically amplify low-level
sound; and, 4) Increase the thickness to improve the piezoelectric
performance (Nakagawa and Kawano, 2014). However, due to the
small thickness of the basilar membrane, which varies both radially
and longitudinally in 0.55–1.16 μm (Liu et al., 2015; Hrncirik et al.,
2023), placing a slab even thicker than that used by Inaoka et al.
(2011), i.e., 40 μm-thick PVDF film, is not realistic. In our opinion,
developing thick membranes will not be an option, as this would
generate a heavy device, difficult to be properly placed on site,
thus hampering the basilar membrane vibration. Instead, using
nanomaterials and nanotechnologies could be the way forward.
On the nanoscale, many material properties can be enhanced by
reaching the highest surface area to volume ratio, such as a highly
distributed electric charge available for cell contact. In a larger-scale
device than those ideally needed by the piezoelectric CI, PVDF
nanofibers demonstrated to detect low frequencies with a sensitivity
of 22.16 mV/Pa‧cm2 (Sarpeshkar et al., 1998).

In our perspective, a piezoelectric device made of
nanostructured non-biodegradable biomaterials and based on the
tissue engineering approach and its proper surgical implantation
would promote a direct contact with spiral ganglion neurons,
thus reducing the necessary electric output for neural stimulation
(i.e., 3 orders-of-magnitude output voltage increase would not be
necessary, few hundreds of mV would be sufficient to stimulate the
neurons with a material nearly in contact with them) and finally
achieving enough sensitivity. This would be reached by implanting
a porous material acting as a scaffold for recruiting neural endings,
not a bulky film (Figure 2D). PVDF and its copolymers are
non-biodegradable and widely biocompatible, thus, they could
act as a long-lasting implant (Azimi et al., 2020). The output
voltage can be increased using nanoceramic/PVDF composites
(Mota et al., 2017; Danti et al., 2020; Mokhtari et al., 2021). Several
studies have proved the enhanced performance of piezoelectric
nanocomposites in energy harvesting applications, using PVDF
and nanoceramics, like reduced graphene oxide (rGO), which
could also be suitable for biomedical purposes (Pusty et al., 2018;
Shi et al., 2018). The optimal composition and nanostructured of
piezoelectric nanocomposites should be defined by in silico models,
which combine the biomaterial properties with the mechanical
signals of the basilar membrane, as received in the cochlea, and
the electric charged generated as a response. This would require
additional efforts and multiscale modeling tools. Insertion and
fixation to the basilar membrane remains a key challenge, as the
best piezoelectric device placement should be in an upside-down
position, i.e., via the scala tympani, as the scala media is smaller
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and residual hair cells should be preserved. Possibly, binding agents
could be used to this purpose. Another challenge should consider
that the locations of the neural endings is close to cochlear axis;
thus, it is not distributed along the full area of the basilar membrane.
By maximizing the piezoelectric material contact with the basilar
membrane and the neurites, i.e., via a nanostructured scaffold,
like electrospun fiber meshes, the frequency selectivity might be
improved. Overall, the piezoelectric material-based CI would be
self-powered (no need for battery) and less expensive (only 4 cm of
biomaterial is needed, no software, no electronics), fully implantable
with a less invasive surgery (since no device part will be implanted
in the skull bone, as in conventional CIs, but only the electrode
part inside the cochlea), preserve and even boost residual sensory
function. This configuration would make hearing ability available
for a broader range of patients, including those who do not meet
the medical and audiological criteria for current CI implantation,
e.g., the elderly affected by presbycusis, who could better fight
social isolation and/or slow cognitive decline (Amieva et al., 2015;
Lin et al., 2018). Today, receiving a CI depends very much on local
health system regulations and socio-economic circumstances. As
such, we hope to stimulate research in this field (Gfeller et al., 2002).
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