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The use of rubber aggregates derived from discarded rubber tyres in concrete
is a pioneering approach to replacing natural aggregate (NA) and promoting
sustainable building practices. Recycled aggregate in concrete serves the dual
purpose of alleviating the accumulation of discarded rubber tyres on the planet
and providing a more sustainable alternative to decreasing natural aggregate.
Due to fact that the crumb rubber (CR) decreases the strength when used in
concrete, incorporating titanium dioxide (TiO2) as a nanomaterial to counteract
the decrease in strength of crumb rubber concrete is a potential solution.
Response Surface Methodology was developed to generate sixteen RUNs which
contains different mix design by providing two input parameters like TiO2

at 1%, 1.5%, and 2% by cement weight and CR at 10%, 20%, and 30% as
substitutions for volume of sand. These mixtures underwent testing for 28 days
to evaluate their mechanical, deformation, and durability properties. Moreover,
the compressive strength, tensile strength, flexural strength and elastic modulus
were recorded by 51.40 MPa, 4.47 MPa, 5.91 MPa, and 40.15 GPa when 1.5%
TiO2 and 10% CR were added in rubberised concrete after 28 days respectively.

Abbreviations: CR, Crumb Rubber; UV, Ultraviolet; TiO2, Titanium Dioxide; SG, Specific Gravity; RSM,
Response Surface Methodology; CA, Coarse Aggregate; RA, Rubber Aggregates; SP, Superplasticizer;
NA, Natural Aggregate; CCD, Central Composite Design; MPa, Mega Pascal; DS, Drying Shrinkage;
GPa, Giga Pascal; AP, Apparent Porosity; PC, Portland Cement; ANOVA, Analysis Of Variance; CS,
Compressive Strength; UTM, Universal Testing Machine; TS, Tensile Strength; JSCE, Japan Society
of Civil Engineers; FS, Flexural Strength; LVTD, Longitudinal Variable Displacement Transducer; ME,
Modulus of Elasticity; Ca(OH)2, Calcium Hydroxide; NaOH, Sodium Hydroxide; ITZ, Interficial Transition
Zone; -S-H, Calcium Silicate Hydrates; SMSS, Sequential Model Sum of Squares.

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2024.1357094
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2024.1357094&domain=pdf&date_stamp=2024-05-04
mailto:naraindas04@gmail.com
mailto:naraindas04@gmail.com
mailto:taoufik.najeh@ltu.se
mailto:taoufik.najeh@ltu.se
https://doi.org/10.3389/fmats.2024.1357094
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2024.1357094/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1357094/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1357094/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1357094/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1357094/full
https://www.frontiersin.org/articles/10.3389/fmats.2024.1357094/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Abdullah et al. 10.3389/fmats.2024.1357094

Furthermore, the incorporation of TiO2 led to reduced drying shrinkage
and sorptivity in rubberized concrete, especially with increased TiO2

content. The study highlights that TiO2 inclusion refines pore size and
densifies the interface between cement matrix and aggregate in hardened
rubberized concrete. This transformative effect results in rubberized concrete
demonstrating a commendable compressive strength comparable to
normal concrete.

KEYWORDS

crumb rubber, concrete, drying shrinkage, mechanical and durability characteristics,
multi-objective RSMmodelling, titanium dioxide

1 Introduction

Every year, enormous amounts of scrap tires are discarded
globally, with the United States, Turkey, and the European Union
alone generating an average of 250 million, 10 million, and
3.4 million tons, respectively (Onuaguluchi and Panesar, 2014;
Demir et al., 2015; Mohammed et al., 2016). An annual global
concern has emerged regarding the improper disposal of more than
500 million waste tires after they have outlived their usefulness
(Thomas et al., 2016). He immediate concern surrounding this
concerning increase stems from the direct and indirect risks it poses
to human wellbeing, ecological integrity, and safety (Chohan et al.,
2023). In addition to promoting rodent infestation, disposing of
these tires in landfills and dumpsites presents a sustained challenge
due to the sluggish biodegradation process that contributes to
environmental risks, especially during fire (Pelisser et al., 2011).
As a viable remedy to this problem, the reprocessing of used tyres
into crumb rubber (CR) for concrete has emerged. This novel
methodology not only facilitates the restoration of ecological
equilibrium but also possesses considerable economic merit
(Guo et al., 2014).

CR extracted from the exterior surface of tire scraps, is employed
as a partial substitute for sand in Portland cement (PC) concrete,
resulting in what is generally defined as CR concrete, or rubberized
concrete. This innovative concrete variant boasts several advantages
over traditional concrete, including reduced density (Demir et al.,
2015; Mohammed et al., 2016), enhanced ductileness (Shu and
Huang, 2014), improved plastic capacity (Mohammed et al., 2011),
heightened robustness (Mohammed, 2010), increased impact
resistance (Ganjian et al., 2009), superior resistance to infiltration
(Bravo and De Brito, 2012), lower thermal conductivity (Li et al.,
2004) and enhanced electrical resistivity (Onuaguluchi and Panesar,
2014). Additionally, rubberized concrete is recognized for its
superior durability (Youssf et al., 2014). Despite these advantages,
rubberized concrete does face certain drawbacks, notably a decline
in compressive, tensile, flexural, and splitting strengths, additionally
Young’s modulus, with an increasing proportion of CR replacing
fine aggregate. The reduced strength can be accredited to the
inadequate bond between PCmatrix andCR constituent part, which
is a result of the hydrophobic characteristics of CR introduced
during tire manufacturing with zinc stearate (Youssf et al., 2014).
The ability of CR to repel water generates an airtight, non-polar
layer, which increases the dimension ITZ between PC matrix and
CR constituent part. The presence of a denser region undermines
the integrity of the bond, concentrates strain, and ultimately results

in the formation of microscopic fissures, which prematurely fail
(Mohammed et al., 2012; Sadek and El-Attar, 2015; Li G. et al., 2016;
Thomas et al., 2016).

To expand the practical usage and acceptance of CR concrete
in construction, efforts have been focused on boosting its strength.
Researchers have explored various surface treatment methods for
crumb rubber (CR) particles to augment connection between CR
and PC mixture. It was conducted experiments to evaluate several
methods for treating surfaces, such as water, a carbon tetrachloride
solution, and an adhesive admixture cleaner. The findings indicated
that the compressive strength (CS) exhibited an increase of up
to 57% in comparison to the reference mixture (Rostami et al.,
2000). Researchers found success using aqueous NaOH to treat
CR surfaces, improving the bond and subsequently elevating
strengths (Segre and Joekes, 2000). However, Researchers did
not witness significant mechanical strength improvements despite
treating CR with NaOH and silane coupling agents (Albano et al.,
2005). Authors explored the partial oxidation of CR to create
hydrophilic groups, strengthening the bond with the cement
matrix, albeit at an increased cost (Chou et al., 2010). It was
noticed that the combined NaOH treatment with silica fume in
rubberized concrete, noting a reduced strength reduction compared
to untreated rubberized concrete (Pelisser et al., 2011). It was found
that adding limestone powder, silica fume, and superplasticizer
admixtures made the concrete stronger, but not as strong as
regular concrete (Corinaldesi et al., 2011; Turki et al., 2012). Huang
et al. (Huang B. et al., 2013) and Dong et al. (Dong et al., 2013)
experimented with two-phase treatment for surface, finding
that employing both stages was more effective in strengthening
rubberized concrete. Meddah et al. (Meddah et al., 2014) attempted
NaOH treatment and adding fine aggregate to roughen CR’s surface,
but this method did not improve concrete strength significantly.
Li et al. (Li G. et al., 2016) did a study where they used silane
coupling agents and carboxylate styrene-butadiene rubber latex
to treat used tire fibers. They saw improvements in the materials’
CS and FS. However, different findings from (Dong et al., 2013; Shu
and Huang, 2014) suggest that CR treatment methods might not
always make rubberized concrete as strong as regular concrete. This
makes it less useful in construction because it is not as strong as
regular concrete.

Advancements in nanotechnology offer promising prospects
for material development at the nanoscale, enabling precise
manipulation of matter at atomic levels. Nano-engineered materials
exhibit superior performance with respect to their larger-scale
counterparts due to their nano-sized dimensions (Nik et al., 2010;
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Bahari et al., 2016; Faried et al., 2021; Mousavi et al., 2021). Within
the construction sector, the emergence of titanium dioxide (TiO2)
as a nanomaterial has addressed the demand for high-performance
materials at a competitive cost. TiO2 nanoparticles, also known
as Titania, have gained popularity in composites (cementitious)
owing to their enhanced photochemical activity, stability, and cost-
effectiveness (Nik and Bahari, 2012; Yousefi et al., 2013; Li Q. et al.,
2016; Loh et al., 2018). The inclusion of nanoparticles, such as
titanium, expedites the hydration process by filling microscale voids
and providing sites for the early formation of hydration products
(Amiri et al., 2012; Bahari et al., 2012; 2015). Studies have shown
compelling results regarding the benefits of incorporating titanium
nanoparticles into cementitious matrix (Abu el-Hassan et al., 2023;
Ghanim et al., 2023). Consequently, Meng et al. (Meng et al., 2012)
identified a 45% increase in early-age compressive strength
by adding 0.05% titanium nanoparticles to cement, attributing
this enhancement to accelerated C-S-H formation and pore
reduction. Jayapalan et al. (Jayapalan et al., 2009) talked about
how titanium nanoparticles help create nucleation sites in cement
hydration products, which speeds up reactions by lowering energy
barriers. Zhang et al. (Zhang R. et al., 2015) confirmed significant
enhancements in CS and pore refinement in PC mortar due to
the addition of titania nanoparticles, linked to accelerated cement
hydration. Feng et al. (Feng et al., 2013) observed that cement
paste with Titania nanoparticles had higher flexural strength.
They said this was because the needle-shaped nanoparticles
made the microstructure better, with fewer holes and more
compact, smoother microcracks. The use of TiO2 in rubberised
concrete has several benefits, such as heightened mechanical
characteristics, including augmented CS and FS, as well as enhanced
toughness, resulting in more durable buildings. In addition, the
use of TiO2 improves the durability of rubberised composite by
reducing water absorption and enhancing resistance to chemical
degradation and freeze-thaw cycles, thus prolonging its service
life. The material’s photocatalytic qualities allow for self-cleaning
abilities, effectively fighting surface pollutants and preserving
cleanliness. Additionally, it offers UV resistance, protecting against
deterioration caused by exposure to sunshine. In addition, the
use of TiO2 in rubberised composite augments its flow of
fresh mix and decreases friction during the mixing process.
This, in turn, allows for simpler placement and finishing of
the concrete, resulting in smoother surfaces and better-quality
buildings. In summary, incorporating TiO2 into rubber concrete
not only improves its performance and durability but also
promotes sustainability by using recycled rubber and minimising
environmental harm.

Furthermore, utilising RSM as an optimisation technique to
investigate the characteristics of rubberised concrete provides clear
benefits compared to other methods. When compared to methods
like the Taguchi method, RSM is more efficient because it can
give useful results with fewer experimental runs. This streamlines
the research process and preserves resources. In addition, RSM’s
adaptability in modelling allows for the representation of detailed,
non-linear connections between input variables and output
responses, which is essential for comprehending the intricate
nature of concrete qualities. Furthermore, RSM’s emphasis on local
optimisation enables precise revisions towards optimum solutions,
which is especially advantageous in concrete research where little

modifications may greatly impact results. The interpretability
of RSM models boosts their value by enabling investigators
to differentiate the impact of individual components and their
interactions on certain attributes. By combining RSM with well-
crafted experimental designs, one may guarantee a methodical
investigation of the design space, resulting in dependable and
practical outcomes. In summary, RSM proves to be a reliable and
effective technique for optimising the characteristics of rubberised
concrete. It provides a well-rounded approach that combines
modelling flexibility, experimental efficiency, and interpretative
capability. There are many experimental investigations performed
on the TiO2 as nanomaterials (Al-Rbaihat and Al-Marafi, 2023;
Bunea et al., 2023; Mostafa et al., 2023; Rawat et al., 2023) and CR
as replacement for sand in concrete individually (Shahjalal et al.,
2023; Youssf et al., 2023; Aghamohammadi et al., 2024) but there
is very limited research were accomplished on rubberised concrete
mixed with TiO2 as nanoscale particle. Therefore, this study aims
to experimentally explore the integration of titanium dioxide
as a nanomaterial into rubberized concrete. The goal is to
perform an optimization framework using RSM and to look at
the material’s mechanical characteristics (tensile, compressive,
and flexural strengths), deformation characteristics (modulus of
elasticity and drying shrinkage), and durability aspects (sorptivity
and porosity).

2 Experimental program

2.1 Materials

The major binding ingredient utilized in research work was
Portland cement (PC), which conformed toASTMC150/C150-16e1
(2016) requirements and had a specific gravity (SG) of 3.15.The river
sandwas employed as a fine aggregate, passing froma 4.75 mm mesh
with a SG of around 2.65. Crushed stone, with a size of 20 mm,
was employed as a coarse aggregate (CA), with an SG of about 2.60.
Moreover, crumb rubber (CR), characterized by a SG of 0.92 and
passed through a 1.18 mm sieve, was used as a partial substitution
for sand at volumes of 10%, 20%, and 30% in this investigation.
Incorporation of TiO2 powder as a nanomaterial in rubberized
concrete was a crucial aspect of the experiment.The average particle
size ranged between 10 and 50 nm. To confirm uniform dispersion
of nanoscale particles and prevent cohesion or agglomeration when
mixed with water, a third-generation superplasticizer was employed
(Zhao et al., 2017). To achieve the appropriate ability to flow, a
modified polycarboxylate-based superplasticizer (SP) was utilised
in the form of a water-based solution to modify the mixes. The
substance is in a liquid state and has a pH of 6.2 and a SG of
1.08. Importantly, it contains no chloride ions. Water suitable for
drinking and meeting standard quality criteria for concrete mixing
was applied in the investigation, maintaining a water-to-cement
ratio of 0.35.

2.2 Mix proportions generated by RSM

The Design Expert 10 software was used to develop RSM for
optimization. Employing the Central Composite Design (CCD)
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TABLE 1 Mix Proportions of CR-Concrete blended with TiO2.

Mix ID
Ingredients (%) Mass of constituents utilized in CR concrete (kg/m3)

TiO2 CR PC TiO2 CA Sand CR SP Water

M0 0.0 0.0 585 0.0 1,450 675 0.0 5.79 205

M1 1.5 10 576.22 8.78 1,450 630.53 44.47 5.79 205

M2 1.0 10 579.15 5.85 1,450 630.53 44.47 5.79 205

M3 1.5 30 576.22 8.78 1,450 541.59 133.41 5.79 205

M4 1.0 30 579.15 5.85 1,450 541.59 133.41 5.79 205

M5 2.0 30 573.30 11.70 1,450 541.59 133.41 5.79 205

M6 1.0 10 579.15 5.85 1,450 630.53 44.47 5.79 205

M7 1.0 20 579.15 5.85 1,450 586.06 88.94 5.79 205

M8 1.5 20 576.22 8.78 1,450 586.06 88.94 5.79 205

M9 1.5 20 576.22 8.78 1,450 586.06 88.94 5.79 205

M10 2.0 20 573.30 11.70 1,450 586.06 88.94 5.79 205

M11 1.5 20 576.22 8.78 1,450 586.06 88.94 5.79 205

M12 2.0 20 573.30 11.70 1,450 586.06 88.94 5.79 205

M13 1.5 20 576.22 8.78 1,450 586.06 88.94 5.79 205

M14 1.5 30 576.22 8.78 1,450 541.59 133.41 5.79 205

M15 1.5 20 576.22 8.78 1,450 586.06 88.94 5.79 205

M16 2.0 10 573.30 11.70 1,450 630.53 44.47 5.79 205

method, the research focused on two key factors: CR and TiO2 as
nanomaterials. Each variable underwent testing three times, with
CR at 10%, 20%, and 30% volume substitution for sand, and TiO2
at 1%, 1.5%, and 2% addition by weight of PC. This particular
approach, previously utilized by researchers (Jo et al., 2015; Al-
Fakih et al., 2020; Khed et al., 2020) culminated in 16 distinct mixes.
Thesewere generated by the RSM,meticulously exploring numerous
Runs of the specified variables outlined in Table 1. Evaluation in
the laboratory encompassed examining each mix for its flexural
strength (FS), tensile strength (TS), modulus of elasticity (ME),
compressive strength (CS), drying shrinkage (DS), sorptivity, and
apparent porosity (AP). Moreover, the strength of each mix after
a 28-day period was scrutinized. These assessments served as
the basis for the RSM study and subsequent optimization of the
mixtures. RSM played a pivotal role, not only in scrutinizing the
results but also in conducting an analysis of variance (ANOVA) to
ensure the reliability of the conducted tests. The study harnessed
RSM to discern the most optimal values for the output variables
(CS, TS, FS, ME, DS, sorptivity, and AP), factoring in the
substantial impact of the input variables (TiO2 and CR) on the
overall outcomes.

2.3 Sample preparation and testing
methods

2.3.1 Mixing and casting
The process of creating the specimens involved thorough

preparation of rubberized concrete blended with TiO2 as a
nanomaterial, following the guidelines specified in BS 1881: Part
125:1986. The procedure started by dry mixing the sand, CA,
and CR for 50 s using a concrete mixer. Afterwards, half of the
water that was being mixed was added, and the entire mixture
was stirred for a duration of 1 min. Besides, PC was thereafter
inserted and well blended for an extra minute. To ensure proper
dispersion and prevent potential agglomeration of the nanoparticles,
TiO2 and superplasticizer were thoroughly mixed with water for
3–5 min using a high-speed stirrer (Younis and Mustafa, 2018;
Orakzai, 2021). This step aimed to enhance flow of fresh mix and
facilitate uniform distribution, considering the cohesive nature of
nanoparticles. Once the nanoparticle mixture was ready, it was
gradually incorporated into the rotarymixer containing the concrete
mixture. The entire nanoparticle mixture was systematically added
and blended thoroughly with the concrete mixture. Following this
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meticulous blending process, the samples underwent preparation
and curing in controlled laboratory conditions, aligning with the
standards outlined in ASTM C192/C192M-19 (2019).

2.3.2 Mechanical properties
After subjecting the rubberized concrete samples blended with

varying TiO2 concentrations to a 28-day curing process in water,
a series of experimental assessments were performed. For the
assessment of compressive strength, three cubical samples (100 mm
× 100 mm × 100 mm) were employed per mix. Testing was
performed through a 3,000 kN capacity UTM by following BS EN
12390-3 (2009) guidelines.Thedirect tensile test involved dog-bone-
shaped samples sized at 420 mm × 120 mm × 30 mm was tested
based on Japan Society of Civil Engineers (2008). This evaluation
was performed at a controlled loading rate of 0.15 mm/min via a
200 kN capacity UTM equipped with built-in LVDTs. Real-time
test data was collected and processed by a computer, displayed
during testing. Additionally, flexural testingwas carried out on beam
samples measuring 500 mm × 100 mm × 100 mm through UTM
apparatus at a loading rate of 0.05 kN/s by confirming BS EN 12390-
5 (2009). Each mix underwent testing with three samples, and the
average values of the flexural properties were presented based on
these tests.

2.3.3 Deformation characteristics
The analysis of the modulus of elasticity (ME) was achieved

through the static procedure specified in ASTMC469 (ASTM C469,
2002). Everymixturewas evaluated utilizing four cylinders (300 mm
× 150 mm). Two cylindrical samples were designated for the
determination of the CS of the mixture (i.e., the stress and ultimate
load), whereas the remaining two were used to ascertain the ME.
Linear and lateral deformations were measured using a compressor
meter in conjunction with dial gauges affixed to the sample. At the
time of this measurement, 40% of the maximal load derived from
the compressive experiments was applied to the sample. Eq. (1) was
utilized in the computation of the ME.

E =
(σ2 − σ1)
(ε2 − 0.000050)

(1)

where
E is Young’s modulus of elasticity, MPa
σ2 is the Stress corresponding to 40% of the ultimate load or ultimate
Stress, MPa
σ1 is the stress associatedwith a longitudinal strain of 0.000050,MPa
εσ2 is the specimen’s lateral strain at mid-height at a Stress, σ2

The evaluation of shrinkage in rubberized concrete
incorporating TiO2 mixes followed ASTM C157/C157M (2008)
standard. Specimens with dimensions of 280 × 50 × 30 mm were
made for this assessment. Two specimens from each mixture
were made for measuring shrinkage. Over the span of 28 days,
these samples were regularly measured for length changes using a
length comparator. The monitoring technique included observing
variations in the density of the specimens unless the difference
between two successive measurements decreased to less than 0.5%.
This systematic observation allowed for an accurate assessment
of the shrinkage behaviour in the rubberized concrete blends
containing TiO2.

FIGURE 1
CS of rubberised concrete containing TiO2.

2.3.4 Durability of rubberised concrete
The evaluation of durability for rubberized concrete

incorporating TiO2 involved conducting sorptivity tests and
assessing apparent porosity after 28 days. In order to perform the
sorptivity test (Jalal et al., 2013), three 30 mm-thick sections were
obtained from three CR concrete cubes with dimensions of 100 mm
× 100 mm × 70 mm. These cubes had undergone a 28-day curing
process. The specimens underwent a drying process in an oven set
at 105°C for 24 h and were subsequently cooled in desiccators to
ensure uniform conditions. Sidewalls were coated with epoxy resin
to prevent water absorption from the sides, enabling absorption
solely from the bottom. Placed in pans with tap water at a level
52 mm above the pan’s base, the specimens were allowed to absorb
water. Regular mass measurements were taken after draining excess
water with an absorbent cloth. A plot was generated using the
cumulative absorbed volume of water per unit area against the
square root of time. The slope of the fitted line to this plot provided
the basis for calculating the sorptivity coefficient using Eq. 2 (Nazari
and Riahi, 2011c). This coefficient served as a quantifiable measure
of water absorption and permeability, contributing to the assessment
of durability in the rubberized concrete incorporating TiO2.

fsc =
i
√t

(2)

Here,
fsc = coefficient of sorpitivity, mm/√min.,
i = Accumulated water volume per unit area of the surface where
water enters, mm and
t = elapsed time,min. For each test, the readings up to 960 s (16 min)
were ignored to find the slope of best fitted curve.

To gauge the water absorption capacity of rubberized concrete
incorporating TiO2, three cubes from each series underwent a
specific procedure. Initially, these cubes were oven-dried for 24 h at
105°C to establish their initial weight, serving as the starting weight
for assessment. Subsequently, all of the samples were submerged
in water for a period of 24 h to achieve saturation. Subsequently,
the final mass of the specimens was measured as the saturated
surface’s dry weight. The weight loss, measured as a percentage,
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FIGURE 2
TS of Rubberised Concrete containing TiO2.

FIGURE 3
Flexural Strength of CR Concrete containing TiO2.

FIGURE 4
ME of Rubberised Concrete containing TiO2.

reflected the degree to which the samples absorbed water (Nazari
and Riahi, 2010). It has detected that the specimens were dried at
105°C intentionally to avoid potential microstructural alterations
in the TiO2 specimens that higher temperatures might cause,
ensuring accurate water absorption measurements (Zhang and Li,
2011). Furthermore, three specimens were utilized to ascertain the
apparent porosity (AP). Eq. 3 was applied to calculate AP, providing
valuable insights into the material’s pore structure and its capacity
for water retention.

ApparentPorosity = |
Wi −Wd

Wi −Ws
| × 100% (3)

Here,
Ww = Mass of the sample after being submerged in water for a
duration of 48 h.
Wd = Mass of the specimen after the process of removing moisture
by subjecting it to an oven at a temperature of 105°C for a duration
of 24 h.
Ws = Mass of the sample while it is suspended in water

3 Results and discussions

3.1 Compressive strength (CS)

Figure 1 shows how the CS changed at day 28 depending on
how much TiO2 nanomaterial was added to different rubberized
concrete mixtures. By progressively incorporating CR, the graph
organizes mixtures containing an equivalent quantity of TiO2 in
each group. The bar graph shows the average of five mixtures that
came from the CCD’s central points (1.5% TiO2 and 20% CR).
This is called MCP. The composition, consisting of a replacement
volume of 10% CR for sand and a weight percentage of 1.50%
TiO2, achieved an exceptionally high CS of 51.40 MPa. With a sand
replacement volume of 30% CR and a weight percentage of 2%
TiO2, the minimum CS measured after a period of 28 days was
38 MPa. It is worth mentioning that as CR concentration rises, the
graph illustrates a significant drop in the CS of concrete. In line
with what Najim and Hall (Nazari et al., 2010). Found, this loss of
strength is due to CR not sticking well enough to the cemented
cement matrix. Bashar claims that the hydrophobic nature of CR
particles, which hinders their ability to combine with water and
thereby creates a barrier to bonding, negatively affects the strength of
composites. In line with earlier studies (Kundan and Sharma, 2020;
Assaggaf et al., 2021; Fauzan et al., 2021). CR makes the composite
more fragile because it is weaker and has a lower elastic modulus
than microaggregate particles. Prior research (Zhang Z. et al., 2015;
Alaloul et al., 2020) stated that the accumulation of CR has a
detrimental impact on the CS of composites. These findings
corroborate these results. Figure 1 shows that TiO2 can be used
as a nanomaterial to strengthen the rubberized concrete matrix,
especially when it is mixed with up to 1.5% by weight of Portland
cement (PC).The augmentation inCa(OH)2 absorption is attributed
by researchers to the participation of TiO2 in the pozzolanic
reaction. The development of C-S-H is facilitated as a result of this
hydration procedure acceleration (Wang et al., 2018). Operating as a
highly efficient infill, the nanoparticles hinder the unrestricted flow
of water vapor within the concrete. Evidently, the CS increased when
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1.50 percent TiO2 was incorporated instead of cement but reduced
as the proportion of TiO2 increased (Figure 5). Due to two things,
the performance has gone down: the nanoparticles are not evenly
distributed in the concrete matrix, and there are fewer Ca(OH)2
crystals available, which are needed to make C-S-H gels (Najim
and Hall, 2013). Higher concentrations of TiO2 with larger surface
areas were also a contributing factor in these samples’ excessive
water absorption. In line with the work of Rawat et al. (Rawat et al.,
2023). Sorathiya et al. (Sorathiya et al., 2018) and Orakzai (Orakzai,
2021), this study found that using 1% nano-TiO2 instead of cement
increased the CS by 22.6% after 28 days.

3.2 Tensile strength (TS)

The TS is a critical measure of concrete’s tensile capacity,
impacted by both TiO2 as nanoparticle and CR content as a sand
replacement by volume. Figure 2 illustrates the experimental results
for rubberized concrete’s TS at 28 days, analysed via ANOVA in
the RSM framework. The impact of these factors on the TS is
statistically evaluated through RSM analysis. The highest recorded
tensile strength, at 4.47 MPa, was achieved with 1.50% TiO2 and
10% CR, while the lowest, at 3.30 MPa, occurred with 2% TiO2
and 30% CR replacing sand after 28 days Figure 2 highlights a
reducing trend in TS with growing CR content in concrete. Partially
substituting sand with CR has a detrimental effect on TS due to
water’s repulsion on CR, trapping air on its surface, increasing air
content in the concrete, and thickening the ITZ between aggregate
and PC paste (Khed et al., 2020). This process weakens the bond
between PC paste and aggregate.When a load is put on thematerial,
the strain compatibility difference between the hardened state of PC
and CR at ITZ causes stress to build up and cracks to form around
the CR parts. These cracks have been recognised as weak spots
by many studies (Posi et al., 2019; Shaji et al., 2019; Al-Fakih et al.,
2020; Shahrul et al., 2021). However, the accumulation of TiO2
as nanoparticle in rubberized concrete showcases a noticeable
enhancement in TS. Figure 2 indicates that optimal strength is
achieved when TiO2 is up to 1.5%, after which strength begins to
decline. This observed enhancement in TS might be accredited to
the great surface area of TiO2 nanoparticles, promoting pozzolanic
reactions that foster C-S-H gel formation and overall strength
increase (Chen et al., 2012). However, further accumulation of
TiO2 leads to decreased strength in rubberized concrete, linked to
non-uniform nanoparticle dispersion, hindering Ca(OH)2 crystal
formation crucial for C-S-H gel development (Khed et al., 2020).
Comparable remarks were completed by researchers (Rawat et al.,
2023).

3.3 Flexural strength (FS)

It is the measure used to quantify the capability of composite to
withstand bending. The adhesion between aggregate and PC paste
affects the FS (Khed et al., 2020). At the 28-day, the experimental
outcomes for rubberized concrete comprising several contents
of TiO2 as nanoparticle are illustrated in Figure 3. The material
exhibiting the greatest FS noted by 5.91 MPa when composed of
1.5% TiO2 and 10% CR by 28 days. Conversely, the least FS was

attained by 4.37 MPa at 2% TiO2 as nanoparticle and 30% CR in
place of sand together after 28 days. The trend identified suggests
that as CR substitution increases, the FS of concrete declines. The
decrease in toughness of CR particles relative to FA which cause of
the reduction in FS. In line with this, Sharul et al. (Shahrul et al.,
2021) detected that the FS of CR concrete is diminished in
comparison to sand particles due to its lesser SG, strength, and load-
bearing capacity. Additionally, when sand is replacedwithCR, the FS
is dropped as a consequence of water repulsion, air entrapment on
CR surfaces, and a rise in air content in CR concrete. By increasing
the thickness of ITZ that separates aggregate and cement material,
their bond is weakened (Khed et al., 2020). The incorporation of
TiO2 significantly contributes to the enhancement of FS. As exposed
in Figure 3, the FS of PC rises with the TiO2 content reaching
1.5% by weight. The observed improvement can be ascribed to the
filling of micropores in rubberized concrete by nanoscale particles
of TiO2, which consequently enhance its strength. Nevertheless, as
TiO2 continues to accumulate, its strength diminishes as a result
of the uneven distribution of particles; this impedes the formation
of Ca(OH)2 crystals, which are vital for the development of C-S-
H gels (Khed et al., 2020). Scholars have encountered comparable
observations (Rawat et al., 2023).

3.4 Modulus of elasticity (ME)

TheME, defining concrete’s resistance to deformation, is crucial
and influenced by multiple features such as concrete’s compatibility,
aggregate properties, and the ITZ (Silva et al., 2016). The ME test,
following ASTM C 469 (ASTM C469, 2002), is strongly correlated
with CS and often expressed by empirical equations derived from
experimental studies for various concrete types (Alsalman et al.,
2017). For rubberized concrete, equations estimating the modulus
of elasticity based on various w/c ratios have been developed
Figure 4 illustrates the modulus of elasticity results for sixteen
experimental runs conducted with rubberized concrete blended
with various TiO2 concentrations at 28 days. The highest ME was
observed by 40.15 GPa with addition of 1.50% TiO2 and 10% CR,
while the lowest ME was noted by 34.52 GPa at 2% TiO2 and
30% CR replacing sand by volume after 28 days respectively. The
reduction in ME with increased CR replacement is accredited to the
lower stiffness of rubber elements (Khed et al., 2020). However, a
noteworthy trend reversal occurred with TiO2 addition. Across all
CR replacement levels, mixes containing 1.5%TiO2 exhibited higher
ME. This improvement is associated to the nanoscale fineness of
TiO2 particles, filling micro pores within rubberized concrete and
enhancing its stiffness. Yet, further TiO2 addition led to decreased
ME in rubberized concrete. This decline is associated with reduced
or unavailable Ca(OH)2 crystals necessary for C-S-H gel formation
and non-uniform nanoparticle distribution in matrix (Nazari et al.,
2010). These outcomes are dependable with the studies done by
Rawat et al. (Rawat et al., 2023).

3.5 Drying shrinkage (DS)

It is a significant concern in concrete in which the volume
change associated to water loss within the capillary pores of
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TABLE 2 ANOVA outcomes.

Response Source Sum of squares Df Mean square F-value p-value > F Significance

Compressive Strength

Model 150.47 5 30.09 85.59 <0.0001 Yes

A- TiO2 25.75 1 25.75 73.23 <0.0001 Yes

B-CR 91.48 1 91.48 260.20 <0.0001 Yes

AB 3.07 1 3.07 8.72 0.0145 Yes

A2 27.33 1 27.33 77.74 <0.0001 Yes

B2 0.14 1 0.14 0.39 0.5450 Yes

Residual 3.52 10 0.35

Lack of Fit 3.52 3 1.17

Pure Error 0.000 7 0.000

Cor Total 153.98 15

Tensile Strength

Model 1.16 5 0.23 83.94 <0.0001 Yes

A- TiO2 0.20 1 0.20 71.52 <0.0001 Yes

B-CR 0.70 1 0.70 254.01 <0.0001 Yes

AB 0.022 1 0.022 8.05 0.0176 Yes

A2 0.22 1 0.22 78.40 <0.0001 Yes

B2 1.074E-003 1 1.074E-003 0.39 0.5464 Not

Residual 0.028 10 2.757E-003

Lack of Fit 0.028 3 9.190E-003

Pure Error 0.000 7 0.000

Cor Total 1.18 15

Model 1.16 5 0.23 83.94 <0.0001

Flexural Strength

Model 1.97 5 0.39 79.57 <0.0001 Yes

A- TiO2 0.34 1 0.34 67.64 <0.0001 Yes

B-CR 1.20 1 1.20 241.63 <0.0001 Yes

AB 0.039 1 0.039 7.90 0.0184 Yes

A2 0.37 1 0.37 73.77 <0.0001 Yes

B2 1.476E-003 1 1.476E-003 0.30 0.5972 Not

Residual 0.050 10 4.956E-003

Lack of Fit 0.050 3 0.017

Pure Error 0.000 7 0.000

Cor Total 2.02 15

(Continued on the following page)
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TABLE 2 (Continued) ANOVA outcomes.

Response Source Sum of
squares

Df Mean
square

F-value p-value >
F

Significance

Modulus of
Elasticity

Model 26.26 5 5.25 74.69 <0.0001 Yes

A- TiO2 4.63 1 4.63 65.92 <0.0001 Yes

B-CR 15.91 1 15.91 226.27 <0.0001 Yes

AB 0.66 1 0.66 9.35 0.0121 Yes

A2 4.72 1 4.72 67.17 <0.0001 Yes

B2 0.011 1 0.011 0.16 0.6962 Not

Residual 0.70 10 0.070

Lack of Fit 0.70 3 0.23

Pure Error 0.000 7 0.000

Cor Total 26.96 15

Drying
Shrinkage

Model 7.737E-004 5 1.547E-004 2172.79 <0.0001 Yes

A- TiO2 9.453E-005 1 9.453E-005 1327.36 <0.0001 Yes

B-CR 6.582E-004 1 6.582E-004 9242.15 <0.0001 Yes

AB 4.730E-006 1 4.730E-006 66.42 <0.0001

A2 1.564E-007 1 1.564E-007 2.20 0.1691 Not

B2 9.898E-006 1 9.898E-006 138.98 <0.0001 Yes

Residual 7.122E-007 10 7.122E-008

Lack of Fit 7.122E-007 3 2.374E-007

Pure Error 0.000 7 0.000

Cor Total 7.744E-004 15

Sorptivity

Model 7.884E-005 5 1.577E-005 129.52 <0.0001 Yes

A- TiO2 3.977E-005 1 3.977E-005 326.65 <0.0001 Yes

B-CR 4.836E-005 1 4.836E-005 397.20 <0.0001 Yes

AB 1.279E-006 1 1.279E-006 10.51 0.0088 Yes

A2 1.308E-006 1 1.308E-006 10.75 0.0083 Yes

B2 3.929E-008 1 3.929E-008 0.32 0.5825 No

Residual 1.217E-006 10 1.217E-007

Lack of Fit 1.217E-006 3 4.058E-007

Pure Error 0.000 7 0.000

Cor Total 8.006E-005 15

(Continued on the following page)
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TABLE 2 (Continued) ANOVA outcomes.

Response Source Sum of
squares

Df Mean
square

F-value p-value >
F

Significance

Apparent
Porosity

Model 57.98 5 11.60 216.12 <0.0001 Yes

A- TiO2 18.67 1 18.67 347.95 <0.0001 Yes

B-CR 43.55 1 43.55 811.66 <0.0001 Yes

AB 0.96 1 0.96 17.85 0.0018 Yes

A2 0.068 1 0.068 1.26 0.2878 Not

B2 0.31 1 0.31 5.81 0.0367 Yes

Residual 0.54 10 0.054

Lack of Fit 0.54 3 0.18

Pure Error 0.000 7 0.000

Cor Total 58.52 15

FIGURE 5
DS of Rubberised Concrete comprising TiO2.

matrix. Figure 5 illustrates a noteworthy decrease in rubberized
concrete shrinkage with increasing TiO2 as a nanomaterial addition.
The shrinkage values for rubberized concrete blended with TiO2
ranged between 0.05% and 0.066%, higher than the control sample’s
shrinkage value of 0.04% and the typical composite shrinkage
values reported (ranging from 1,200 × 10−6 to 1800 × 10−6)
(Zhang et al., 2009). Observations show an increase in concrete
shrinkage as the CR content in the mixture rises. This rise is
accredited to the lower stiffness of CR constituent part compared
to sand, causing increased deformation under drying shrinkage
stress (Wang et al., 2019). Also, because CR is flexible, there is less
internal restraint within the matrix compared to substituted sand
particles. This makes the volume less stable and causes it to shrink
more when it dries (Zhang Z. et al., 2015). Moreover, higher CR
content leads to improved porosity in the composite owing to the

FIGURE 6
Sorptivity of Rubberised Concrete comprising TiO2.

hydrophobic character of CR. This prompts capillary water rise and
subsequent volume change upon evaporation, further increasing
DS (Huang X. et al., 2013). Adding TiO2 as a nanomaterial to
rubberized concrete dramatically decreased its drying shrinkage at
all levels of CR replacement, which is a big surprise. This decrease
is ascribed to the nanoscale fineness of TiO2 particles, which
effectively fill micropores within the mixture. During the concrete
drying process, excess water evaporates from the surface, creating
an air/water interface within capillary pores. The phenomenon
of surface tension creates pressure on the innermost layers of
such tiny pores, resulting in an inward push that causes the pore
structures to contract and decreases the volume of capillaries. The
higher the capillary pores, the greater the potential for concrete to
shrink. Nanoparticles are very important for lowering the number of
capillary voids, which in turn lowers surface tension and, as a result,
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FIGURE 7
Apparent Porosity of Rubberised Concrete comprising TiO2.

lessens the shrinkage that happens when water evaporates from
the concrete matrix. Joshaghani (Joshaghani, 2018) noted similar
observations.

3.6 Sorptivity test

Following a curing period of 28 days, each specimen underwent
a sorptivity test in order to evaluate capillary suction. It was
possible to determine the slope of the line that links absorption
with the square root of time (Nazari, 2011; Saleem et al., 2021).
The absorption curve and square root of the absorption coefficient
for concrete mixtures are illustrated in Figure 6 (Chen et al., 2012).
The provided data illustrates the sorptive outcomes of rubberized
concrete mixtures supplemented with varying quantities of TiO2
nanomaterials. After a period of 28 days, the mixture containing
2% TiO2 nanomaterial and 10% CR sand replacement by volume
exhibited the lowest sorptivity. The water-only solution exhibited
the greatest sorptivity. A higher CR content in concrete is positively
correlated with increased sorptivity, according to these findings.
This structure forms because rubber is hydrophobic, which raises
the capillary water pressure, causes more volume change during
evaporation, and then contraction. As a result, a higher CR content
leads to more porosity (Huang X. et al., 2013). Notably, adding TiO2
nanoparticles to rubberized concrete greatly decreased its ability
to soak up water, no matter how much CR was replaced. The
fluctuations in sorptivity levels exhibit a strong correlation with
the properties of the pores. TiO2 has a lower sorptivity because
its particles are smaller and more C-S-H gel forms, which makes
the pores smaller and, in turn, the sorptivity lower (Jayapalan et al.,
2009; Zhang R. et al., 2015). When samples with more TiO2 are put
into the C-S-H gel, the sorptive levels go down. As a consequence,
the interconnection of pores diminishes, resulting in a reduction in
absorption. These observations resonate with finding from earlier
research (Rawat et al., 2023).

3.7 Apparent porosity

Figure 7 illustrates the apparent porosity of rubberized concrete
blended with various concentrations of TiO2 as nanomaterial
after a 28-day period. Interestingly, the porosity of all concrete
including TiO2 was lower than control concrete. However, the
porosity of the concrete increased with rising CR content, attributed
to the hydrophobic character of CR. This characteristic led to
capillary water rise and increased drying shrinkage, thereby
augmenting porosity with higher CR content (Huang X. et al.,
2013). Conversely, across all CR replacement levels, a significant
decrease in porosity was detected upon the introduction of TiO2
as a nanomaterial in rubberized concrete. This decline in porosity
can be linked to TiO2 nanoparticles acting as effective fillers.
As the nanoparticle conglomerates expanded, the surrounding
void spaces were gradually filled. These “nuclei” significantly
accelerated hydration rates, leading to reduced porosity as hydration
accumulated rapidly within water-filled pores (Mohammadi et al.,
2014). Studies by Mohammadi et al. (Mohammadi et al., 2014)
showcased reduced total porosity with the substitution of titanium
dioxide to calcium phosphate cement. These observations resonate
with finding from earlier research by Riahi and Nazari (Nazari and
Riahi, 2011b; 2011a), who observed decreased porosity when PC
was partially substituted with TiO2 at different concentrations.Their
results demonstrated that the decrease in porosity was achieved
with a TiO2 content of 3%, showing reductions of 1.64%, 4.3%,
5.67%, and 5.07% in porosity with additions of 1%, 2%, 3%, and
4%TiO2, respectively. Comparable observations weremade by other
researchers (Zhang and Li, 2011; Jalal et al., 2013; Sorathiya et al.,
2018; Rawat et al., 2022).

4 RSM analysis

RSM stands out as a powerful statistical and mathematical
approach for modelling relationships between independent
variables and their corresponding responses. It is widely favoured for
its ability to analyse and developmodels that effectively capture these
connections. Moreover, RSM extends its utility to multi-objective
optimization by defining specific goals tied to either the variables or
the responses (Adamu et al., 2018). In RSM analysis, several design
model types are available, such as CCD models and so on. The
selection amongst these options is contingent upon the quantity of
factors and the extent of their individual fluctuations (Adamu et al.,
2018). Given the unknown mathematical relations between replies
and independent factors, the model is often formulated as a linear
model represented by a first order function, as shown in Eq. 4.

y = β0 + β1x2 + β2x2 + βnxn + ϵ (4)

In Equation 5, y characterizes the modelled response. Here,
β o denotes the y-intercept when both X1 and X2 are zero.
The coefficients β 1 and β 2 correspond to the first and second
independent factors, correspondingly. X1 and X2 are the coefficients
of the first and second factors, correspondingly. The variable
‘e' accounts for the error in the model. However, in cases
where the data exhibits curvature, a linear model might not be
appropriate to capture the response accurately. In such instances, it
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FIGURE 8
(A) 2 D contour Diagram and (B) 3 D Surface Plots for CS.

FIGURE 9
(A) 2 D contour Diagram and (B) 3 D Surface Plots for TS.
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FIGURE 10
(A) 2 D contour Diagram and (B) 3 D Surface Plots for FS.

FIGURE 11
(A) 2 D contour Diagram and (B) 3 D Surface Plots for ME.
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FIGURE 12
(A) 2 D contour Diagram and (B) 3 D Surface Plots for DS.

FIGURE 13
(A) 2 D contour Diagram and (B) 3 D Surface Plots for Sorptivity.
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FIGURE 14
(A) 2 D contour Diagram and (B) 3 D Surface Plots for AP.

FIGURE 15
(A) Residual versus Runs plots and (B) Predicted against Actual diagrams for CS.
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FIGURE 16
(A) Residual versus Runs plots and (B) Predicted against Actual diagrams for TS.

TABLE 3 Model verification parameters.

Model validation constraints CS TS FS ME DS Sorptivity AP

Standard Deviation 0.59 0.053 0.070 0.27 2.669E-004 3.489E-004 0.23

Mean 46.34 4.03 5.33 38.10 0.057 0.038 18.41

C.V. % 1.28 1.30 1.32 0.70 0.47 0.93 1.26

PRESS 17.69 0.14 0.25 3.58 4.198E-006 6.864E-006 2.57

−2 Log Likelihood 21.16 −56.41 −47.03 −4.59 −225.43 −216.86 −8.92

R2 0.9772 0.9767 0.9755 0.9739 0.9991 0.9848 0.9908

Adj R2 0.9658 0.9651 0.9632 0.9609 0.9986 0.9772 0.9862

Pred R2 0.8851 0.8821 0.8764 0.8673 0.9946 0.9143 0.9561

Adeq Precision 33.815 33.478 32.629 31.814 155.424 44.555 55.271

BIC 37.80 −39.78 −30.39 12.04 −208.80 −200.22 7.72

AICc 42.49 −35.08 −25.69 16.74 −204.10 −195.52 12.42

is recommended to employ a higher degree polynomial approach, as
depicted by the second order function in Eq. 5.

y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix
2
i +

k

∑
j=2

j=1

∑
i=1

βijxixj + ϵ (5)

Eq. 5 expresses the modelled response, where ‘y’ signifies the
response being modelled. The variables ‘xi’ and ‘xj’ represent the
coded values of the independent factors. In this context, ‘i’ denotes

the linear coefficient, ‘j’ signifies the quadratic coefficient, ‘β’ is the
regression constant, ‘βo’ represents the y-intercept when both Xi and
Xj are zero, ‘k’ is the number of variables involved in the analysis,
and ‘e’ accounts for the error (Adamu et al., 2018). The selection
of the most suitable model involves considering additional terms
and ensuring that the model is not aliased. The highest polynomial
from the SMSS is chosen if the supplementary terms are significant.
Furthermore, the model summary statistics are examined, and the

Frontiers in Materials 16 frontiersin.org

https://doi.org/10.3389/fmats.2024.1357094
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Abdullah et al. 10.3389/fmats.2024.1357094

FIGURE 17
(A) Residual versus Runs plots and (B) Predicted against Actual diagrams for FS.

model that increases the predicted and adjusted R2 is selected. The
predictive quadratic models for CS, TS, FS, ME, DS, sorptivity and
AP were developed, as expressed in Eqs 6–12, utilizing the coded
factors TiO2 (A) and CR (B).

CS = + 47.58− 1.82×A− 3.43×B− 0.79×AB− 2.80×A2 + 0.20×B2 (6)

TS = + 4.14− 0.16×A− 0.30×B− 0.067×AB− 0.25×A2 + 0.018×B2 (7)

FS = + 5.47− 0.21×A− 0.39×B− 0.089×AB− 0.32×A2 + 0.021×B2 (8)

ME = + 38.63− 0.77×A− 1.43×B− 0.36×AB− 1.17×A2 + 0.057×B2

(9)

DS = + 0.058− 0.0035×A− 0.0092×B− 0.00098×AB

− 0.00021×A2 + 0.0017×B2 (10)

Sorptivity = + 0.037− 0.0023×A+ 0.0025×B+ 0.00051×AB

+ 0.00061×A2 − 0.00011×B2 (11)

AP = + 18.16− 1.55×A+ 2.37×B+ 0.44×AB+ 0.14×A2 + 0.30×B2 (12)

4.1 Analysis of variance (ANOVA)

At a 5% significance level (Bheel et al., 2023c; 2023e; 2023f;
2023d), ANOVA was used to look at how the factors interacted

with each other and how each parameter affected the responses.
Subsequently, any model or term with a p-value below 0.05 is
deemed significant. The ANOVA findings are shown in Table 2,
indicates that all generated models are significant at a significance
level of <0.01%. Looking at the specific models, certain terms stand
out as significant contributors. For instance, in the CS model, terms
A, B, A2, and B2 demonstrate significance. In the meantime, only
terms A, B, and A2 are important for the TS, FS, ME, and Sorptivity
models. On the other hand, theDS andAPmodels show significance
for terms A, B, and B2. The significance of terms A and B across all
models highlights the direct influence of both TiO2 and CR on the
responses. Additionally, the significance of A2 and B2 suggests that
the quadratic effects of these independent factors also impact the
responses. It is important to note that for the interaction between
factors to affect the response, the AB term must be significant.

Table 3 showcases the model validation parameters, revealing
remarkably high R2 values across all models, fluctuating from 97%
to 99.08%. These values signify the strong alignment between the
models and the actual data. Additionally, the models exhibit a
narrow difference (<0.2) between the adjusted R2 and predicted R2,
meeting the criteria for a good fit. Additionally, the signal-to-noise
ratio, which measures adequacy precision, exceeds the threshold of
0.4, confirming the accuracy of the models’ predictions.

4.2 Response surface plots and models
diagnostics

Figures 8–14 show portray the interactions between input
parameters and outputs (responses) through contour plots and 3D

Frontiers in Materials 17 frontiersin.org

https://doi.org/10.3389/fmats.2024.1357094
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Abdullah et al. 10.3389/fmats.2024.1357094

FIGURE 18
(A) Residual versus Runs plots and (B) Predicted against Actual diagrams for ME.

FIGURE 19
(A) Residual versus Runs plots and (B) Predicted against Actual diagrams for DS.

surface plots. They specifically highlight the relationships between
different input variables. For instance, Figure 8A,B demonstrate the
2D diagram and 3D plots for CS, showcasing that a significant
concentration of CS was observed at a 1.5% TiO2 level in the
nanomaterial category among all TiO2 concentrations. Additionally,

it is evident that the value of strength notably enhanced when using
up to 1.50% TiO2 in the CR concrete. This enhancement can be
owing to TiO2’s ability, as a nanomaterial, to fill pores and enhance
densification in the CR combination. Similar patterns are observed
in the remaining response surface graphs for TS, FS, ME, DS,
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FIGURE 20
(A) Residual versus Runs plots and (B) Predicted against Actual diagrams for Sorptivity.

FIGURE 21
(A) Residual versus Runs plots and (B) Predicted against Actual diagrams for AP.

sorptivity, and AP, indicating the impactful relationships between
input parameters and outputs.

The RSM evaluation comprises essential diagrams, including
crucial model diagnostic graphs like the normal diagram of

residuals (Figures 15–21). These graphs, split into (a) run versus
predicted and (b) real versus predicted, serve to validate the
significance of the quadratic models used for rubberized concrete
with TiO2 as nanomaterials. The plots depict residuals plotted
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against the run number (Figures 15–21A), showcasing a consistent
distribution without any observable model drift. The data points,
encapsulated within red boundary lines, maintain a sinusoidal
pattern, affirming the stability of the model throughout the process
(Memon et al., 2020). Additionally, the predicted versus actual
plot (Figures 15–21B) demonstrates strong agreement between
experimental and predicted 28-day data for CS, TS, FS, ME, DS,
sorptivity, andAPmodels.The close alignment of distribution points
and the minimal variance between experimental and predicted
values confirm this agreement. Notably, the points align closely
along a straight line, indicating a normal distribution pattern,
further validating the model’s accuracy.

4.3 Multi-objective optimization

It referred to as multi-response optimization is a technique
aimed at identifying the most beneficial variables to maximize
various responses simultaneously. Real-world optimization
problems often involve multiple conflicting objectives, necessitating
the search for several optimal solutions (Bheel et al., 2023b; 2023a).
Hence, this approach becomes the preferable strategy (Liu et al.,
2017; Habibi et al., 2021). Optimization focuses on the model’s
independent variables, enhancing their efficacy in the process.
The objective function guides this optimization, setting the goals
for the variables and potentially encompassing significance levels
(Liu et al., 2017; MIR et al., 2017). In this process, both independent
and dependent variables have objectives established using diverse
criteria (Burke and Kendall, 2005;Waqar et al., 2023a).The ultimate
aim is to attain objective functions without compromising any of
the responses. The desired values, which are between 0 and 1, are
what matter in the optimization process for each response, which
ranges from 0 to 1 (Waqar et al., 2023b; 2023a; Khan et al., 2023).
Elevating the DJ value enhances the favourability of the outcome,
often represented as a percentage. In multi-objective optimization,
the geometric mean of how desirable each response is found. This
lets you find the desirability value of the composite response, which
is shown in Eq. 13 (Achara et al., 2019).

D = (dr11 × d
r2
2 × d

r3
3 ×⋯⋯⋯⋯⋯⋯⋯⋯⋯× d

rn
n )

1
n (13)

In this context, “n” represents the total number of responses
considered during the optimization process, while “ri” denotes the
assigned weight of significance to each function, ranging from 1
(least important) to 5 (most crucial). In this specific model, the
desirability limit was set between 0% and 1%, where a value closer
to 1% indicates a more favourable outcome, strengthening the
optimized results impact on determining the dependent variable.
These parameters outline the optimization goals of the variables.
Notably, the optimization aims to maximize the responses for
CS, TS, FS, and ME, whereas it aims to minimize responses for
DS, sorptivity, and AP. The optimized results indicate maximum
values for CS (49.47 MPa), TS (4.31 MPa), FS (5.69 MPa), ME
(39.41 GPa), DS (0.051%), sorptivity (0.035 mm/s^0.5), and AP
(16.48%), detailed in Table 4. The variability analysis of the model
reflects a desirability of 66.10%, indicating the models ability to
produce relevant and promising outcomes.These desirability results
stem from the optimization method as shown in Table 4.
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4.4 Model validation

Experimental validation aimed to understand the disparities
between the predicted response values derived from the
optimization process and the actual experimental values. The
optimal parameters, concrete samples were created, incorporating
various proportions of CR as a sand substitute alongside TiO2
nanomaterials as cementitious components. The comparison
between predicted and experimental values of CS, TS, FS, ME,
DS, Sorptivity and AP is expressed as a percentage error, i.e 2.45%,
2.80%, 1.93%, 1.50%, 5.88%, 5.71%, and 4.92% respectively and
all responses exhibit an error percentage of less than 6%. This
low error percentage across all responses signifies a high level of
precision in approach. The discrepancy (δ) between empirical and
anticipated readings for individual responses was calculated using
Eq. 14, demonstrating the model’s precision in predicting outcomes
accurately. In essence, this signifies a high degree of consistency
between the anticipated and observed values, affirming the model’s
accuracy.

δ = |
ϑE − ϑP
ϑP
| × 100% (14)

5 Conclusion

This research endeavour focuses on exploring the impact
of titanium dioxide as nanomaterials on rubberized concrete,
specifically delving into its influence on mechanical, deformation,
and durability aspects. Drawing insights from the obtained results,
the following key conclusions emerge:

• The introduction of titanium dioxide nanoparticles notably
enhanced themechanical attributes of rubberized concrete.The
optimum CS, TS, FS, and ME were recorded by 51.40 MPa,
4.47 MPa, 5.91 MPa, and 40.15 GPa when 1.5% TiO2 and 10%
CRwere added in rubberised concrete after 28 days respectively.
After addition of 1.5% of TiO2 along with 10% of CR, these all
properties were getting reduced after 28 days respectively.

• The enhancements in the mechanical characteristics of the
rubberized concrete stemmed from the uniform distribution
of TiO2 nanoparticles. Acting as nucleation sites for cement
hydrates, these nanoparticles facilitated improved performance.
Their sizable surface area accelerated the hydration rate,
effectively contributing to the observed improvements.

• As the content of TiO2 in themixture increases, both the drying
shrinkage and sorptivity of rubberized concrete decrease.
These findings validate that water absorption percentage and
capillary absorption height diminish with the application of
TiO2 nanoparticles. Notably, the ITZ in concrete experiences
improvement attributed to the heightened reactivity and the
filler effect induced by TiO2 nanomaterial.
•The integration of TiO2 nanoparticles led to a notable reduction
in the apparent porosity of rubberized concrete. Acting as
nanofillers, thesenanoparticles enhanced theconcrete’s resistance
to water permeability, contributing to this reduction in porosity.
•Augmenting the fractionofnanoparticles frequentlybolsters the
durability of the resultant rubberized concrete.This improvement

can be linked to the finer particles integrated into the cementmix
and the reinforcing filler effect imparted by the nanoparticles.

• Predictive models for responses were formulated and validated
through both ANOVA and experimental validation. These
models exhibit robustness, boasting high coefficient of
determination (R2) values within the range of 97%–99%.
Employing multi-objective optimization, we pinpointed the
optimal input variable values at 1.50% for TiO2 nanoparticles
and 10% for CR. These values were attained with a desirability
value of 66.10%, signifying a favourable outcome according to
the optimization process.

• Based on the experimental findings, employing 1.5% titanium
dioxide as a nanoparticle in rubberized concrete yields
optimal results, suggesting its favourable application within
the construction industry. This recommendation stems from
observed outcomes that highlight its effectiveness in practical
construction scenarios.

6 Future recommendations

• Extend testing periods beyond 28 days to assess long-term
performance and durability of CR concrete blended with TiO2.
• Optimize the proportion of CR and TiO2 used in high
strength concrete inorder to achieve theoptimal balancebetween
improving characteristics andmaintaining structural soundness.

• Expand the scope of assessment to include additional
characteristics such as abrasion resistance, chloride ion
penetration resistance, and resistance to chemical attack of
rubberized concrete inclusion of TiO2 as nanoscale particle.

• Conduct a life cycle assessment to examine the ecological
consequences of producing rubberized concrete addition with
TiO2 in comparison to conventional concrete.

• Validate laboratory results by conducting field tests on
rubberized concrete accumulation with TiO2 as nanoparticle
and applying them to real-world building situations to ensure
practicality and applicability.
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